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Cryptic Amyloidogenic Elements in the 30 UTRs
of Neurofilament Genes Trigger Axonal Neuropathy

Adriana P. Rebelo,1 Alexander J. Abrams,1 Ellen Cottenie,2,3 Alejandro Horga,2,3 Michael Gonzalez,1

Dana M. Bis,1 Avencia Sanchez-Mejias,1 Milena Pinto,1 Elena Buglo,1 Kasey Markel,4 Jeffrey Prince,4

Matilde Laura,2,3 Henry Houlden,2,3,5 Julian Blake,2,6 Cathy Woodward,2,3 Mary G. Sweeney,5

Janice L. Holton,2,3 Michael Hanna,2,3 Julia E. Dallman,4 Michaela Auer-Grumbach,7 Mary M. Reilly,2,3,8

and Stephan Zuchner1,8,*

Abnormal protein aggregation is observed in an expanding number of neurodegenerative diseases. Here, we describe a mechanism for

intracellular toxic protein aggregation induced by an unusual mutation event in families affected by axonal neuropathy. These families

carry distinct frameshift variants inNEFH (neurofilament heavy), leading to a loss of the terminating codon and translation of the 30 UTR

into an extra 40 amino acids. In silico aggregation prediction suggested the terminal 20 residues of the altered NEFH to be amyloido-

genic, which we confirmed experimentally by serial deletion analysis. The presence of this amyloidogenic motif fused to NEFH caused

prominent and toxic protein aggregates in transfected cells and disrupted motor neurons in zebrafish. We identified a similar aggrega-

tion-inducingmechanism inNEFL (neurofilament light) and FUS (fused in sarcoma), in whichmutations are known to cause aggregation

in Charcot-Marie-Tooth disease and amyotrophic lateral sclerosis, respectively. In summary, we present a protein-aggregation-triggering

mechanism that should be taken into consideration during the evaluation of stop-loss variants.
Introduction

Abnormal accumulations of protein aggregates are associ-

ated with a wide range of diseases mainly affecting the ner-

vous system.1 The origins of these aggregates are diverse;

however, they share similar structures and overlapping

mechanisms of cellular toxicity in different diseases.

Protein aggregates usually adopt high-ordered b sheet

quaternary structures, forming insoluble fibrils termed am-

yloids.2 In Huntington disease (MIM: 143100), intranu-

clear inclusions and cytoplasmic aggregates are caused

by polyglutamine expansion of the protein huntingtin.3

Parkinson disease (MIM: 168600) is characterized by the

presence of inclusions known as Lewy bodies in the cyto-

plasm of neurons.4 In Alzheimer disease (MIM: 104300),

aggregates can occur both extracellularly as neuritic pla-

ques composed of Ab peptide and intracellularly as

neurofibrillary tangles of hyperphosphorylated TAU.5 In

amyotrophic lateral sclerosis (ALS [MIM: 105400]), aggre-

gation of ubiquitinated proteins, including FUS, TDP-43,

and OPTN, occurs in degenerating motor neurons.6

Interestingly, these aggregated ubiquitinated proteins co-

occur with perikaryal inclusions of neurofilament (NF).7

Abnormal NF aggregation and misassembly have also

been reported in other motor neuron diseases such as giant

axonal neuropathy (MIM: 256850)8 and Charcot-Marie-

Tooth disease (CMT [MIM: 607736]),9,10 the latter of which
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is the most common inherited motor neuron disease.

However, the causes of NF accumulation appear to be het-

erogeneous and not fully understood.

NFs are a class of intermediate filaments exclusively

expressed in neurons, and they represent major compo-

nents of the cytoskeleton responsible for regulating axonal

diameter and growth.11 NFs are composed of light (NEFL)-,

medium (NEFM)-, and heavy (NEFH)-molecular-weight

NF proteins that form heteropolymers in order to assemble

into 10 nm filaments.12 Mutations in NF-encoding genes

have been reported in multiple neurodegenerative dis-

eases. In ALS, NEFH expansion and contraction of the

KSP (Lys-Ser-Pro) repeat motif has been shown to be a

risk factor, yet its clinical contribution to sporadic ALS re-

mains to be determined.13,14 Mutations in NEFL (MIM:

162280) have been associatedwith both axonal and demye-

linated CMT (CMT2E [MIM: 607684] and CMT1F [MIM:

607734], respectively) and manifest with a wide spectrum

of clinical phenotypes.10,15,16 The frequency ofNEFLmuta-

tions in CMT is about 2%, and mutations can affect

conserved protein domains, including the head (e.g.,

p.Pro8Arg [c.23C>G] [GenBank: NM_006158.4]), coil (e.g.,

p.Gln334Pro [c.1001A>C] [GenBank: NM_006158.4]), and

tail (e.g., p.Glu527del [c.1579_1581delGAG] [GenBank:

NM_006158.4]) domains.16 Most NEFL mutations have

been identified as heterozygous, althoughhomozygousmu-

tations have also been reported.17 Most mutations lead to
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abnormal NF aggregates and disruption of NF axonal trans-

port and assembly in transfected cells.10 HSBP1 (heat shock

factor binding protein 1 [MIM: 602195]) mutations, which

cause a subtype of CMT, also result in disruption and aggre-

gation of NEFL, thus pointing to the importance of chap-

erone proteins in NF integrity.18–20

In the present study, we report previously unrecognized

cryptic amyloidogenic elements (CAEs) encoded by the

30 UTR of NEFH (MIM: 162230) and show that these

lead to aggregation and neuronal degeneration in model

systems and affected individuals. We demonstrate that

frameshift variants in NEFH in CMT2-affected families

result in stop loss and translation of a CAE encoded

by the 30 UTR. Expression of the mutant NEFH

exhibited prominent abnormal protein aggregates, disrup-

tion of the NF network, and altered cell dynamics. Inter-

estingly, we obtained the same aggregation-induced phe-

nomenon by triggering the translation of the 30 UTRs

of NEFL and FUS (MIM: 137070). Our in vivo and

in vitro results show that translation of CAEs encoded

by the 30 UTRs of NF-encoding genes causes axonopathy

and could be of broader impact for neurodegenerative

diseases.
Material and Methods

Families
The families were identified as part of our ongoing genetic studies

in CMT. The families were ascertained in Austria and Great

Britain. Participants were recruited, enrolled, and sampled accord-

ing to the protocols of the institutional review board at the

Universities of London and Vienna. A complete description of

the study was provided to the subjects, and written informed

consent was obtained. Whole blood was collected from all partic-

ipants by venipuncture. Affection status was determined by

consensus of physicians and clinical staff experienced in clinical

CMT research and was based on medical records and in-person

evaluation.

Plasmid Constructs and Immunocytochemistry
We created constructs encoding GFP-tagged wild-type protein

(GFP-WT-NEFH) and frameshift mutant protein with 40 additional

amino acids encoded by open reading frame 3 (ORF3) (GFP-FS-

NEFH), as identified in family UK1 (p.Asp1004Glnfs*58). The

gene encoding human NEFH was synthesized by GenScript. Site-

directed mutagenesis was used for generating the affected

individual’s variant, c.3010_3011delGA (p.Asp1004Glnfs*58)

(GenBank: NM_021076.3). The GFP tag was introduced at the

N terminus of the protein by cloning into pcDNA3.1/NT-GFP-

Topo (Invitrogen). NEFL-Myc cloned into the pCMV6-Entry vector

was obtained from OriGene Technologies. Neuro-2a cells were

grown in complete DMEM media (GIBCO) to 75% confluence

and transfected with Lipofectamine 2000 (Invitrogen) according

to the manufacturer’s protocol. After 24 hr, cells were fixed with

paraformaldehyde for 20 min, permeabilized with cold methanol

for 5min, and stainedwith anti-Myc antibody (Cell Signaling) and

anti-tubulin (Invitrogen). Cells were mounted onto microscope

slides and imaged with a confocal microscope, Zeiss LSM710,

with a 603 objective lens.
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Co-immunoprecipitation and Western Blot
Immunoprecipitation was performed with the Pierce Crosslink

Magnetic IP/Co-IP Kit according to the manufacturer’s instruc-

tions. In brief, 500 mg of total cell lysates were incubated with

5 mg of either anti-GFP chromatin-immunoprecipitation-grade

antibody (Abcam) or control rabbit immunoglobulin G (IgG,

Santa Cruz) at 4�C overnight. The lysate-antibody mixture was

incubated with protein A/G magnetic beads (Thermo Scientific)

at room temperature for 1 hr on a rotator mixer. Beads were

collected with a magnetic stand. Beads were washed twice with

the manufacturer’s immunoprecipitation lysis and wash buffer.

Samples were boiled with a lanemarker containing reducing agent

at 100�C for 5 min. Protein samples were analyzed by SDS-PAGE

followed by western blot with appropriate antibodies. The

following antibodies (diluted at 1:1,000) were used: mouse mono-

clonal anti-GFP (Santa Cruz), mouse monoclonal anti-Myc (Cell

Signaling), and rabbit polyclonal anti-kinesin (Abcam).

IncuCyte Analysis
Neuro-2a cells transfected with GFP-WT-NEFH and GFP-FS-NEFH

were plated in a 24-well plate, and 24 hr after transfection, cells

were incubated in an IncuCyte live-cell imager system (Essen In-

struments) for 2 days at 37�C and 5% CO2. Replicates of 12 wells

were used for each group (wild-type and mutant). Time-lapse

phase-contrast and GFP images were taken every 3 hr for 24 hr.

A total of 36 images were acquired per well for each time point.

The IncuCyte Zoom software was used for calculating cell size,

confluence, and eccentricity (roundness).

Transmission Electron Microscopy and Analysis
Neuro-2a cells were cultured in 25 cm2 flasks (Corning) and trans-

fected with plasmids as previously described. After 2 days, cells

were fixed for 4 days in 2.5% glutaraldehyde in Millonig’s

phosphate buffer, post-fixed in 1%OsO4 and uranyl acetate, dehy-

drated in an ethanol series, and embedded in Spurr’s resin. Ultra-

thin, 85 nm sections were made with a Leica microtome and

were stained with cold lead citrate for 10 min. A total of 114 im-

ages were acquired with a Joel JEM-1400 transmission electronmi-

croscope with a digital Gatan camera. All images were processed

and analyzed with Fiji (ImageJ and Photoshop CS5).

Zebrafish Studies
Experiments were carried out with wild-type or transgenic

tg(Olig2:DsRed) fish in a mixed AB-TL background. Adults were

kept on a 14/10 hr light/dark cycle at 28�C. Embryos were obtained

from natural crosses after removal of a divider at first light. The

mMESSAGE mMACHINE T7 Ultra Kit (Ambion) was used for syn-

thesizing mRNAs from the GFP-WT-NEFH and GFP-FS-NEFH

(pcDNA3.1/NT-GFP-Topo) plasmids after linearization with NotI,

and 400 pg of RNA was microinjected into 1-cell-stage embryos.

Embryos were reared in petri dishes in a 28�C incubator with the

same light/dark cycle. Motor neuron outgrowth was assayed at

48 hr post-fertilization (hpf) in embryos obtained from

tg(Olig2:DsRed) crosses. Live fish were anesthetized with tricaine

methanesulfonate (Sigma), placed against a shelf of 1.5% agarose,

and imaged with a Leica confocal microscope with a 203 lens.

1 mm z stacks were taken between segments 6 and 15, and the

lengths of the first four caudal anterior primary axons were

measuredwith the SimpleNeurite Tracer in Fiji. Images in thefigure

were displayed with the menu option ‘‘Lookup Tables> Edges’’ for

enhancing contrast. GFP fluorescence intensity was assayed in
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microinjected wild-type embryos at 24 hpf by similar methods.

Maximum-intensity z stacks were compiled, and the trunk of the

fish excluding the yolk was traced from the DIC image. Fluores-

cence intensity represents mean gray values 0–255, which were

analyzedwithFiji. Forwesternblots, 20–50embryosweremanually

dechorionated at 24 hpf and were processed through a batch

deyolkingmethod.21 Deyolked and washed embryos were homog-

enized in 50 ml of RIPA with protease inhibitor in the Fisherbrand

Disposable Pestle System, sonicated, and then frozen and thawed

at�80.The supernatantwas collectedafter centrifugation, andpro-

tein contentwasmeasured. NuPage sample buffer (Invitrogen) and

reducing agent were added, samples were boiled, and approxi-

mately 12 mg of total fish proteins were loaded into SDS gel.

For detection, anti-GFP tag antibody (Abcam) and anti-tubulin

(Santa Cruz sc-9104) were used at a 1/1,000 concentration, and

SuperSignal West Femto Maximum Sensitivity Substrate (Thermo

Scientific) was used after incubation with the HRP-conjugated sec-

ondary antibodies. For RT-PCR validation, RNAwas extracted from

approximately 20 dechorionated embryos at 24 hpf in TRIzol (Invi-

trogen). The cDNAwas generated with SuperScript III (Invitrogen)

and random hexamers, and PCR was performed with the follow-

ing GFP-NEFH transcript primers: 50-TTTTACCAGACAACC

ATTACCTG-30 and 50-GGCTAGCGCGTAGTGGAG-30 or control

(slc25a46) 50- GCCACTGGGTGACGACTC-30 and 50-GAAGCG

GAAGAAGTCGTTTG-30. All experiments were conducted in accor-

dance with the guidelines of the University of Miami Institutional

Animal Care and Use Committee.

Sanger and Exome Sequencing
We performed exome sequencing in 269 index individuals with

autosomal-dominant CMT. 16 CMT-affected families were from

the UK, and 48 families were from Austria. The remaining families

were from several other countries from Europe andNorth and South

America. The SureSelect Human All Exon 50 MB Kit (Agilent) was

used for in-solution enrichment, and the HiSeq 2500 instrument

(Illumina) was used to produce 100 bp paired-end sequence reads.

TheBurrows-Wheeleraligner,Picard, andtheGenomeAnalysisTool-

kit were used to align sequence reads and call variants. These data

were imported into GENESIS (formerly GEM.app)22,23 for further

analysis. Variants were filtered for those that segregated in an auto-

somal-dominant fashionandmet the ‘‘strict’’ criteria,whichrequired

that variants be rare (minor allele frequency< 0.05% in theNational

Heart, Lung, and Blood Institute [NHLBI] ExomeSequencing Project

[ESP] Exome Variant Server [ESP6500]), be present in fewer than

three families within GEM.app (~4,300 exomes), be conserved

(GERP score > 2 or PhastCons score > 0.6), and have sufficient

quality scores (genotype quality > 75). Mutations in known CMT-

associated genes were absent in both Austrian and UK families.

NEFH-variant calls identifiedwere validated by conventional Sanger

sequencing. Inaddition,wehadaccess to5,200control samples from

theGENESIS database. These samples broadly included1,824 neuro-

musculardisorders (ofwhich470wereperipheralneuropathies), 286

cardiomyopathies, 188 dementia disorders, and 509 deafness disor-

ders. For more details, refer to Gonzalez et al.22
Results

Identification of NEFH Frameshift Variants in CMT2-

Affected Families

We performed whole-exome sequencing on three affected

individuals belonging to different generations of a British
The Am
family (UK1) diagnosed with autosomal-dominant CMT2

(Figure 1A). Exome data were analyzed with a strict filtering

approach for segregation of non-synonymous heterozy-

gous variants with the use of GENESIS software.22,23

A heterozygous frameshift variant in NEFH was identified

as a top candidate for the disease from a list containing six

additional variants (Table S1). NEFH was selected because

NF abnormalities have been previously reported in neuro-

degenerative diseases, including ALS.24 In addition, muta-

tions in NEFL, another major NF component, also cause

CMT.16 The variant co-segregated with the phenotype

across three generations in this family (Figure 1A). This

variant (c.3010_3011delGA [p.Asp1004Glnfs*58] at chr22:

29,886,637) affects the last coding exon and shifts transla-

tion into an alternative ORF, resulting in continued transla-

tion of an additional 40 amino acids beyond the stop codon

in the original ORF (Figure 2A). The mutant protein retains

its major functional domains, including the head, rod, and

tail domains (Figure 1C). We then screened an additional

322 CMT-affected families by whole-exome sequencing.

We identified another CMT2-affected family (F2) with

four individuals carrying a nearby heterozygous frameshift

variant in NEFH (c.3017_3020dup [p.Pro1008Alafs*56] at

chr22: 29,886,645). This insertion interestingly also results

in a stop-lossmutation and translation of the identical ORF,

as observed in familyUK1 (Figure 2A).Co-segregationof the

distinct variants with the phenotype was confirmed by

Sanger sequencing inboth families (Figure 1B).Wewere un-

able to sequence DNA from the deceased parent in family

F2, who was most likely a carrier of the pathogenic variant.

In approximately 5,000 additional exomes22 with a wide

range of clinical phenotypes (including other neuropa-

thies) from our own collection, we did not observe these

mutations and also did not observe other frameshift vari-

ants in the last exon of NEFH.

Clinical Features of Family UK1, Harboring the

p.Asp1004Glnfs*58 NEFH Variant

The proband of UK1 (IV:1; Figure 1 and Table 1) had a

normal birth and early development. He walked indepen-

dently at the age of 18 months. Between the ages of 2 and

4 years, he started falling frequently and had a tendency

to turn over on his ankles, and he was noted to have

high arches and muscle wasting of the legs. Over the

years, he noticed progressive lower-limb weakness, sen-

sory loss in the feet, and occasional cramps. He started

using support for walking in his early 20s and began using

a wheelchair in his mid-20s. He had surgery for pyloric

stenosis in his infancy; medical history was otherwise

unremarkable.

Neurological examination at age 16 revealed minimal

distal wasting in the four limbs, mild weakness of the first

dorsal interosseous and ankle dorsiflexion (Medical

Research Council grade 4þ), and reduced pinprick and

vibration sense in the ankles. Subsequent examinations re-

vealed proximal weakness andmildly increased tone in the

lower limbs. At age 22, he walked with a slightly waddling
erican Journal of Human Genetics 98, 597–614, April 7, 2016 599



Figure 1. NEFH Frameshift Variants in CMT2-Affected Families
Asterisks indicate probands.
(A) Pedigree and Sanger sequence traces of the CMT-affected family carrying the NEFH variant c.3010_3011delGA (p.Asp1004Glnfs*58).
Abbreviations are as follows: M, mutant c.3010_3011delGA allele; and þ, wild-type allele.
(B) Pedigree and Sanger sequence traces of the CMT-affected family carrying the NEFH variant c.3017_3020dup (p.Pro1008Alafs*56).
Abbreviations are as follows: M, mutant c.3017_3020dup allele; and þ, wild-type allele.
(C) Diagram shows NEFH domains and variants associated with diseases. Coding KSP deletions and insertions from reported ALS indi-
viduals are represented by triangles. CMT frameshift variants from families UK1 and F2 are indicated by arrows.
and stiff gait and had a positive Gower’s maneuver. Exam-

ination at age 24 revealed wasting of the intrinsic hand

muscles and below the knees and weakness of the first dor-

sal interosseous (4) and abductor pollicis brevis (4þ), hip

flexion (4þ), knee flexion and extension (4þ), ankle dorsi-

flexion (4), and ankle plantar flexion (2). Reflexes were pre-

sent in the upper limbs and absent in the lower limbs.

Plantar responses were flexor. Pinprick sensation was

reduced in the fingers and to the proximal half of the

calves. Vibration sense was reduced to the knees with a

Rydel-Seiffer tuning fork. Proprioception was normal.

Nerve-conduction-velocity (NCV) studies (Table 1) were

consistent with a motor and sensory axonal neuropathy

predominantly affecting the lower limbs. Electromyog-

raphy (EMG) revealed proximal and distal chronic neuro-

genic changes in a non-length-dependent pattern and

additional myopathic features in proximal muscles. Cen-
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tral-motor-conduction times in the lower limbs were

mildly prolonged bilaterally. Creatine kinase (CK) levels

were raised at 721–1,288 IU/L (reference range: 38–204).

Plasma lactate was elevated at 1.84 mmol/L (reference

range: 0.5–1.65) in one out of three measurements. Anal-

ysis of cerebrospinal fluid was normal.

A muscle biopsy of the vastus lateralis showed increased

variation in fiber size, a mild increase in connective tissue,

frequent round and angular atrophic fibers of all types, nu-

clear bag fibers, group atrophy, and grouping of type I and

IIA fibers. Split fibers and occasional regenerating fibers

were also noted. Several fibers contained internal

nuclei, and three contained rimmed vacuoles. Many

fibers had a disturbed architecture, but no core-targetoid

fibers were observed. There were no cytochrome-c-oxi-

dase-negative or ragged-red fibers. Immunohistochemistry

revealed a patchy increase in myotilin staining. Assays of
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Figure 2. Identification of CAEs Encoded by the NEFH and NEFL 30 UTRs
(A) Clustal Omega multiple-sequence alignment of wild-type NEFH and frameshift variants harbored by the CMT-affected families.
Translation of the 30 UTR open reading frames (ORFs) is illustrated.
(B) TANGO score of NEHF 30 UTR ORFs.
(C) Consensus sequence of positive residues (asterisks) for all aggregation predictors tested for NEFH 30 UTR ORF3.
(D) NEFL 30 UTR ORF sequences.
(E) TANGO score of NEFL 30 UTR ORFs.
(F) Consensus sequence of positive residues (asterisks) for all aggregation predictors tested for NEFL 30UTR ORF1.
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Table 1. Clinical Characteristics of Studied Individuals

Family UK1 Family F2

IV:1 III:2 II:1 I:1 III:1

Sex male male female male male

Current age 26 years 57 years 84 years died at
80 years

56 years

Age at first symptoms 2–4 years 15 years early 20s NA 38 years

First symptoms frequent falls,
tendency to turn
over on ankles

shoes with ankle support,
able to run until late 40s

unable to stand on
tiptoes, flat-footed walk

NA gait disturbance,
problems with
climbing stairs

Age at exam 24 years 57 years 79 years NA 49 years

Muscle wastinga upper limbs þ þ þ NA �

lower limbs þþ þþ þþþ NA þþ

Muscle weaknessb upper limbs þ þ þþ NA normal

lower limbs þþþ þ þþþ NA þþ

Pinprick sensationc upper limbs þ þ normal NA normal

lower limbs þþ þþ þþ NA þ

Vibration sensec upper limbs normal normal þþ NA NA

lower limbs þþ þþ þþþ NA þ

Joint position sensec upper limbs normal normal normal NA normal

lower limbs normal normal normal NA normal

Reflexesd upper limbs þ þ � NA Y

lower limbs � � (ankle jerks only) � NA Y or �

Plantar responses (left/right)e f/f f/f �/f NA f/f

Walk with support yes (20s) yes (50s) yes (50s) yes (50s) no

Wheelchair bound no no yes (70s) yes (70s) no

Other features increased tone
in lower limbs,
waddling and stiff gaitf

cramps in hands and
lower limbs

hearing loss (70s) hearing
loss (50s)

none

Creatine kinase 1,288g 442g 150h NA 686

Brain and spinal-cord MRI normal normal NA NA NA

NA, not available.
aMuscle wasting: �, none; þ, below wrist or ankle; þþ, below elbow or knee; and þþþ, above elbow or knee.
bMuscle weakness: þ, >4 distal muscle groups (first dorsal interosseous, abductor pollicis brevis, ankle dorsiflexion, plantar flexion, or below); þþ, <4 distal
muscles; and þþþ, proximal weakness (knee flexion and extension, elbow flexion and extension, or above).
cSensory examination: þ, reduced below wrist or ankle; þþ, reduced below elbow or knee; and þþþ, reduced at or above elbow or knee.
dReflexes: �, absent; Y, diminished; and þ, present.
ePlantar responses: �, mute; and f, flexor.
fOn subsequent assessments.
gReference range: 38–204 IU/L.
hReference range: 26–140 IU/L.
respiratory-chain enzymes inmuscle homogenate revealed

reduced activity of all complexes (complex I: 0.077 [refer-

ence range: 0.104–0.268]; complex II þ III: 0.032 [0.040–

0.204]; and complex IV: 0.008 [0.014–0.034]). A repeated

assay revealed complex I and IV activities at the lower limit

of the reference range (complex I: 0.106; complex IV:

0.015). Sequence analysis failed to detect pathogenic vari-

ants in PMP22 (MIM: 601097), MPZ (MIM: 159400), GJB1

(MIM: 304040), MFN2 (MIM: 608507), GDAP1 (MIM:

606598), NEFL, BSCL2 (MIM: 606158), TRPV4 (MIM:
602 The American Journal of Human Genetics 98, 597–614, April 7, 2
605427), HSPB1, and HSPB8 (MIM: 608014). 17p11.2 rear-

rangements were excluded.

The father of the proband (III:1; Figure 1A and Table 1)

had used shoes with ankle support since the age of 15

years. In his 40s, he started noticing occasional tripping

episodes and cramps but was able to run until age 48. He

started using support for walking at age 53. Neurological

examination at age 57 showed mild distal wasting in the

upper and lower limbs and weakness of the first dorsal in-

terosseous (4), ankle dorsiflexion (4), and ankle plantar
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flexion (4). Reflexes were present except at the ankles.

Plantar responses were flexor. Pinprick sensation was

reduced to the mid-palms and to just above the ankles.

Vibration sense was reduced to the knees with a Rydel-

Seiffer tuning fork. Proprioception was normal.

The grandmother (II:1; Figure 1A and Table 1) had had

problems with standing on her toes and a flat-footed

walk since her early 20s. In her 50s, she started using sup-

port for walking and developed problems with fine hand

movements. She became wheelchair bound in her 70s

and developed hearing loss in her mid-70s. Neurological

examination at age 79 revealed muscle wasting of the

intrinsic hand muscles and from the mid-thighs down.

There was weakness of the first dorsal interosseous (3)

and abductor pollicis brevis (3), hip flexion (4), knee exten-

sion (4), knee flexion (4þ), ankle dorsiflexion (0), and

ankle plantar flexion (4þ). Reflexes were all absent.

Pinprick was reduced to just below the knees. Vibration

sense was reduced to the left elbow, right shoulder, and

costal margins. Proprioception was normal.

Neurophysiological studies of individuals III:2 and II:1

(Table 2) revealed similar findings to those observed in

the proband except for the absence of myopathic changes.

NCV studies were consistent with a motor and sensory

axonal neuropathy, which was severe in II:1. EMG revealed

proximal and distal chronic neurogenic changes in a non-

length-dependent pattern.

Our findings suggest an apparent anticipation pattern in

this family, given that the proband had an earlier age of

onset and more severe manifestations than did the

previous generations. Increased severity of the disease

over generations has been reported in other CMT-affected

families;25,26 however, the mechanism responsible for

this phenomenon is unclear. It is possible that a modifier

gene can affect the severity of the clinical phenotype;

however, it is very challenging to identify a potential

modifier gene from our exome data with such a small

sample size.

Clinical Features of Family F2, Harboring the

p.Pro1008Alafs*56 NEFH Variant

The proband of family F2 (III:1; Figure 1B) was first brought

to neurological attention at the age of 38 years, when he

noticed weakness in the lower limbs. He initially com-

plained of problems in climbing stairs, and running

became impossible. There were no problems in the hands

and no sensory disturbances. At examination, there was

mild atrophy in the lower limbs, but this was more pro-

nounced distally, as was muscle weakness. Tendon reflexes

were reduced to absent. There was mild bilateral pes cavus.

NCV studies revealed normal values in the upper limbs but

bilateral slowing of the motor peroneal and tibial nerves

and low amplitudes, pointing to an axonal neuropathy.

NCV of the sural nerve was normal, but the amplitude

was reduced. EMG of the tibialis anterior muscle revealed

prominent chronic neurogenic disturbances with sponta-

neous activity. The disease was considerably progressive.
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Re-examination after 10 years revealed prominent prox-

imal and distal weakness in the lower limbs. The individual

walked with a very unsafe gait. Mild weakness and wasting

then became evident in both distal and proximal muscles

(Table 1). CK levels had been elevated from the beginning.

Mutations in the following genes were excluded by direct

sequencing: PMP22, MPZ, NEFL, LITAF (MIM: 603795),

GDAP1, YARS (MIM: 603623), MFN2, HSPB1, HSPB8,

DNM2 (MIM: 602378 [exons 13–16]), FBLN5 (MIM:

604580), and HINT1 (MIM: 601314).

Three siblings were reported to be similarly affected,

and given the prominent proximal muscle involvement

and elevated CK levels, a combination of neurogenic and

myopathic disorders was suspected. Neurological evalua-

tion of the parents was not performed during this study.

One parent (II:1) had died early, whereas the other parent

(II:2) was reported to be neurologically normal up to an

advanced age.

Identification of CAEs Encoded by NEFH and NEFL

30 UTRs

Because NFs have a considerable tendency to aggregate in

neurodegenerative diseases, we decided to investigate the

intrinsic aggregation propensity of the extension of amino

acids present in NEFH in the two CMT2-affected families.

We used the web-based aggregation prediction tool

TANGO27 to analyze aggregation-prone segments on the

basis of the physico-chemical principles of b sheet forma-

tion. According to this algorithm, a segment is predicted

to aggregate when it contains at least five consecutive res-

idues with a TANGO score above 5%.27 Analysis of the

30 UTR-encoded extension of amino acids present in the

NEFHmutant p.Asp1004Glnfs*58 showed a hotspot for ag-

gregation in a stretch of eight amino acids (QFSLFLSL),

which had a combined score of 250 (Figure 2B). Aggrega-

tion propensity was also analyzed with other prediction

tools, including AGGRESCAN,28 FoldAmyloid29 and

PASTA 2.0,30 which use different algorithms to predict ag-

gregation. All tested tools detected aggregation and an

amyloidogenic region in an overlapping stretch of amino

acids of the mutant extension (Figure 2C and Figure S2).

We refer to this stretch of amino acids predicted to induce

aggregation as a CAE. Prediction analysis of the other two

ORFs of the NEFH 30 UTR resulted in no aggregation for

ORF1 and high aggregation scores for ORF2 (Figure 2B).

This result suggests that any frameshift variants resulting

in loss of the NEFH stop codon and translation of CAEs

from the 30 UTR would have the potential to cause protein

aggregation.

Next, we investigated in silico the aggregation propen-

sity of the NEFL 30 UTR, given that NEFL aggregation has

been reported for ALS6 and CMT.18 Interestingly, only

ORF1 of the 30 UTR, comprising the motif ISLIISGII, was

positive for aggregation prediction with a high TANGO

score of 443 (Figure 2E). Positive scores for ORF1 were

also obtained with AGGRESCAN, FoldAmyloid, and

PASTA2.0 (Figure 2F and Figure S2). Thus, our in silico
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Table 2. Electrophysiological Characteristics of Studied Individuals

Family UK1 Family F2

IV:1 III:2 II:1 III:1

Age at examination 24 years 55 years 72 years 49 years

Electromyography

Deltoids and biceps CN/M CN CN NA

FDIO and/or FDS CN CN FP, PSW, CN NA

Vastus medialis CN/M CN FP, PSW, CN NA

Tibialis anterior CRD, CN CN FP, PSW, CN FP, PSW, CN

Nerve-Conduction Studies L R L R L R L R

Radial nerve sensory amp NA 20 mv NA 11 mv NA absent NA NA

sensory CV NA 56 m/s NA 60 m/s NA NA NA NA

Median nerve DML NA 4.1 ms NA 4.0 ms NA 4.8 ms NA 3.6 ms

motor Amp NA 10.7 mV NA 6.7 mV NA 1.7 mV NA 9.8 mV

motor CV NA 46 m/s NA 54 m/s NA 38 m/s NA 59.2 m/s

F wave latency NA 34.1 ms NA 33.9 ms NA 22.4 ms NA NA

sensory amp 3 mv 6 mv NA 3 mv NA absent NA 9.5 mv

sensory CV 59 m/s 56 m/s NA 51 m/s NA NA NA 50.9

Ulnar nerve DML 3.2 ms 3.2 ms NA 2.8 ms NA 3.7 ms NA 2.6 ms

motor amp 10.4 mV 10.8 mV NA 12.1 mV NA 7.7 mV NA 20.6 mV

motor CV 54 m/s 55 m/s NA 51 m/s NA 56 m/s NA 48.7 m/s

F wave latency NA 31.0 ms NA 32.2 ms NA 34.2 ms NA NA

sensory amp NA 3 mv NA 1 mv NA absent NA 10.1 mv

sensory CV NA 52 m/s NA 52 m/s NA NA NA 52.1 m/s

Peroneal nerve DML NA 7.5 ms NA 6.0 ms NA NA 4.4 ms 4.0 ms

motor amp NA 1.9 mV NA 0.5 mV NA absent 1.8 mV 4.2 mV

motor CV NA 35 m/sa NA 41 m/s NA NA 32.3 m/s 43.2 m/s

F wave latency NA NA NA NA NA NA NA NA

sensory amp NA absent NA absentb NA absent NA NA

sensory CV NA NA NA NA NA NA NA NA

Tibial nerve DML NA 7.3 ms NA NA NA NA 4.3 ms 3.5 ms

motor amp NA 1.2 mV NA NA NA absent 2.7 mV 3.0 mV

motor CV NA NA NA NA NA NA 41.4 m/s 40.8 m/s

F wave latency NA 66.3 ms NA NA NA NA NA NA

Sural nerve sensory amp NA absent NA absent NA absent NA 7.2 mV

sensory CV NA NA NA NA NA NA NA 49.7 m/s

Central-Motor-Conduction Times L R L R L R L R

Upper limbs 8.1 msc 6.0 msc NA NA NA NA NA NA

Lower limbs 19.5 msc 22.2 msc NA NA NA NA NA NA

Abbreviations are as follows: NA, not assessed; CN, chronic neurogenic changes; CN/M, mixed chronic neurogenic and myopathic changes; CRD, complex
repetitive discharges; CV, conduction velocity; DML, distal motor latency; FP, fibrillation potentials; FDIO, first dorsal interosseous; FDS, flexor digitorum super-
ficialis; L, left; PSW, positive sharp waves; and R, right.
aCold extremity.
bAbsent in a previous study.
cAt age 22 years.
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results for NEFL suggest that only missense mutations

affecting the stop codon and resulting in translation of

the 30 UTR ORF1 have the potential to cause aggregation.

Importantly, because the first reading frame of the NEFL

30 UTR encodes the CAE, we should also consider the pos-

sibility of leaky translational readthrough caused by

reduced accuracy of translation termination. Therefore,

NEFL aggregation would be a concern particularly for indi-

viduals treated with drugs that induce stop-codon read-

through, such as gentamicin G418.31

Prominent Aggregation in Cultured Neuro-2a Cells

Expressing NF Genes with CAE-Encoding 30 UTRs

After our in silico analysis, we investigated the potential of

the 30 UTR-encoded CAEs identified in affected individuals

to cause aggregation in Neuro-2a cells. GFP-WT-NEFH

transfection led to evenly distributed expression in the

cytoplasm of Neuro-2a cells (Figure 3A). Expression of

GFP-FS-NEFH revealed prominent abnormal perinuclear

aggregation 24 hr after transfection (Figure 3A). Quantifi-

cation showed that over 75% of cells transfected with

GFP-FS-NEFH contained aggregates, whereas less than 1%

of GFP-WT-NEFH-transfected cells did (Figure 3A). Cells

transfected with wild-type NEFH retained their typical

Neuro-2a cell morphology with ‘‘axon-like’’ projections ex-

tending from the cell body. By contrast, GFP-FS-NEFH-ex-

pressing cells were round, and their axon-like projections

were significantly reduced (Figure 3A).

In order to experimentally identify which of the addi-

tional 40 amino acids are responsible for the aggregation,

we created a series of truncated constructs harboring stop

codons (Stop1–Stop4) at different positions throughout

the NEFH frameshift mutation sequence (Figure S3). Cells

transfected with constructs Stop1, Stop2, and Stop3 did

not contain aggregates (Figure S3 and Figure 3B), and their

subcellular distribution pattern was identical to that of

cells transfected with GFP-WT-NEFH. We observed aggre-

gates in a small proportion of cells (20%) transfected

with the longest construct, GFP-Stop4-NEFH (Figure S3

and Figure 3B); however, aggregation was still more severe

in the full-length extension described above (GFP-FS-

NEFH). To challenge the predicted CAE, we cloned the

most distal 22 amino acids predicted to cause aggregation

(SSRIRVTQFSLFLSLCKKKLLR) directly in frame with the

C-terminal end of wild-type NEFH (GFP-NEFH-CAE

construct). As expected, cells transfected with the GFP-

NEFH-CAE construct caused prominent aggregation at

the same level observed in cells transfected with GFP-FS-

NEFH (Figure 3B). These results prove that the most distal

22 amyloidogenic amino acids are sufficient and necessary

for the formation of aggregates.

We also tested the ability of the 30 UTR-encoded CAE in

NEFL to cause aggregation in cells. Neuro-2a cells were

transfected with the following constructs: GFP-tagged

NEFL (GFP-WT-NEFL); NEFL without a stop codon and

fused with NEFL 30 UTR ORF1, encoding the predicted

CAE (GFP-NEFL-ORF1); and NEFL fused with the 30 UTR
The Am
ORF3, which was not predicted to encode CAEs

(GFP-NEFL-ORF3). Although a few cells transfected with

GFP-WT-NEFL presented aggregates because of the self-

assembling nature of NEFL, about 45% of transfected cells

adopted NF-like structures, an indication of NF assembly

(Figure 3C). These filamentous structures can also be ex-

plained by the ability of NEFL to self-assemble; in contrast,

NEFH is an obligate heteropolymer and requires interac-

tion with either NEFL or NEFM in order to assemble into

NF structures.19 However, all cells transfected with GFP-

NEFL-ORF1 formed prominent aggregation and adopted

a rounded shape without forming filamentous structures

(Figure 3C). In contrast, cells transfected with GFP-NEFL-

ORF3 resulted in NF structures comparable with those of

cells transfected with GFP-WT-NEFL. These results suggest

that specific translation of ORF1 in the 30 UTR is required

for the formation of aggregates.

Evaluation of Cells Expressing CAEs Encoded by the

NEFH 30 UTR

To further characterize the NEFH aggregation structures,

we stained cells with thioflavin T, a dye commonly used

to stain amyloid fibrils with b sheet structures in individual

tissues.32 Confocal fluorescent imaging showed strong

thioflavin T staining of NEFH aggregates, suggesting a fi-

brillary amyloid-like structure (Figure 4F). In order to

further understand the composition of the aggregates, we

performed transmission electron microscopy (EM) in

transfected Neuro-2a cells. In cells transiently expressing

GFP-FS-NEFH, we observed a disordered array of filaments

of approximately 10 nm in diameter, consistent with NF

size (Figure 4E). Similar disordered NF inclusion structures

were previously reported in the anterior horn cells in an

ALS-affected individual harboring a SOD1 (MIM: 147450)

mutation.33 These disordered arrays of filaments were

observed in 12/100 images of cells expressing GFP-FS-

NEFH in no fewer than five different cells and were never

observed in 0/40 GFP-WT-NEFH images or 0/20 images of

untransfected cells. Although we could not distinguish un-

transfected from transfected cells in the EM images, trans-

fection efficiency was ~70%, and we analyzed close to 20

rounded cells transfected with GFP-FS-NEFH, which is a

feature of cells containing severe aggregates. On the basis

of the frequency of this feature in cells expressing GFP-

FS-NEFH and its absence in cells expressing GFP-WT-

NEFH or untransfected cells, we trust that these structures

are the aggregates.

Presence of Mutant NEFH Disrupts the NF Network in

Cultured Neuro-2a Cells

In order to see the effect of the mutant NEFH on the NF

network, we co-transfected GFP-NEFH constructs with a

plasmid encoding NEFL fused to a Myc tag at the C termi-

nus (NEFL-Myc). As expected, the GFP-WT-NEFH construct

co-localized with NEFL-Myc and assembled into organized

NF-like structures (Figure 5A). The GFP-FS-NEFL construct

also co-localized with NEFL-Myc but did so within the
erican Journal of Human Genetics 98, 597–614, April 7, 2016 605



Figure 3. Protein Aggregation in Cultured Neuro-2a Cells Expressing NF Genes with CAE-Encoding 30 UTRs
(A) Perinuclear aggregates in GFP-FS-NEFH-transfected cells after 24 hr. Graphs show the number of transfected cells containing NEFH
aggregates and the percentage of cells with neuronal projections from six independent experiments. Error bars represent the SD, and the
scale bar represents 10 mm.

(legend continued on next page)
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Figure 4. Evaluation of Cultured Neuro-2a Cells Expressing the NEFH 30 UTR-Encoded CAE
(A) Western blot shows comparable levels of GFP in cells transfected with GFP-WT-NEFH and GFP-FS-NEFH.
(B–D) Sample time-lapse phase-contrast and GFP live-cell images obtained from IncuCyte imager system. (B) Calculation of the average
area (mM2) of green (GFP) objects per cell at different time points. (C) Quantification of GFP-positive cell confluence. (D) Quantification
of the average eccentricity of green objects measures object roundness from 0 to 1 (a perfect circle has a value of 0). Error bars repre-
sent the SD.
(E) Fibers of approximately 10 nm in diameter in a Neuro-2a cell transfected with GFP-FS-NEFH. Filaments are visible in the cytoplasm in
longitudinal sections (blue box) and cross-sections (red box). Approximately 10% of cells transfected with GFP-FS-NEFH showed fila-
ments. Scale bars represent 200 nm.
(F) Aggregates from GFP-FS-NEFH cells co-localized with thioflavin T staining. Scale bars represent 10 mm.
massive aggregates, suggesting arrest and co-aggregation of

NEFL and consequently disruption of the NF network

(Figure 5A). We performed co-immunoprecipitation exper-
(B) A small proportion of cells transfected with the truncated constru
fected with GFP-WT-NEFH-CAE showed high levels of aggregation. S
(C) Prominent protein aggregation in cells transfected with GFP-NE
structures. Error bars represent the SD, and scale bars represent 10 m

The Am
iments to confirm interaction between the mutant NEFH

and NEFL. We immunoprecipitated cell lysates with an

anti-GFP antibody to pull down NEFH. Western blot
ct, GFP-NEFH-Stop4, showed protein aggregation, and cells trans-
cale bars represent 10 mm.
FL-ORF. The graph shows the number of cells expressing NF-like
m.
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Figure 5. Confocal Microscopy Shows NEFH Subcellular Co-localization
(A) Cells co-transfected with GFP-WT-NEFH and NEFL-Myc showed co-localization of NEFH and NEFL in NF network structures. Cells
co-transfected with GFP-FS-NEFH and NEFL-Myc showed co-localization in the aggregates. Scale bars represent 10 mm.

(legend continued on next page)
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confirmed that NEFL-Myc was co-immunoprecipitated in

cells transfected with either GFP-WT-NEFH or GFP-FS-

NEFH (Figure 5B). The reverse co-immunoprecipitation

with NEFL-Myc pull-down also confirmed the interaction.

We further detected kinesin in the co-immunoprecipitate

in cells transfected with either wild-type or mutant NEFH

(Figure 5B). These results suggest that the mutant NEFH

traps NEFL, kinesins, and possibly other interacting pro-

teins in the aggregates and consequently blocks these pro-

teins from performing their proper functions. Hence, this

stop-loss NEFH mutation found in individuals with

CMT2 is most likely a toxic gain-of-function mutation.

To determine whether the aggregates exclusively affect

the NF network or additional cytoskeleton components,

we stained cells with a tubulin antibody. The microtubule

network was normally distributed and assembled in cells

transfected with either GFP-WT-NEFH or GFP-FS-NEFH,

indicating that it was not affected by the aggregates

(Figure 5C).

The NF network has been shown to be important for the

spatial subcellular distribution of mitochondria;34 there-

fore, cells were stained with an antibody against the mito-

chondrial outer-membrane protein TOM20. Mitochondria

were evenly distributed in cells expressing GFP-WT-NEFH;

however, in cells expressing GFP-FS-NEFH, mitochondria

accumulated adjacently to the NEFH aggregates

(Figure 5D). Similarly, it has been shown that NEFL muta-

tions linked to CMT cause altered mitochondrial distribu-

tion and co-localization with aggregates.35 Our results

support the importance of NF integrity in proper mito-

chondrial distribution.

The NEFH Frameshift Variant Disrupts Motor Neuron

Development in Zebrafish

In order to assess the effects of the NEFH frameshift variant

in vivo, we injected RNA into 1-cell-stage zebrafish

embryos. Equal amounts of RNA encoding either GFP-

WT-NEFH or GFP-FS-NEFH were injected into transgenic

Tg(Olig2:DsRed)36 embryos at a dosage at which there

was no apparent effect on body morphology (Figure 6A)

but a measurable difference in motor neuron outgrowth

(Figure 6B). We assessed the common path of the caudal

anterior primary motor neurons at 48 hpf. We found that

embryos injected with GFP-FS-NEFH RNA had significantly

shorter axon lengths than did both GFP-WT-NEFH-in-

jected and uninjected larvae, whereas there was no signif-

icant difference between the motor neurons lengths of the

uninjected embryos and the embryos injected with GFP-

WT-NEFH RNA (Figure 6C). This supports the pathoge-

nicity of NEFH mutations and indicates that the addition
(B) Co-immunuoprecipitation assay: cell lysates were immunoprecipit
tive control. Both GFP-WT-NEFH and GFP-FS-NEFH were co-immun
immunoprecipitate.
(C) Cells transfected with either GFP-WT-NEFH or GFP-FS-NEFH show
with anti-tubulin. Scale bars represent 10 mm.
(D) Subcellular localization of mitochondria: cells transfected with
chondria, whereas GFP-FS-NEFH-transfected cells showed mitochond
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of the 30 UTR-encoded CAE can function through a toxic

gain-of-function mechanism.

To correlate the observed phenotype with the presence

of the NEFH proteins, we assessed GFP fluorescence at 8

hpf (data not shown) and 24 hpf (Figures 6D and 6E) and

quantitatively by western blot at 24 hpf (Figure 6F). Both

methods showed markedly decreased amounts of the

mutant NEFH, most likely as a result of the toxicity of

the protein. We further confirmed that the decreased

amount of the mutant NEFH occurred at the protein level

by verifying the presence of microinjected RNA

(Figure 6G). We speculate that the protein quality-control

mechanisms are efficient in larval zebrafish and that toxic

misfolded proteins are rapidly degraded. Because motor

neuron disease is a progressive degeneration, it is possible

that aggregates can form during aging as protein turnover

slows down. The effect of the NEFH frameshift variants

even among the decreased protein amounts further con-

firms the pathogenicity of the translation readthrough of

the 30 UTR of NEFH.

Genome-wide Analysis of the Human 30

UTR-Encoded CAE

In order to investigate additional potential candidate genes

whose 30 UTRs code for CAEs causing aggregation, we per-

formed a bioinformatics aggregation-prediction analysis of

all human 30 UTR sequences. Human 30 UTR sequences

were acquired from the UTRef section of UTRdb, a curated

collection of eukaryotic 50 and 30 UTRs. The UTRef section

contains 34,619 30 UTR sequences from genes retrieved

from RefSeq transcripts.37 We translated these sequences

into the three forward reading frames to simulate stop-

loss mutations caused by either missense (frame 1) or

frameshift (frames 2 and 3) mutations. After we filtered

out amino acid sequences with over 90% similarity and

genes of uncertain function (LOC symbols), approximately

12,400 genes per reading frame were annotated with the

aggregation-prediction programs TANGO and PASTA.

Next, sequences were filtered for highly stringent

threshold aggregation scores: above 200 for TANGO and

below �4 for PASTA. These score cutoffs were based on

the aggregation-prediction scores obtained for the NEFH

30 UTR. Sequences that lack an alternative stop codon

were filtered out because they would most likely be

degraded by the nonstop-decay mechanism. It has been

reasoned that the stability of stop-loss mRNAs and/or pro-

teins decreases as the distance between the mutated stop

codon and the next alternative stop codon increases.38

Therefore, only sequences containing an alternative stop

codon within a stretch coding for 50 amino acids were
atedwith an antibody against either GFP orMyc and IgG as a nega-
oprecipitated with NEFL-Myc. Kinesin was also present in the co-

ed normal distribution of the microtubule network in cells stained

GFP-WT-NEFH showed an even cytoplasmic distribution of mito-
ria accumulation next to aggregates. Scale bars represent 10 mm.
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Figure 6. Phenotypic Analysis in Zebrafish Embryos Injected with Either Wild-Type or Mutant RNAs
(A) Zebrafish embryos injected with RNA encoding either GFP-WT-NEFH or GFP-FS-NEFH did not show major morphological defects
at 48 hpf.
(B) Motor neurons labeled in the transgenic line Tg(Olig2:Dsred). Embryos injected with GFP-WT-NEFH showed normal motor neuron
development, whereas zebrafish injected with GFP-FS-NEFH showed examples of stunted axons. The scale bar represents 100 mm.
(C) Quantification of the average axon length shows shorter lengths in GFP-FS-NEFH-injected fishes than in both GFP-WT-NEFH-in-
jected and uninjected larvae. Axon length was not significantly different between GFP-WT-NEFH-injected fishes and uninjected control
fish. The average axon length per fish was calculated from the first four myotomes. Data were compiled from three independent exper-
iments, and significance was determined by a one-way ANOVA with a Bonferroni post-test. p values are *0.024 and **0.014.
(D) Confocal images depict relative GFP fluorescence of the tagged NEFH proteins. Scale bars represent 100 mm.
(E) Semiquantitative assessment of relative fluorescence intensity as mean gray values 0–255.
(F) Western blot shows the presence of both wild-type andmutant NEFH proteins at 24 hpf. GFP-FS-NEFH-injected larvae were also incu-
bated in 50 mM chloroquine (Chq) in an attempt to increase the amount of the mutant protein.
(G) The presence of both GFP-WT-NEFH and GFP-FS-NEFH mRNAs was confirmed by RT-PCR.
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considered. After applying these filter criteria, we obtained

4,861 genes (approximately 1,600 genes per reading frame)

containing a 30 UTR sequence with a high potential for ag-

gregation if translated (Figure S4).

Although our results suggest that a large number of

genes have the potential to cause aggregation as a result

of a stop-loss mutation, several physiological factors that

vary in different intracellular micro environments (such

as temperature, pH, pressure, and protein concentration)

influence aggregation.39 Moreover, the frequency of stop

loss caused by a missense mutation within the stop codon

(frame 1) is very low: 0.027% (609 of 2,207,918 variants)

as observed in the NHLBI ESP Exome Variant Server

(ESP6500). Finally, in order to cause significant protein-ag-

gregation disease, the protein must be present in cells that

can be negatively affected by aggregations (such as postmi-

totic neurons), and the presence of the protein must over-

whelm the cell’s ability to clear aggregations.

Next, we filtered for disease-associated genes that had

previously been reported to cause aggregation and that

encode a predicted CAE in any 30 UTR reading frame. We

obtained a list with the top 21 high-risk aggregation genes

(Table S2). Although variants in these genes have already

been shown to cause aggregation, stop-loss mutations re-

sulting in translation of a CAE from a 30 UTR have not

been reported yet. Because the genes listed encode proteins

prone to aggregation, they might be more susceptible to

aggregation by our proposed mechanism. We decided to

experimentally validate three known ALS-associated genes

from that list: FUS, SOD1, and TARDBP (MIM: 605078).

Neuro-2a cells transfected with FUS fused in frame with

its predicted 30 UTR-ORF1-encoded CAE (GFP-FUS-CAE)

(Figures 7A and 7B) showed prominent aggregation in

the cytoplasm and neuronal projections of transfected

cells (Figure 7C). In comparison, wild-type FUS (GFP-WT-

FUS) localized to the nucleus. Cells transfected with

SOD1 and TARDBP fused with their respective 30 UTR-en-

coded CAEs did not result in protein aggregation

(Figure S5). These results show that aggregation induced

by translation of the 30 UTR-encoded CAE is not a NF-

exclusive phenomenon; however, it is important to vali-

date the bioinformatics aggregation prediction of the

30 UTR-encoded CAE given that other intrinsic protein fac-

tors might interfere with protein structure.
Discussion

We describe a protein-aggregation-inducing mechanism

triggered by translation of a CAE from the 30 UTR of NF

genes. We report frameshift variants in NEFH in two multi-

generational families affected by autosomal-dominant

CMT2. Despite distinct stop-loss mutations in each family,

both lead to an alternative ORF and translation of an addi-

tional 40 amino acids encoded by the 30 UTR. Computer

algorithms used for predicting aggregation identified a

30 UTR-encoded CAE comprising the last 20 amino acids
The Am
of the mutant extension. Interestingly, analysis of the

30 UTR of NEFL, a previously described CMT-associated

gene encoding an aggregation-prone protein in ALS, re-

vealed aCAE encoded byORF1 of the 30 UTR.Neuro-2a cells

transfected with bothNEFH andNEFL expressing their pre-

dicted amyloidogenic regions resulted in rounded cellswith

prominent perinuclear aggregates and a lack of axon-like

projections. A series of expression constructs for NEFH

and NEFL demonstrated that aggregation is specifically

caused by translation of the reading frame predicted to

contain an amyloidogenic sequence, and it is independent

of the length of the extension of the peptides. ForNEFL, the

presence of a CAE encoded by ORF1 of the NEFL 30 UTR

could induce aggregation if a stop-loss missense mutation

or translation termination readthrough occurs. NEFL is

terminated by the UGA codon, which has been de-

monstrated to be the least efficient termination codon

during aminoglycoside-induced readthrough.40 Therefore,

prolonged use of aminoglycoside antibiotics, such as

gentamicin, could potentially induce aggregation of

NEFL. Interestingly, neurotoxic effects, including periph-

eral neuropathy, have been associated with antibiotic

use.41 Further studies ofNEFL aggregation induced by drugs

activating translational readthrough will be required.

Amyloid fibrils and neurofibrillary tangles are associated

with severe neurodegenerative disease due to accumula-

tion of toxic protein aggregates, including NF aggregation

in motor neuron diseases.9,18 Although variants in NEFH

have been associated with increased susceptibility to ALS,

NEFH does not represent a high-penetrance ALS-associated

gene.13,42 Further, the nature of the mutations in our CMT

individuals is distinct from that of the coding deletions or

insertions of NEFH KLS repeats previously described in ALS

individuals.13,42 Our functional studies demonstrated that

the presence of NEFH containing additional amino acids

encoded by the 30 UTR is detrimental to transfected

Neuro-2a cells and results in morphologically abnormal

rounded cells with fewer projections, reduced viability,

and prominent NEFH aggregates. In addition, cells express-

ing the CMT2 NEFH mutant (GFP-FS-NEFH) revealed co-

aggregation with NEFL and disruption of the NF network,

sequentially altering cell morphology and mitochondrial

distribution. Moreover, zebrafish embryos injected with

mRNA encoding the mutant NEFH showed significantly

decreased lengths of motor neuron axons than did those

injected with the wild-type. Our results are in line with pre-

vious studies demonstrating that mutations in NEFL and

variants in associated proteins, such as HSPB1 and KIF1A,

cause NF aggregation in motor neuron diseases, including

axonal CMT, distal motor neuropathy, and hereditary

spastic paraplegia (MIM: 604187).18,43 Combined, these re-

sults make it evident that motor neurons are particularly

susceptible to NF dysfunction. Therefore, these overlap-

ping but distinct diseases caused by NF abnormalities

might share similar mechanisms of pathogenesis. Our

genetic, in vitro, and in vivo studies confirm previous hy-

potheses that aggregation of NF proteins, and especially
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Figure 7. Protein Aggregation in Cultured Neuro-2a Cells Expressing FUS Fused in Frame with Its Predicted 30 UTR-ORF1-
Encoded CAE
(A) TANGO score of ORF1 in the FUS 30 UTR.
(B) Consensus sequence of positive residues (asterisks) for all aggregation predictors tested for ORF1 in the FUS 30 UTR.
(C) GFP-WT-FUS localized to the nucleus, whereas GFP-FUS-CAE aggregated in the cytoplasm and neuronal-like projections. Amagnified
view of the data (M) is shown in the white box. Scale bars represent 10 mm.
NEFH, is a powerful cytotoxic event that has detrimental

effects on motor neurons. Because the stop-loss mutant

NEFH studied retains all major domains intact, the mutant

proteinmost likely retains the ability to interact with other

proteins. Yet, we have shown that these interacting pro-

teins are trapped in the aggregates and are thus removed

from their normal function. Aggregation of NFs in the
612 The American Journal of Human Genetics 98, 597–614, April 7, 2
cell body might consequently impede transport along

axons, given that NFs are major components of the axonal

cytoskeleton. The fact that NF proteins have long half-lives

and slow turnover rates probably contributes to aggregate

accumulation over time in vivo. Therefore, studies aiming

to helpminimize or clear the aggregates could be beneficial

for treating affected individuals.
016



Finally, our bioinformatics aggregation-prediction anal-

ysis of the entire human 30 UTR collection showed that a

large number of genes could potentially be affected if

they are translated into a specific reading frame encoding

a CAE. We experimentally validated aggregation induced

by translation of a CAE from the FUS 30 UTR, confirming

that this is not a NF-exclusive phenomenon. It is

commonly implied that stop-loss mutations are associated

with a clinical phenotype through a loss-of-function

mechanism; however, our studies have revealed the impor-

tance of investigating protein aggregation propensity due

to CAEs encoded by the 30 UTR as a toxicity-inducing

mechanism.
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