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Abstract

The main contribution of this paper is a formal characterization of recursive object speci)-
cations and their existence based on a denotational untyped semantics of the object calculus.
Existence is not guaranteed but can be shown employing Pitts’ results on relational properties
of domains. The semantics can be used to analyse and verify Abadi and Leino’s object logic
but it also suggests extensions. For example, speci)cations of methods may not only refer to
)elds but also to methods of objects in the store. This can be achieved without compromising
the existence theorem. An informal logic of predomains is in use intentionally in order to avoid
any commitment to a particular syntax of speci)cation logic.
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1. Introduction and motivation

Programming logics have been suggested for object calculi [2,12] as well as object-
oriented class-based programming languages [6,8,11,15,16,21]. Since objects are inher-
ently recursive due to self-reference in method calls, their speci)cations are recursive,
too. Soundness proofs for programming logics for object calculi w.r.t. operational se-
mantics can thus become rather involved. Moreover, existence of object speci)cations
is generally neglected although a subtle point. In general, the meaning of a speci)cation
is fully described by its introduction rule for object formation. Therefore, the existence
of the speci)cation is equivalent to the validity of its introduction rule. The resulting
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implicit de)nition of a speci)cation S =�(S) neither guarantees existence nor unique-
ness unless � is of a certain form. 2 Domain theory provides suBcient machinery to
guarantee existence and uniqueness. Therefore, working with a denotational semantics
puts us into a position to precisely account for this problem.
As far as the authors are aware, such a systematic denotational analysis of object

logics has not been carried through yet although there is a successful role model, the
logic of computable functions (LCF) logic, for the functional paradigm.
The outline of this paper is as follows. First, a denotational semantics of the func-

tional and imperative untyped object calculus of Abadi and Cardelli [1] is given in
Section 2. Having done this, a notion of speci)cation inspired by the Abadi and Leino
logic [2] can be de)ned on the resulting object domains (Section 3). In Section 4, we
prove existence of these speci)cations under mild assumptions employing Pitts’ ma-
chinery for relational properties of domains [14]. One of these assumptions can even
be dropped if the method speci)cations follow certain patterns (Section 4.2.2). An ex-
ample of a recursive speci)cation de)nition that does not have a )xpoint is given in
Section 4.3.
The existence theorem is not only interesting in its own right, it can also be

applied to
• prove soundness of the object formation rule in [2] (in an untyped way but types
can be encoded as speci)cations);

• exemplify via counterexamples that certain recursive speci)cations cannot exist
(or more precisely that certain recursive de)nitions do not have a )xpoint);

• suggest extensions of an existing programming logic [2,12] introducing method
invariants and method update;

• suggest treatment of general higher order store (involving code pointers).
The )rst two items are discussed in Section 5. The proposed technique is expected
to be applicable to various other object-oriented languages and programming logics.
A roundup of the results and a discussion of ongoing and future research in Section 6
conclude the paper.
This article is an extended version of [20] which builds loosely on some observations

in [17].

2. Denotational model of the object calculus

In this section, we describe a most simple denotational semantics for functional
and imperative object calculi within the category PreDom of predomains and partial
continuous functions. Let A*B denote the partial continuous function space between
predomains A and B. By f(a)↑ we denote that function f applied to a is unde)ned
whereas f(a)↓ denotes de)nedness. Equivalently, one could work within a category of
domains (with least elements) and strict functions.

2 Usually, if � is monotonic then S is recursively de)ned. But monotonicity is too strong a condition for
object speci)cations.
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Table 1
De)nition of record update and extension

{|li =fi|}i=1:::n〈l :=f〉=
{ {|l1 =f1; : : : ; ln =fn; l=f|} if l =∈ dom{|li =fi|}i=1:::n;

{|l1 =f1; : : : ; li =f; : : : ; ln =fn|} if l= li:

Table 2
De)nition of record update only

{|li =fi|}i=1:::n[l :=f] =
{
unde)ned if l =∈ dom{|li =fi|}i=1:::n

{|l1 =f1; : : : ; li =f; : : : ; ln =fn|} if l= li

If s and t are terms denoting elements of a predomain then we write s� t to state
that s and t are strongly equal, i.e. s is de)ned if, and only if, t is de)ned and s and
t are equal in this case.

2.1. Preliminaries

When specifying the recursive types needed for the interpretation of object calculi
we often have to employ record type formation in the following sense. Let L be a
(countable) set of labels and A a predomain. Then the type of records with entries
from A and labels from L is de)ned as follows:

RecL(A) = �L∈Pfin(L)A
L;

where AL is the set of all total functions from L to A. It is easily seen that RecL is
a locally continuous functor on PreDom. A record with labels li and corresponding
entries ai (16i6k) is written {|l1 = a1; : : : ; lk = ak |}. Notice that RecL(A) is always
non-empty as it contains the element 〈∅; ∅〉 and that RecL(A) is a Jat predomain if A
is Jat. Thus, in this case, a record and its extension are incomparable. Basic record
operations like selection and update are de)ned below.

De�nition 2.1. Let r ∈RecL(A) such that r= 〈L; f〉 with L⊆)n L and f∈AL.
A label l in record r= 〈L; f〉 is de)ned, short l∈ dom r, if, and only if, l∈L.

Selection of a label l∈ L in record r, short r.l, is de)ned if, and only if, l∈ dom r and
yields f(l)∈A.
The update and extension operation for records is de)ned as in Table 1. For the

semantics of the object calculi we discuss in this paper, however, update is only allowed
for existing )elds. Therefore, we de)ne a “pure” update in Table 2 which is unde)ned
for labels not de)ned in the argument record.

2.2. Functional object calculus

The functional object calculus in use is the one of Adabi and Cardelli [1]. As
described in [10] there are basically two types of denotational semantics for objects:
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Table 3
Syntax of the functional object calculus

a; b ::= x variable
| [mi = &(xi)bi]i=1::n object creation
| a:f )eld select
| a:m() method call
| a:f := b )eld update
| a:m⇐ &(x)b method update

a )xed-point semantics, binding the self-object at object creation, and a self-application
semantics, establishing this binding at method call. The )rst dates back to Cardelli and
was prominently used in [5], the second was )rst mentioned in [9].
We will use the latter as it supports the style of speci)cation introduced later. Those

speci)cations are, in turn, inspired by the object formation rule of [2]. Although the
former )xed-point semantics works nicely for functional object languages it is not clear
to us how it could be made to work in the imperative setup.

2.2.1. Syntax
The syntax of the functional object calculus of Abadi and Cardelli [1] is given in

Table 3 where M and F be )nite sets of method names and )eld names, respectively.
The & binder was introduced in [1]. It binds a name for the self-object, i.e. the object
that is called to execute the method in question. Due to Abadi and Cardelli [1] is also
the ⇐ notation for method update.
For the sake of simplicity, methods do not have additional arguments. This is not a

real restriction as arguments can be encoded by )elds.

2.2.2. Semantics
Let BVal denote the Jat predomain of basic values like numbers or booleans. The

functional object calculus most naturally )nds its interpretation within the recursively
speci)ed predomain

O = RecF(BVal + O)× RecM(O * O)

which is non-empty as record types are always non-empty. If we choose BVal to be
empty we get the recursive type

(†) O = RecF(O)× RecM(O * O):

One can also replace )elds by (so-called query-) methods to obtain the most simple
recursive type

O = RecM(O * O)

which strongly reminds one of call-by-value lambda calculus as given by the type
equation L=L*L. The diNerence is essentially that an object is not just a partial
continuous function from objects to objects but a whole record of such. For an “object”
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Table 4
Semantics of the functional object calculus

<x=� = �(x)
<[mi = &(xi)bi]i=1::n=� = {|mi = �o: <bi =�[o=xi]|}i=1::n

<a:f=� = (<a=�):f
<a:m()=� = (<a=�):m(<a=�)
<a:f := b=� = <a=�[f := <b=]
<a:m⇐ &(x)b=� = <a=�[m := �o: <b=�[o=x]]:

Table 5
Syntax of the imperative object calculus

a; b ::= x variable
| [mi = &(xi)bi]i=1::n object creation
| a:f )eld selection
| a:f := b )eld update
| a:m() method call
| a:m⇐ &(x)b method update
| clone(a) shallow copy
| let x= a in b local def

o∈O and a “message” m∈M the result of “sending message m to object o” is given
by o:m(o) which is understood as divergent if m does not occur as a label in the
record o. It makes sense to conceive methods as partial continuous functions from O
to O (or total strict functions in a category of domains) because if o:m is de)ned then
the argument o has to be de)ned as well.

De�nition 2.2. We write <a=� for the interpretation of object expression a in the en-
vironment �∈ Env=OVar. This interpretation is de)ned by structural recursion on ob-
ject expressions in Table 4. Note that for an o∈O we write o: f and o:m instead
of �1(o):f and �2(o):m, resp., to reduce syntactic clutter. This simpli)cation will be
applied throughout the paper.

2.3. Imperative object calculus

The imperative object calculus is more challenging since objects are persistent and
reside on the heap. Objects have an identity, usually the location referring to them.
Again we follow [1] for syntax and semantics. More exactly, we use a mild variation
of the store-model used in [1].

2.3.1. Syntax
The syntax of the imperative untyped object calculus of Abadi and Cardelli [1] is

as shown in Table 5 where we distinguish between )elds and methods.
Note that sequential composition of commands a and b, short a; b, can be expressed

as let = a in b.
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2.3.2. Semantics
The imperative object calculus )nds its interpretation within the following slightly

more complicated system of recursive types:

(1) Val=BVal+ Loc;
(2) St=RecLoc(Ob);
(3) Ob=RecF(Val)×RecM(Cl);
(4) Cl = Loc×St*Val×St;

where Loc is some countable set of locations (considered as a Jat predomain). Some
notation will come in handy in later sections. For RecLoc(RecF(Val)), the part of the
store which just contains )eld values, we write StVal. There is an obvious projection
�Val :St→ StVal given by �Val(�):‘� �1(�:‘) where �1 projects on the )rst component.
Notice that the de)nition of St as RecLoc(Ob) faithfully reJects the idea of a state

as an assignment of objects to a )nite set of locations. We think that this modelling
of states as records should also be employed when modelling, e.g. simple imperative
languages where only basic values can be stored in locations. Besides conceptual ade-
quacy a technical advantage of such a modelling is that RecLoc(N) is a countable Jat
predomain whereas the traditional choice (Loc→N)⊥ is Jat but not !-algebraic.

De�nition 2.3. Given an environment �∈ Env=ValVar and an object expression a its
interpretation <a=� :St*Val×St is de)ned in Table 6. Again, we write o: f and o:m
instead of �1(o):f and �2(o):m, resp., to reduce syntactic clutter.

Note that the “let x= a in b” used on the right-hand side in Table 6 is a semantical
operation on predomains which is unde)ned should a be unde)ned.
If one does not distinguish between methods and )elds and ignores basic values, see

[1], the above system of mutual recursive type de)nitions simpli)es as follows:

(1) St=RecLoc(Ob);
(2) Ob=RecM(Cl);
(3) Cl= Loc× St* Loc×St:

Table 6
Denotational semantics for the imperative object calculus

<x=�� = 〈�(x); �〉
<[mi = &(xi)bi]i=1::n=�� = 〈‘; �[‘ := {|mi = �〈‘′; �′〉:<bi =�[‘′=xi] �′|}i=1:::n]〉

where ‘ is a fresh location not in the domain of �
<a:f=�� = let 〈‘; �′〉= <a=�� in 〈�′:‘:f; �′〉
<a:f := b=�� = let 〈‘; �′〉= <a=�� in 〈‘; �′[‘ := �′:‘[f := <b=� �′]]〉
<a:m()=�� = let 〈‘; �′〉= <a=�� in �′:‘:m(‘; �′)
<a:m⇐ &(x)b=�� = let 〈‘; �′〉= <a=� � in 〈‘; �′[‘ := �′:‘[m := �〈‘′; �′′ 〉:<b=�[‘′=x]�′′]]〉
<clone(a)=�� = let 〈‘; �′〉= <a=� � in 〈‘′; �′[‘′ := �′:‘]〉

where ‘′ is a fresh location not in the domain of �′

<let x= a in b=� � = let 〈‘; �′〉= <a=�� in <b=�[‘=x]�′
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Notice that equivalently Ob can be de)ned by the single recursive equation

Ob = RecM(Loc×RecLoc(Ob) * Loc × RecLoc(Ob))

which, obviously, is obtained from O=RecM(O*O) by simply replacing O by Loc×
RecLoc(Ob) on the right-hand side.

2.3.3. Variation 7a la Abadi and Cardelli
The denotational semantics presented in Section 2.3.2 is not quite in accordance

with the operational semantics for the imperative object calculus given in the book
[11, pp. 136–137] which insinuates the following domain equations:

(1) Val = RecM(Loc);
(2) St = RecLoc(Cl);
(3) Cl = Val × St * Val × St;

where method closures are saved directly in the store and meanings of object expres-
sions a in an environment �∈ Env=ValVar are functions of type St*RecM(Loc)×
St and not of type St* Loc×St.

3. Object speci�cations

Having identi)ed the meaning of the (functional and imperative resp.) object calculus
(within the recursively de)ned predomain O and Loc×St) we are in the position to
use any logic of predomains for reasoning about objects. One might )nd it useful
to identify a special purpose calculus 3 for reasoning about objects which )nds its
meaning by translation into some logic of predomains. However, before embarking on
such a project we discuss what is the shape of existing predicates expressing interesting
properties of objects.
To that end, we consider an example. Let o= <a= be the object representing a point

with a method computing the distance from the origin which is wrapped inside an
object

a = [x = 10; y = 0; dist = &(o)[res = sqrt(o:x2 + o:y2)]]:

This object may be speci)ed by a predicate requiring
• the )elds x and y to satisfy o:x∈N∧ o:y∈N;
• the result o′ of the method dist to satisfy o′:res∈N;
• the relation between input o and output o′ of method dist to satisfy o′:res=
sqrt(o:x2 + o:y2).

In general, there are three ingredients to any speci)cation: a predicate A to denote the
speci)cation of )elds, a predicate Bm for the result speci)cation of method m, and

3 As e.g. Hoare logic which provides a useful “macro-language” for reasoning about partial functions on
states.
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a relation Tm for the input=output (or transition) speci)cation of method m. These
predicates can be put together in diNerent ways to yield a notion of speci)cation as
described informally in the example above. Two such possible de)nitions are discussed
below. Again, we use the functional object-calculus for presentation as it is technically
simpler.

De�nition 3.1. Let A∈P(O) → P(O) and B̃=(Bm ∈P(O) → P(O))m∈M such that
A and Bm are monotonic w.r.t. ⊆ for all m∈M, and T̃ =(Tm⊆O×O)m∈M. Then
these data induce a monotonic operator �A; B̃; T̃ :P(O) → P(O) which is de)ned as

o ∈ �A;B̃;T̃ (S)≡ o ∈ A(S) ∧
∀m ∈ M:o:m(o)↓⇒ o:m(o) ∈ Bm(S) ∧ Tm(o; o:m(o))

for S ∈P(O). The Bm stand for result speci)cations and the Tm represent transition
speci)cations for each method m. Finally, A speci)es the remaining properties of the
object, i.e. the )elds. We write Inv(A; B̃; T̃ ) for the greatest )xpoint of �A; B̃; T̃ .

If I is a post-)xpoint of �A; B̃; T̃ , i.e. I ⊆�A; B̃; T̃ (I), then every o∈ I satis)es the
predicate A and whenever o:m(o) is de)ned then it satis)es Bm(I) and is related to o
via Tm. In particular, this holds for the greatest )xpoint Inv(A; B̃; T̃ ) of �A; B̃; T̃ as given
by

⋃{I ∈P(O) | I ⊆�A; B̃; T̃ (I)}, the union of all post-)xpoints of �A; B̃; T̃ . Thus, in order
to prove that o∈ Inv(A; B̃; T̃ ) it suBces to exhibit a predicate P with P⊆�A; B̃; T̃ (P)
and o∈P.
Such a notion of “invariant” speci)cation seems to be quite in accordance with the

“coalgebraic view” of the object-oriented world and, therefore, is probably quite useful.
However, it seems to have its limitations as exempli)ed by the following example.

Example 3.1. Consider the object expression a≡ [m= &(x)x:m()]. Operational intuition
tells us that a:m() diverges and, therefore, it would be most desirable to prove this
employing an appropriate notion of invariant. What immediately comes to mind is the
invariant I = Inv(A; B̃; T̃ ) with A(S)(x)≡True, Tm(x; y)≡False and Bm(S)≡ S. Then
for I we have

o ∈ I ⇔ ¬o:m(o)↓ :

Coinduction does not help in proving that <a=∈ I for an object a since one has to )nd
a predicate P such that o∈P⇒ o:m(o)↓⇒False. But since the speci)cation does not
contain I , the only canonical choice for P is I again, so nothing is achieved.

In [2] an axiomatic logic was introduced for a variant of the imperative object
calculus which allows one to prove divergence of a:m() quite easily. For sake of
simplicity, we )rst discuss the following adaptation of their account to the purely
functional case.
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3.1. Functional object speci9cations

A notion of speci)cation for functional objects is suggested. The existence of such
speci)cations is discussed in Section 4.

De�nition 3.2. Given A∈P(O)→P(O), B̃=(Bm ∈P(O)→P(O))m∈M and T̃ =
(Tm ∈P(O×O))m∈M, let Spec(A; B̃; T̃ ) be the predicate S ⊆O with

o ∈ S ≡ o ∈ A(S) ∧
∀m ∈ M: ∀o′ ∈ S: o:m(o′)↓⇒ o:m(o′) ∈ Bm(S) ∧ Tm(o′; o:m(o′))

provided S is unique with this property. We call Spec(A; B̃; T̃ ) the speci9cation induced
by A, B̃ and T̃ .

This is diNerent from Inv(A; B̃; T̃ ) since one requires for methods m∈M the
condition ∀o′ ∈ S: o:m(o′)↓⇒ o:m(o′)∈Bm(S)∧Tm(o′; o:m(o′)) to hold and not just
o:m(o)↓⇒ o:m(o)∈Bm(S)∧Tm(o; o:m(o)). Note that S is implicitly (“recursively”)
speci)ed even if the B̃ and A do not depend on S.

Example 3.2. To illustrate this new notion we will employ the speci)cation S =
Spec(True;True;False) satisfying

o ∈ S ⇔ ∀o′∈S: o:m(o′)↓⇒False

(i.e. ∀o′ ∈ S: o:m(o′)↑) for showing <a:m()=↑ for a≡ [m= &(x)x:m()] from Example
3.1 above.
Of course, from o∈ S it follows that o:m(o)↑. Thus, it remains to show that <a=∈ S

which, however, is easily seen to be the case as for o′ ∈ S we have <a=:m(o′)= o′:m(o′)
which diverges by the previous consideration.

3.2. Imperative object speci9cations

For the imperative setting the corresponding notion of speci)cation is obtained anal-
ogously to the functional case yet accounting for the underlying store (the diNer-
ent “implementation” of O). Again, existence of such speci)cations is discussed in
Section 4. As before, the predicates A, Bm, and Tm denote )eld speci)cation, method
result speci)cation, and method transition speci)cation, respectively. In the imperative
case, however, they have other types since O becomes Loc×St.

De�nition 3.3. For any predicates or families of predicates, resp.,

A ∈ P(Loc × St) → P(Loc × St);

B̃ = (Bm ∈ P(Loc × St) → P(Val × St))m∈M;

T̃ = (Tm ∈ P(Loc × St × Val × St))m∈M;
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let Spec(A; B̃; T̃ ) be the predicate S ⊆ Loc×St with

〈‘; �〉 ∈ S ≡ A(S)(‘; �) ∧
∀m ∈ M: ∀‘′ ∈ Loc: ∀�′ ∈ St: 〈‘′; �′〉 ∈ S ⇒
∀v ∈ Val: ∀�′′ ∈ St:

�:‘:m(‘′; �′) = 〈v; �′′〉 ⇒ Bm(S)(v; �′′) ∧ Tm(‘′; �′; v; �′′)

provided S is unique with the above property.
If T̃ = (Tm ∈P(Loc×StVal×Val×StVal))m∈M let Specflat(A; B̃; T̃ ) be the predi-

cate S ⊆ Loc×St with

〈‘; �〉 ∈ S ≡ A(S)(‘; �) ∧
∀m ∈ M: ∀‘′ ∈ Loc: ∀�′ ∈ St: 〈‘′; �′〉 ∈ S ⇒

∀v ∈ Val: ∀�′′ ∈ St:

�:‘:m(‘′; �′) = 〈v; �′′〉 ⇒ Bm(S)(v; �′′) ∧ Tm(‘′; �Val(�′); v; �Val(�′′))

provided S is unique with this property.

In Section 4 it will become clear why it is useful to restrict attention to transition
speci)cations that just refer to the “Jat” part of the store and not to the “higher-order
part” of the store, i.e. the method closures.

Example 3.3. Assume that object speci)cation S is supposed to express that )eld f is
a natural number greater than zero, that method m returns an object that again satis)es
S and that this method does not decrease the value of f. De)ne S accordingly:

A(S)(‘; �)≡ �:‘:f ∈ N ∧ �:‘:f ¿ 0;

Tm(‘; �; v; �′)≡ �:‘:f ∈ N⇒ �′:‘:f ∈ N ∧ �′:‘:f ¿ �:‘:f ;

Bm(S)≡ S:

Note that Bm is recursive. It requires that speci)cation S also holds for the result
of m. The object [f=12;m= &(x)x] would thus ful)l the speci)cation S as would
[f=12;m= &(x)x:f := x:f+ 1; x].

Despite their indisputable usefulness, the problem with speci)cations is, however, that
there is no obvious reason why they should exist as the right-hand side of the equiv-
alence characterising Spec(A; B̃; T̃ ) contains both positive and negative occurrences of
Spec(A; B̃; T̃ ). Though in [2] speci)cations are used intrinsically their existence is not
veri)ed. Instead the validity of assertions for programs is de)ned w.r.t. derivability of
correctness assertions which renders the value of the Soundness Theorem of Abadi
and Leino [2] as somewhat mysterious.
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4. Existence of object speci�cations

In this section, we will identify some mild assumptions which guarantee the existence
and uniqueness of the speci)cations introduced in the previous section.
A particular kind of predicates will be needed, admissible predicates. These are, as

usual, predicates preserved by suprema of ascending chains.

4.1. Functional object speci9cations

In contrast to functional 4 or imperative kernel languages the object calculus implic-
itly presupposes recursive types like O. Thus, it appears necessary to employ induction
principles for the recursive type involved in order to verify programs. After recalling
in concrete terms the induction principle for O we will use it to establish the exis-
tence of speci)cations under fairly mild conditions. For the sake of presentation, let us
work with the simpler domain equation O=RecM(O*O) where we do not distinguish
between )elds and methods.
From well-known work of Freyd and Pitts in the early 1990s [7,14] we know that

the bifree solutions of the domain equation A=F(A; A) can be characterised by the
requirement that idA is the least )xpoint of (F = �e:F(e; e). Note that we deal with
domain equations up to equality. In case of F(Y; X )=RecM(Y *X ) we write ( for
(F which is de)ned explicitly as the endo-function on [O*O] as given by

((e)({|mi = fi|}i=1::n) = {|mi = e ◦ fi ◦ e|}i=1::n

or, equivalently, in a more readable form by

((e)(a):m = e ◦ a:m ◦ e

for e :O*O, a∈O and m∈M.
From id= +(()=

⊔
n∈N (n(⊥) it follows immediately that P(id) holds for an admis-

sible predicate P⊆ [O*O] if P(⊥) and ∀e� id: P(e)⇒P(((e)). This 9xpoint induction
principle can be used directly for verifying properties of objects.

Example 4.1. Let a= [m= &(x)x:m()], then using Fixpoint Induction one can prove
that <a:m()=↑.
Let o= <a= and consider the admissible predicate

P(e) ≡ e(o):m(e(o))↑

on [O*O]. Obviously, <a:m()=↑ is equivalent to P(id). Thus, by )xpoint induction
it suBces to show that ∀e� id:P(e)⇒P(((e)). Suppose that e� id with P(e),

4 For example PCF is based on the )nite type hierarchy over the base type N⊥ and simple imperative
languages for which Hoare calculus was )rst introduced are based on RecLoc(Val)* RecLoc(Val).
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i.e., e(o):m(e(o))↑. Then P(((e)) as

((e)(o):m(((e)(o))� ((e)(o):m(o)

= e(o:m(e(o)))

� o:m(e(o))

= e(o):m(e(o))↑;
where the last equality is the induction hypothesis P(e).

The )xpoint induction principle will be employed once more below for proving
unique existence of speci)cations under rather mild assumptions.

De�nition 4.1. For a Jat predomain I let LI (A) be the complete lattice of admissible
subsets of I ×A ordered by ⊆.
Let I be a Jat predomain. For any X; Y ∈LI (A), and e∈ [A*A] we de)ne

e : X ⊆ Y ≡ ∀‘ ∈ I: ∀a ∈ A:〈‘; a〉 ∈ X ∧ e(a)↓⇒〈‘; e(a)〉 ∈ Y

as in [14].

For X; Y ∈LI (A) the set {e∈A*A | e :X ⊆Y} is obviously a non-empty Scott-
closed subset of the domain [A*A].
The following theorem uses the same line of arguments as [14].

Theorem 4.2. Given a locally continuous bifunctor on predomains F and a predomain
A which is a bifree solution of F , A=F(A; A), a predomain I , and a monotonic
� :LI (A)op ×LI (A)→LI (A), such that

(†) e : X ⊆ X ′ ∧ e : Y ′ ⊆ Y ⇒ F(e; e) : �(Y; X ) ⊆ �(Y ′; X ′)

for all X; Y; X ′; Y ′ ∈LI (A) and e� idA.
Then S =�(S; S) for a unique S ∈LI (A).

Proof. Let � :LI (A)op ×LI (A)→LI (A) be monotonic and satisfy the condition (†).
Then the mapping

�̂ : LI (A)op ×LI (A) → LI (A)op ×LI (A)

�̂(Y; X ) �→ (�(X; Y ); �(Y; X ))

is a monotonic endomap on the complete lattice LI (A)op ×LI (A). Thus, by Knaster–
Tarski �̂ has a )xpoint (S−; S+)= �̂(S−; S+).
For establishing S− = S+ we show by )xpoint induction that for the admissible

predicate

P(e) ≡ e � idA ∧ e : S− ⊆ S+ ∧ e : S+ ⊆ S−

we have P(+e:F(e; e)) and, therefore, P(idA) as idA = +e:F(e; e) from which it
follows that S− = S+. Obviously, we have P(⊥). For the induction step assume that
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P(e). Then F(e; e) � F(id; id)= id. Moreover, from e : S− ⊆ S+ it follows by (†) that
F(e; e) : S− =�(S+; S−)⊆�(S−; S+)= S+ and, analogously, it follows from e : S+ ⊆
S− by (†) that F(e; e) : S+ =�(S−; S+)⊆�(S+; S−)= S−. Thus, we have P(F(e; e)).
Thus, we conclude that there exists at least one S ∈LI (A) with S =�(S; S). For

showing uniqueness suppose S ′ =�(S ′; S ′) for some S ′ ∈LI (A). For the admissible
predicate

P(e) ≡ e � idA ∧ e : S ⊆ S ′ ∧ e : S ′ ⊆ S;

it follows that P(+e:F(e; e)) again by )xpoint induction. Obviously, we have P(⊥).
Assume that P(e). Then F(e; e) � F(id; id)= id. Moreover, it follows by (†) that

F(e; e) : S = �(S; S) ⊆ �(S ′; S ′) = S ′;

F(e; e) : S ′ = �(S ′; S ′) ⊆ �(S; S) = S

as the induction hypothesis P(e) ensures e : S ⊆ S ′ and e : S ′ ⊆ S. But as id= +e:F(e; e)
we have P(id) from which it follows immediately that id : S ⊆ S ′ and id : S ′ ⊆ S,
i.e. S ⊆ S ′ and S ′ ⊆ S, and, therefore S = S ′ as desired.

Theorem 4.3 (Existence theorem). Let L denote L1(O) and F(Y; X )=RecF(X )×
RecM(Y *X ). Moreover, let A∈L → L, B̃=(Bm ∈L→L)m∈M and T̃ =(Tm ∈
P(O×O))m∈M be families such that for all m∈M

(1) e :X ⊆Y implies F(e; e) :A(X )⊆A(Y ) for e� idO and X; Y ∈L;
(2) e :X ⊆Y implies e :Bm(X )⊆Bm(Y ) for e� idO and X; Y ∈L;
(3) Tm(o;−) := {o′ ∈O |Tm(o; o′)} is Scott-closed for all o∈O and Tm(o;−)⊆

Tm(o′;−) whenever o� o′.

Then there exists a unique S ∈L satisfying for all o∈O

(∗) o ∈ S ≡ o ∈ A(S) ∧
∀m =∈ M: ∀o′ ∈ S: o:m(o′)↓⇒ o:m(o′)∈Bm(S) ∧ Tm(o′; o:m(o′)):

Proof. For Y; X ∈L consider the predicate

o ∈ �(Y; X )≡ o ∈ A(X ) ∧
∀m =∈ M: ∀o′ ∈ Y: o:m(o′)↓⇒ o:m(o′) ∈ Bm(X )

∧Tm(o′; o:m(o′))

which is admissible if X and Y are due to the fact that Bm and Tm(o;−) are admissible
(see also condition (3)) and that the precondition of the implication is downward-
closed. Clearly, the operator � :Lop ×L→L is monotonic as A and B are by (1)
and (2).
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Obviously, the requirement S =�(S; S) is equivalent to (∗) for all o∈O. Thus, we
have to show that there exists a unique S ∈L with S =�(S; S) which is guaranteed
by Theorem 4.2 provided we can show that our � satis)es the condition (†) of Theo-
rem 4.2 which we verify next.
Suppose e� idO with e :X ⊆X ′ and e :Y ′ ⊆Y .
For showing F(e; e) :�(Y; X )⊆�(Y ′; X ′) suppose o∈�(Y; X ) and show that

F(e; e)(o)∈�(Y ′; X ′).
First we show that F(e; e)(o)∈A(X ′). But F(e; e)(o)� o∈A(X ) and, therefore, also

F(e; e)(o)∈A(X ′) due to assumption (1).
Next, let m∈M and o′ ∈Y ′ with F(e; e)(o):m(o′)↓. We then get e(o:m(e(o′)))↓

from F(e; e)(o):m(o′)= e(o:m(e(o′))) and thus also o:m(e(o′))↓ and e(o′)↓. Then
e(o′)∈Y as e :Y ′ ⊆Y and, therefore, as by induction hypothesis o∈�(Y; X )), it fol-
lows that

o:m(e(o′)) ∈ Bm(X ) ∧ Tm(e(o′); o:m(e(o′))):

But then we have

e(o:m(e(o′))) ∈ Bm(X ′)

by (2) and the assumption e :X ⊆X ′. Moreover, we obtain

Tm(o′; e(o:m(e(o′))))

as e(o:m(e(o′)))� o:m(e(o′)), e(o′)� o′ and (3) implies that x′ � x∧y�y′ implies
T (y; x)⇒T (y′; x′). Thus, it follows that

F(e; e)(o):m(o′) ∈ Bm(X ′) ∧ Tm(o′; F(e; e)(o):m(o′))

which completes the proof.

4.2. Imperative object speci9cations

Recall from Section 2 that the imperative object calculus of Abadi and Cardelli [1]
)nds its denotational interpretation within the recursively de)ned predomain
St=FSt(St;St) if the latter is de)ned to be

RecLoc(RecF(Val)× RecM(Loc × St * Val × St));

where Val=BVal+Loc.
Next, we prove a variant of Theorem 4.3 for the imperative object calculus.

4.2.1. The imperative existence theorem
Theorem 4.4. For any predicates and families of predicates, resp.,

A ∈ LLoc(St) → LLoc(St);

B̃ = (Bm ∈ LLoc(St) → LVal(St))m∈M;

T̃ = (Tm ∈ P(Loc × St × Val × St))m∈M
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such that
(i) e :X ⊆ X ′ implies FSt(e; e) :A(X )⊆A(X ′) for all e� idSt;
(ii) for all m∈M, e :X ⊆X ′ implies e :Bm(X )⊆Bm(X ′) for all e� idSt;
(iii) for all m∈M the predicate Tm is Scott-closed in its fourth argument and mono-

tonic in its second argument.
Then for � :LLoc(St)op ×LLoc(St)→LLoc(St) with

�(Y; X )(‘; �)≡ A(X )(‘; �) ∧
∀m ∈ M: ∀‘′ ∈ Loc: ∀�′ ∈ St: 〈‘′; �′〉 ∈ Y ⇒
∀v ∈ Val: ∀�′′ ∈ St:

�:‘:m(‘′; �′) = 〈v; �′′〉 ⇒ Bm(X )(v; �′′) ∧ Tm(‘′; �′; v; �′′)

there exists a unique S ∈LLoc(St) with S =�(S; S).

Proof. Instantiating Theorem 4.2 by FSt for F , Loc for I , and St for A guarantees
the existence of a unique )xpoint for � provided we can verify that � satis)es the
condition (†) of Theorem 4.2.

First, observe that �(Y; X ) is admissible w.r.t. � if X; Y are. This follows from the
general fact that if predicate P is open and Q admissible then P⇒Q is admissible.
Also, the operator � :LLoc(St)op ×LLoc(St)→LLoc(St) is monotonic by (i) and (ii).

For subsequent use it is helpful to recall that FSt(e; e)(�)↓ for all �∈St and e :St*St,
and that
(a) FSt(e; e)(�):‘:f= �:‘:f for all f∈F and
(b) FSt(e; e)(�):‘:m=(idVal× e) ◦ (�:‘:m) ◦ (idLoc× e) for all m∈M.
Now we show that � satis)es condition (†). Suppose e� idSt with

(1) e :X ⊆X ′,
(2) e :Y ′ ⊆Y
for some X; X ′; Y; Y ′ ∈LLoc(St).

We have to show that FSt(e; e) :�(Y; X )⊆�(Y ′; X ′). For that purpose we suppose
that
(3) 〈‘; �〉 ∈�(Y; X )
and show that 〈‘; FSt(e; e)(�)〉 ∈�(Y ′; X ′).
From (3) we get A(X )(‘; �). Thus by (i) we get that A(X ′)(‘; FSt(e; e)(�)), i.e. the

)rst part of the conjunction 〈‘; FSt(e; e)(�)〉 ∈�(Y ′; X ′).
For the second part suppose that

(4) 〈‘′; �′〉 ∈Y ′ with FSt(e; e)(�):‘:m(‘′; �′)↓.
From (b) and FSt(e; e)(�):‘:m(‘′; �′)↓ we know that

(5) FSt(e; e)(�):‘:m(‘′; �′) = 〈v; e(�′′)〉 with
(6) 〈v; �′′〉= �:‘:m(‘′; e(�′))
for some value v∈Val and some store �′′ ∈St. We have to show that

Bm(X ′)(v; e(�′′)) ∧ Tm(‘′; �′; v; e(�′′)):

From (6) it follows that e(�′)↓. Thus, from (4) we get by (2) that
(7) 〈‘′; e(�′)〉 ∈Y .
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Thus, by (3) it follows that Bm(X )(�:‘:m(‘′; e(�′))), i.e. Bm(X )〈v; �′′〉 by (6). By (ii)
it now follows that Bm(X ′)(v; e(�′′)) and, therefore, by (5) that
(8) Bm(X ′)(FSt(e; e)(�):‘:m(‘′; �′)).
It follows by the second part of the conjunction 〈‘; �〉 ∈�(Y; X ) as ensured by (3) that
(9) Tm(‘′; e(�′); v; �′′)
as 〈‘′; e(�′)〉 ∈Y by (7) and �:‘:m(‘′; e(�′))↓ by (6). From e� idSt one gets e(�′)� �′

and e(�′′)� �′′. Therefore, by assumption (iii) it follows that
(10) Tm(‘′; �′; v; e(�′′)),
i.e. 〈‘′; F(e; e)(�′)〉 ∈�(Y ′; X ′).

This proves that under certain conditions the speci)cation Spec(A; B̃; T̃ ) exists. But
condition (iii) of Theorem 4.4 is awkward to prove and may be replaced by simpler
suBcient conditions.

4.2.2. Possible simpli9cations of the existence theorem
If the method speci)cations Tm meet certain requirements Theorem 4.4 becomes less

complicated, or more precisely, condition (iii) becomes vacuous.

Corollary 4.5. Should the Tm only refer to the <at part of the store, i.e. Tm(‘; �′;
v; �′′)⇔ T̃m(‘; �Val(�′); v; �Val(�′′)) then condition (iii) of Theorem 4.4 becomes
vacuously true.

Proof. This follows simply from the fact that StVal is a Jat predomain.

Methods are speci)ed in terms of their result and the state change they provoke, in
other words, by means of result speci)cation Bm and transition speci)cations Tm. If the
above corollary is used to ensure existence of speci)cations it seems impossible to refer
to other methods in a transition speci)cation. Such reference is, however, necessary, to
specify method transformers, i.e. methods that change or transform methods of other
objects (be it the self-object or another one). Such transformer methods are as useful
to object-oriented programming as higher-order functions to functional programming.
In order to deal with this problem we consider a way to express properties of other

method closures in pre- and postconditions. The canonical choice is to use Hoare-
triples:

De�nition 4.2. Let an input=output speci)cation of a closure h∈Cl be de)ned as
follows:

{P}h{Q} = ∀‘ ∈ Loc: ∀� ∈ St: P(‘; �) ∧ h(‘; �)↓⇒Q(v; h(‘; �));

where P;Q⊆ Loc×St.

Lemma 4.6. If Q is downward-closed (Scott-closed resp.) then {P}(−){Q} is down-
ward-closed (Scott-closed resp.).

Proof. Analogous to the proof of Scott-closedness in Theorem 4.4.
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Note that P does not have to be Scott-open as it does not involve the method closure
at all.
For example, method speci)cation may depend on the (speci)ed) behaviour of a

method in the pre-state:

Tm(‘; �; v; �′) ≡ {P}�:‘:n{Q} ⇒ T (‘; �; v; �′);

where T is a transition speci)cation. If method update is possible one could even want
to specify a re-de)nition of a method (say n):

Tm(‘; �; v; �′) ≡ {P}�:‘:n{Q} ⇒ {P′}�′:‘:n{Q′}:
Fortunately, one can get rid of condition (iii) for this kind of speci)cations.

Corollary 4.7. If a predicate Tm⊆ Loc×St×Val×St is of the form

Tm(‘; �; v; �′) ≡ {P}�:‘:n {Q} ⇒ {P′} �′:‘:n {Q′} ∧ T (‘; �; v; �′)

such that Q is downward-closed, Q′ is Scott-closed, and T ful9ls (iii) of Theorem 4.4
(which it does, for example, if it only refers to the 9elds stored in � and �′) then
also Tm ful9ls condition (iii).

Proof. The predicate Tm is Scott-closed in the fourth argument by Lemma 4.6 (as Q′

is Scott-closed by de)nition) and condition (iii) for T . Monotonicity in the second
argument follows again from condition (iii) for T , and by the fact that {P}(−){Q} is
downward-closed if Q is.

In order to be able to specify methods as parameters (in the sense of higher-order
functions) this is still not suBcient. As in Speci)cation Logic [22] (see also [3]),
one needs quanti)cation over (arbitrary) method speci)cations. This can be done by
quantifying over P and Q in an transition speci)cation.

Corollary 4.8. If a predicate Tm⊆ Loc×St×Val×St is of the form

Tm(‘; �; v; �′) = ∀P;Q ∈ LLoc(St): {P}�:‘:n{Q} ⇒
{P′[P;Q]}�′:‘:n{Q′[P;Q]} ∧ T (‘; �; v; �′)

such that Q′[P;Q] is a Scott-closed predicate (that may use P and Q) then if T
ful9ls condition (iii) of Theorem 4.4, so does Tm.

Proof. The proof is like above since all quanti)ed predicates are Scott-closed and
admissible predicates are closed under universal quanti)cation.

Example 4.9. Consider a simple listener-notify-mechanism [23]. A callback object, cb,
contains a listener object (usually a vector of such objects), a notify method, and
some local state, say a )eld f. The listener object is unknown, as it is updated (by
)eld update) on the Jy, but it is known to have a method run which is called upon
noti)cation.
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The speci)cation of the notify method of cb may look as follows:

Tnotify(‘; �; v; �′) ≡ listener ∈ dom �:‘∧
(�:‘:listener) ∈ dom �∧
run ∈ �:(�:‘:listener)∧
∀P;Q ∈ LLoc(St):
{P}�:(�:‘:listener):run{Q} ∧ P(�:‘:listener; �) ⇒ Q(v; �′):

The )rst three lines just ensure the presence of the right methods including the existence
of the object listener in the store. The last two lines ensure that notify behaves like
the run method of the listener object. This reJects the fact that the run method will
be called upon noti)cation. By using the quanti)cation over P and Q this speci)cation
works for an arbitrary listener and its run method.
For example, 〈‘; �〉 ful)ls the speci)cation above if

�:‘ = {|listener = : : : ; notify = �(l; �′): �′:(�′:l:listener):run(�′:l:listener; �′)|}

4.3. Non-existing speci9cations

Before showing that particular object speci)cations do not exist we prove the fol-
lowing auxiliary lemma that deals with transition speci)cations that may also refer to
the non Jat part of the store, i.e. to some method closures.

Lemma 4.10. Let A⊆ Loc×St× [Loc×St*Val×St] and S ⊆ Loc×St with
(0) ∀‘; �: 〈‘; �〉 ∈ S⇔ [∀(‘′; �′)∈ S: A(‘′; �′; �:‘:m)]:
If ‘ is a location and � a state satisfying
(1) ∀‘′; �′: A(‘′; �′; �′:‘′:m)⇒A(‘′; �′; �:‘:m)
then
(2) A(‘; �; �:‘:m):

Proof. From (0) it follows that

(†) ∀‘′; �′: 〈‘′; �′〉 ∈ S ⇒ A(‘′; �′; �′:‘′:m)

and, therefore, by (1) that

∀‘′; �′:〈‘′; �′〉 ∈ S ⇒ A(‘′; �′; �:‘:m);

i.e. that (‘; �)∈ S. Thus, by (†) we have A(‘; �; �:‘:m).

To give an example of a non-existing object speci)cation, we will exhibit a transition
speci)cation Tm, a location ‘, and a store � such that there does not exist S ⊆ Loc×St
satisfying

〈‘; �〉 ∈ S ⇔ ∀〈‘′; �′〉 ∈ S: �:‘:m(‘′; �′)↓⇒Tm(‘′; �′; �:‘:m(‘′; �′)):

For such a speci)cation the restrictive assumption of Theorem 4.4—that Tm must only
refer to the Jat part of the store—must necessarily be violated, but also condition (iii)
from Theorem 4.4 cannot hold.
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Example 4.11. Consider the following object speci)cation:

〈‘; �〉 ∈ S ≡ ∀〈‘′; �′〉 ∈ S: �:‘:m(‘′; �′)↓⇒ �′:‘′:f↓⇒T (‘′; �′; �:‘:m(‘′; �′));

where

T (‘′; �′; v; �′′) ≡ ∃n ∈ N: �′:‘′:m(‘′; �′[‘′:f := n])↑:
Note that T is not monotonic in �′, its second argument. Let A(‘; �; h) denote the
property

h(‘; �)↓⇒ �:‘:f↓⇒∃n ∈ N: h(‘; �[‘:f := n])↑
then the speci)cation S above can be reformulated as

〈‘; �〉 ∈ S ≡ ∀〈‘′; �′〉 ∈ S: A(‘′; �′; �:‘:m)

i.e. condition (0) of Lemma 4.10 holds for A. Now for (‘; �) with �:‘:f=0 and

�:‘:m = <&(x) if x:f = 0 then x else x:f := x:f − 1; x:m()=

one easily veri)es that (1) holds but (2) is false, contradicting Lemma 4.10(2).

More natural counterexamples are expected by semantic modelling of logics for
object calculi using Hoare triples like the one suggested in [3].

5. Applications

The semantics of speci)cations can be employed to verify and analyse programming
logics given syntactically by proof rules.

5.1. Soundness of the Abadi and Leino logic denotationally

Our notion of speci)cation suggests that the logic proposed in [2] is correct. It does
that in a very intuitive way as every speci)cations has a unique denotation.

Claim 5.1. The object creation rule of the Abadi and Leino logic is correct w.r.t. our
semantics.

Proof. An object speci)cation S in [2] reads as follows:

S = [fi : A
i∈1;:::;n
i ;mj : &(y)Bj :: T

j∈1;:::;m
j ];

where, again, the Ai are )eld speci)cations. The predicates Bj are the result speci)ca-
tions for methods mj. They could be basic types or compound object speci)cations.
The predicates Tj are the transition speci)cations for mj. If we interpret all these
predicates denotationally it follows from Theorem 4.4 that they give rise to a unique
predicate that is as in De)nition 3.3 and serves as the denotational interpretation of S.
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In the logic of Adabi and Leino [2] the judgment

E � t : B :: T

means that in context E the result of program term t ful)ls result speci)cation B and
its behaviour satis)es transition speci)cation T .
The object formation rule roughly looks as follows (where “: : :” denote omitted parts

which are not relevant to our case).

E � xi : Ai :: : : :i∈1::n E; y : S � bj : Bj :: T
j∈1::m
j

E � [fi = xi∈1::n
i ;mj = &(y)bj∈1::m

j ] : S :: : : :
:

If we ignore the context E this rule matches De)nition 3.3. The quanti)cation over
arbitrary pairs 〈‘′; �′〉 ∈ S is forced by this rule due to the assumption y : S in the
premise E; y : S � bj :Bj ::Tj.
Since in the Abadi and Leino logic the transition speci)cations Tj can only refer to

the <at part of the store existence of S can be guaranteed.
A full soundness proof of the Abadi and Leino logic is omitted due to space limita-

tion but a corresponding paper is in preparation. Invariance of speci)cations of contexts
and sub-speci)cations contribute to the diBculties of extending the ideas presented here.
It is expected that such a “denotational” soundness proof conveys more intuition than
the one presented in [2].

5.2. Possible extensions of the Abadi and Leino logic

Dealing with object speci)cations denotationally does not only yield a concise ex-
planation of the Abadi and Leino logic but also suggests extensions.

5.2.1. Invariants
By contrast to Abadi and Leino the predicates A and Bm may contain recursive

occurrences of the speci)cation itself. If a )eld is required to ful)ll the same speci)-
cation as the ambient object then one needs recursion in A. If a result of method m
is required to contain (or be itself) an object ful)lling the same speci)cation as the
ambient object, one needs recursion in Bm. In [12] a variation is presented that allows
for recursive object descriptions but requires that methods are declared in advance.
The approach presented here allows for even more. When de)ning a speci)cation we

can express the fact that the original object (callee) still ful)ls the speci)cation after
any of the methods has been called. Such speci)cations can be described as follows:

〈‘; �〉 ∈ S ≡ A(S)(‘; �) ∧
∀m ∈ M: ∀‘′ ∈ Loc: ∀�′ ∈ St: 〈‘′; �′〉 ∈ S ⇒
∀v ∈ Val: ∀�′′ ∈ St: �:‘:m(‘′; �′) = 〈v; �′′〉 ⇒
Bm(S)(v; �′′) ∧ Tm(‘′; �′; v; �′′) ∧ (‘′; �′′) ∈ S:

Notice how the last part of the conjunction (‘′; �′′)∈ S establishes S as invariant. Such
speci)cations be used as invariants in speci)cations of software packages (classes).
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They cannot be dealt with in [2] and the denotational approach advertised here may
help to understand if (and how) their calculus may be extended to deal with such
invariants.
Existence of invariant speci)cations can be shown analogously as in Theorem 4.4.

5.2.2. Method update
If method updates are allowed then Corollary 4.8 suggests a way to specify such

method updates using Hoare-triples for method closures in the store. Existence of those
(recursive) speci)cations is still guaranteed by the corollaries of Section 4.2.2. An open
question is how a sound and suBciently useful proof calculus can be devised that allows
for method updates. The semantic approach may be helpful here. Invariants, though,
will be harder to establish because they do not )t into the pattern of the original
de)nition (cf. De)nition 3.3).

6. Conclusions

We have shown that a denotational approach to programming logics for object calculi
leads to a better understanding of the implicit recursion of object speci)cations and their
reasoning principles. Since the notion of speci)cation encodes the object introduction
rule of the logic, the soundness of this rule is equivalent to the existence of the
speci)cation. To guarantee existence one has to be careful with reasoning on the non-
Jat method part of the store.
It should be possible to deal with other, similar, object calculi and logics in the same

denotational way. The analysis of further languages should be fruitful in the quest for
more (natural) counterexamples.
A comparison with class-based languages has been attempted in [19] but using a

closed world assumption, where classes cannot be added compositionally. In [18] a
modular simple class based semantics and modular veri)cation rules have been dis-
cussed. Though dynamic loading of classes at runtime can only be done using the
more sophisticated techniques presented in this paper.
Other issues to be tackled include a complete soundness proof for the Abadi and

Leino logic possibly extended by invariants and reasoning principles for methods in
the store. Additional language features like garbage collection or method parameters
should be investigated. The development of a logic over a typed semantics of the
object calculus (with subtyping including method parameters) is challenging too.
Recursive methods can be programmed in the object calculus without explicit re-

cursion due to the recursive higher-order de)nition of the underlying store. This is a
particular instance of “recursion through the store” a more general variant of which
allows unrestricted execution of code stored in memory. Such a rather liberal usage of
higher-order store needs to be modelled by simpler (but similar) domain equations.
In this paper we did not commit ourselves to any particular object logic not to clas-

sical or intuitionistic logic. Spatial or separation logic [4,13] is a prospective candidate
for such an object logic as it simpli)es handling of aliases addressing the heap. It



212 B. Reus, T. Streicher / Theoretical Computer Science 316 (2004) 191–213

remains to be seen whether predicates in such a logic pose any problems to the pre-
sented approach.
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