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a b s t r a c t

The pathophysiology of anorexia nervosa (AN) is not completely understood, but research suggests that
alterations in brain circuits related to cognitive control and emotion are central. The aim of this study was
to explore neural responses to an emotional conflict task in women recovered from AN. Functional
magnetic resonance imaging was used to measure neural responses to an emotional conflict task in 22
women recovered from AN and 21 age-matched healthy controls. The task involved categorizing affective
faces while ignoring affective words. Face and word stimuli were either congruent (non-conflict) or
incongruent (conflict). Brain responses to emotional conflict did not differ between groups. However, in
response to emotional non-conflict, women recovered from AN relative to healthy controls showed
significantly less activation in the bilateral amygdala. Specifically, while emotional non-conflict evoked
significant activations of the amygdala in healthy controls, recovered AN women did not show such
activations. Similar significant group differences were also observed in the hippocampus and basal
ganglia. These results suggest that women recovered from AN are characterized by alterations within
emotion-related brain circuits. Recovered women's absence of amygdala and hippocampus activation
during non-conflict trials possibly reflects an impaired ability to process emotional significant stimuli.
& 2016 The Authors. Published by Elsevier Ireland Ltd. This is an open access article under the CC BY-NC-

ND license (http://creativecommons.org/licenses/by-nc-nd/4.0/).
1. Introduction

Anorexia nervosa (AN) is a potentially fatal mental disorder
that predominantly affects adolescent females (American Psy-
chiatric Association, 2013). It is characterized by a relentless pur-
suit of thinness, severe food restriction, and extremely low body
weight. Patients with AN have an intense fear of weight gain and a
distorted view of their own body; viewing themselves as fat de-
spite being emaciated. Furthermore, patients are characterized by
personality traits such as perfectionism, neuroticism and ob-
sessive-compulsiveness (Cassin and von Ranson, 2005), and they
display high anxiety (Holtkamp et al., 2005; Pollice et al., 1997).

The pathophysiology of AN is not completely understood, but
available evidence suggests that alterations in brain circuits re-
lated to cognitive control and emotion are central (Kaye et al.,
2013). Cognitive control refers to higher order cognitive functions
such as working memory, monitoring, mental flexibility, planning
and inhibition, and enables regulation of behavior, cognition and
r Ireland Ltd. This is an open acces
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emotions in accordance with current goals (Chan et al., 2008;
Miller and Cohen, 2001). The neurocircuitry underlying these
functions mainly resides in prefrontal and anterior cingulate cor-
tices, which monitor and exert top-down control over other brain
circuits (Miller and Cohen, 2001). For instance, inadequate top-
down control from the prefrontal cortex over subcortical (e.g.,
limbic) structures is associated with poor regulation of behavior
and emotion (Heatherton and Wagner, 2011). In a similar vein,
some have raised the possibility that an imbalance between cog-
nitive control and emotion circuits underlies the pathophysiology
of AN (Holliday et al., 2005; Kaye et al., 2013; Marsh et al., 2009),
which could be associated with patients’ extraordinary ability to
inhibit incentive motivational drives (i.e. hunger), and the diffi-
culties with emotional regulation that they display (Kaye et al.,
2013).

Studies challenging cognitive control have reported that AN is
associated with alterations in prefrontal and anterior cingulate
cortices (Ehrlich et al., 2015; Lao-Kaim et al., 2015; Oberndorfer
et al., 2011; Sato et al., 2013; Wierenga et al., 2014, 2015; Zastrow
et al., 2009). For example, women recovered from AN show in-
creased activation in the lateral prefrontal cortex during monetary
decision tasks (Ehrlich et al., 2015; Wierenga et al., 2015), possibly
s article under the CC BY-NC-ND license
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reflecting elevated cognitive control processes. Studies investigating
cognitive-behavioral flexibility in ill AN patients have also reported
alterations in the prefrontal cortices, although results are mixed,
with some showing decreased activation in patients (Sato et al.,
2013; Zastrow et al., 2009), and others showing both decreased and
increased activations (Lao-Kaim et al., 2015). It has also been de-
monstrated that while patients with AN have similar neural acti-
vation to healthy controls during low-demanding inhibitory trials,
they exhibit decreased activation in the prefrontal and anterior
cingulate cortex during high-demanding inhibitory trials (Wierenga
et al., 2014). A similar demand-specific alteration of prefrontal
cortices has been shown in recovered AN patients (Oberndorfer
et al., 2011). These studies suggest AN individuals require less in-
hibitory resources to maintain performance as inhibitory demand
increases. Interestingly, studies have also reported altered func-
tional connectivity within cognitive control circuits during rest in
AN individuals, but results are mixed: some report increased
functional connectivity (Boehm et al., 2014; Cowdrey et al., 2012),
while others report decreased connectivity (Gaudio et al., 2015;
Kullmann et al., 2014b). These inconsistencies may be due to small
sample sizes, or differences in sample characteristics. In sum, there
are clear indications that both ill and recovered AN individuals are
characterized by aberrations in cognitive control circuits.

Ample evidence suggests that AN is also associated with
functional alterations within emotion circuits related to the per-
ception and processing of emotionally salient stimuli. The majority
of this research has been performed using symptom-provocation
paradigms, where stimuli are AN-specific (i.e., images of food and
bodies). When exposed to such stimuli, patients with AN relative
to healthy controls exhibit greater activation in widespread cor-
tical and subcortical brain circuits (Zhu et al., 2012), including
anterior cingulate (Ellison et al., 1998; Uher et al., 2004), prefrontal
(Ellison et al., 1998; Miyake et al., 2010; Uher et al., 2004), and
amygdala cortices (Ellison et al., 1998; Joos et al., 2011; Miyake
et al., 2010; Seeger et al., 2002; Vocks et al., 2010, 2011). These
hyperactivations have been interpreted as representing heigh-
tened negative emotional arousal. The alterations in prefrontal and
anterior cingulate cortices may indicate that compensatory control
mechanisms are mobilized, for example to regulate amygdala ac-
tivation. Consistent with this notion, Pruis et al., (2012) showed
that negative emotional distractors (images of bodies) during a
working memory task were associated with greater amygdala ac-
tivation and reduced medial prefrontal cortex activation in re-
covered AN patients compared with healthy controls. This might
point to a failure of prefrontal circuits to adequately inhibit
amygdala activation. As most studies of emotion processing in AN
have employed disorder-specific stimuli, it remains unclear to
what extent the reported alterations are restricted to the proces-
sing of such stimuli, or are indicative of a general deficit in emo-
tion processing.

Collectively, these studies indicate that the pathophysiology of
AN is associated with alterations within both emotion and cog-
nitive control circuits. However, few studies have attempted to
characterize these alterations during tasks that require cognitive
control in the presence of emotional stimuli. The aim of the pre-
sent study was to explore this in women recovered from AN. To
achieve this, an emotional conflict task was presented during
functional magnetic resonance imaging (MRI). Performance on
this task relies on cognitive control processes such as conflict
detection and inhibition (Etkin et al., 2006). To our knowledge, this
is the first study of AN to challenge cognitive control in the context
of emotional stimuli unrelated to AN symptomatology.
2. Methods

2.1. Participants

We recruited 22 adult women recovered from AN and 21 age-
matched healthy control women, all right-handed. Current and
lifetime DSM-IV diagnoses (American Psychiatric Association,
2000) were determined with the Structured Clinical Interview for
DSM-IV Axis I Disorders version I/P (First et al., 2002), which was
administered to all participants no more than 1 week before the
MRI session. During this interview, the status of AN recovery was
evaluated (see below), and other clinical characteristics were
obtained.

Women in the recovered AN group were included if they had a
lifetime history of AN to DSM-IV criteria (American Psychiatric
Association, 2000), which included (a) a weight below 85% of that
expected based on height and age, (b) intense fear of weight gain
or becoming fat, and (c) body image disturbances, or undue in-
fluence of body shape or weight on self-evaluation, or denial of the
seriousness of their low body weight. Similar to other studies
(Pruis et al., 2012), we excluded the amenorrhea criterion which
was also removed in the DSM-5 (American Psychiatric Association,
2013). We also subtyped participants into restricting versus binge-
eating/purging type, based on the presence of binging or purging
behavior during the AN period (American Psychiatric Association,
2013). Only women recovered from AN were included in this
study. Recovery was operationally defined as having maintained a
body mass index above 18.0 for the past 12 months, and ab-
stinence from binging and purging behavior, excessive or com-
pulsive exercising behavior, and no severely restricted food intake
for the past 12 months. Exclusion criteria for these women in-
cluded the following: lifetime history of a psychotic disorder,
substance abuse or dependence, or the presence of any Axis I
disorder the past 12 months.

Exclusion criteria for women in the control group included the
following: lifetime history of any Axis I disorder, current use of
psychoactive medications, and a first-degree relative with a his-
tory of an eating disorder. Furthermore, we excluded control wo-
men who reported binging and purging behavior, excessive and
compulsive exercising, severely restricted food intake, or had a
body mass index below 18.0 for the past 12 months. Women in
both groups were excluded if they reported any major medical
illnesses, history of severe head trauma, or any contraindications
to magnetic resonance imaging (MRI).

Three of the recovered AN women were using psychoactive
medications (one for insomnia, and two for depressive symptoms),
but results did not change when these women were excluded, so
they were included in the final analyses. This study was approved
by the Regional Ethics Committee in Norway. After complete de-
scription of the study, written informed consent was obtained
from all participants.

2.2. Behavioral measures

Immediately before the MRI session, all participants completed
the following self-report questionnaires: Spielberger State-Trait
Anxiety Inventory (STAI; Spielberger et al., 1970), Difficulties in
Emotion Regulation Scale (DERS; Gratz and Roemer, 2004), Beck
Depression Inventory (BDI; Beck et al., 1961), and Eating Disorder
Examination-Questionnaire (EDE-Q; Fairburn and Beglin, 2008).
Following the MRI session, participants were weighed in order to
calculate their body mass index.

2.3. Emotional conflict task

The emotional conflict task was similar to that used in previous
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studies (Etkin et al., 2006). Monochromatic photographs of seven
male and seven female actors with happy or fearful expressions
from the NIMSTIM database (Tottenham et al., 2009, http://www.
macbrain.org/resources.htm), overlaid with the word “FEAR” or
“HAPPY,” were presented. A total of 160 trials were presented, for
which half (80 trials) was congruent (i.e. non-conflict, expression
of actor matched the word), and the other half (80 trials) was
incongruent (i.e. conflict, expression of actor did not match the
word). Subjects were instructed to ignore the word, and to in-
dicate the emotional expression of the actor, as fast and accurately
as possible. As previous studies have illustrated, incongruent trials
generate emotional conflict, which is associated with slower re-
sponses and increased activity in the prefrontal cortex (Etkin et al.,
2006, 2010). E-prime (Sharpsburg, PA) was used to present the
experimental task during scanning, and record responses. Trials
were presented in a pseudorandom order, counterbalanced across
conditions for gender, actor, facial expression, and overlaid word.
There were no direct repetitions of the same actor. Stimuli were
presented for 1000 milliseconds (ms) with a random interstimulus
interval between 3000–5000 ms. Responses were made using the
right index and middle finger.

2.4. MRI data acquisition

Images were recorded with a 3 T Achieva MRI scanner (Philips,
Eindhoven) equipped with an eight-channel Philips SENSE head coil.
Functional images were acquired using a T2*-weighted single-shot
echo-planar sequence (repetition time/echo time¼2000/30 ms, flip
angle¼80°; field of view¼240�240 mm2, matrix¼80�80). For
each participant, 34 axial slices covering the whole brain were ac-
quired in an interleaved order, aligned with the anterior commissure/
posterior commissure line (voxel size¼3�3�3 mm3, slice
thickness¼3 mm, slice gap¼0.5 mm). Approximately 400 volumes
were acquired for each participant. The five first volumes of each run
were discarded to avoid T1 saturation effects. High-resolution
structural images were also acquired using a T1-weighted multi-shot
turbo-field-echo sequence (repetition time/echo time¼6.7/3.1 ms,
flip angle¼8°, field of view¼256�256 mm2, matrix¼256�213),
recording 170 sagittal slices (voxel size¼1.0�1.2�1.2).

2.5. MRI data analysis

MR images were preprocessed using the Statistical Parametric
Mapping 8 (SPM8) toolbox (http://www.fil.ion.ucl.ac.uk/spm) im-
plemented in MATLAB (MATLAB and Statistics Toolbox Release
2012b, The Mathworks, Inc., Natick, MA, USA). Functional images
were slice-time corrected and realigned to the mean scan. They
were then spatially normalized and bias-field corrected using
high-dimensional diffeomorphic anatomical registration through
exponentiated Lie algebra (DARTEL, Ashburner, 2007). The result-
ing modulated images were then smoothed with a 10-mm full-
width at half-maximum kernel. There were no differences be-
tween recovered AN women and healthy controls in total gray or
white matter volumes, and total brain size was similar across
groups (unpublished observations).

A fixed effects model was created for each participant. Re-
gressors for the onsets of emotional conflict and non-conflict trials
were created, and convolved with the canonical hemodynamic
response function. Incorrect trials, and trials with a response time
below 200 or above 1200 ms (5.2% of all trials) were separately
modeled as a regressor of no interest. Additional regressors cor-
responding to the six movement parameters were also included
(there was no displacement above 3 mm). A 128-s temporal high-
pass filter was applied to the data, and serial correlations were
accounted for by using an autoregressive model. All models were
globally scaled, and masked using the respective participant's
segmented gray matter images (to restrict the statistical para-
metric maps to gray matter). T-contrasts for emotional conflict and
non-conflict trials over baseline were separately specified, and the
resulting contrast images were submitted to a 2�2 (group-
� condition) factorial model. As this model did not include the
appropriate error terms to test the main effect of group, a separate
two-sample t-test was used to investigate this main effect. Four a
priori regions of interest (ROIs) were specified based on previous
research: inferior frontal gyrus, middle frontal gyrus, anterior
cingulate cortex and amygdala (see Supplemental material:
Methods and Fig. S1). A maximum probability atlas (www.brain-
development.org) consisting of 83 regions hand-drawn on 30 MR
images was used to specify the ROIs (Gousias et al., 2008; Ham-
mers et al., 2003).

For the main effect of condition, we first performed a whole-
brain analysis, followed by post hoc paired samples t-tests to show
the neural activation associated with the two conditions. For the
main effect of group and the group� condition interaction effect,
ROI analyses followed by exploratory whole-brain analyses were
conducted. For the ROI analyses, we used small volume correc-
tions, thresholded at voxel-level po0.05 family-wise error-cor-
rected. All whole-brain analyses were thresholded at voxel-level
po0.001 uncorrected for multiple comparisons, with a minimum
cluster size of 20 voxels. To facilitate interpretation of interaction
effects, we extracted the raw β-weights from voxels showing a
significant group� condition interaction for all participants using
the Marsbar toolbox (Brett et al., 2002), and analyzed these with t-
tests. For all statistically significant effects, peak-voxel activations
are reported.
3. Results

3.1. Demographic and clinical characteristics

Recovered AN and healthy control women were of similar age,
but body mass index was significantly higher for the controls (see
Table 1). The two groups were matched for education, employ-
ment and civil status (χ2 tests; p40.05). The recovered AN women
scored higher (i.e., more pathological scores) on all self-report
questionnaires (see Table 1). All participants scored below the
empirically established clinical cut-off value of 2.5 on the EDE-Q
(Rø et al., 2015), indicating non-pathology. Within the recovered
AN group, age of AN onset ranged from 11 to 32 years (M¼17.36,
SD¼4.17), lifetime lowest observed weight in relation to that ex-
pected for age and height ranged from 47% to 85% (M¼71.84,
SD¼9.19), duration of recovery ranged from 12 to192 months
(M¼51.62, SD¼42.70), and illness duration (operationalized as
duration of last AN episode) ranged from 6 to120 months
(M¼32.86, SD¼27.47). Half of the AN cases had a history of AN
binge-eating/purging subtype, while the remaining half had a
history of AN restricting subtype. The majority of the recovered AN
women (n¼19% and 86%) reported that they received treatment
for their eating disorder.

3.2. Behavioral results

Response times (RTs) were calculated for all correct trials with
an RT between 200 and 1200 ms. Frequencies of correct and in-
correct responses were converted to represent percentage correct
responses. These data were analyzed with two-way analysis of
variance (ANOVA) models. The task evoked emotional conflict
(main effect of condition), indicated by slower RTs for incongruent
(M¼693.60 ms, SD¼69.27 ms) compared with congruent trials
(M¼650.04 ms, SD¼61.24 ms; F(1,41)¼103.71, po0.001, ηp

2¼0.72).
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Table 1
Participant characteristics.

Characteristic Recovered AN (n¼22) HC (n¼21) Two-sample t-test

Mean (range) SD Mean (range) SD t (df) p d

Age 27.32 (20–38) 5.14 26.00 (19–35) 4.71 0.96 (41) .386 0.27
BMIa 20.39 (18.06–23.79) 1.66 21.85 (18.32–25.62) 1.76 �2.70 (38) .010 �0.85
STAI trait 38.77 (20–68) 11.48 28.67 (20–42) 6.42 3.54 (41) .001 1.09
STAI state 32.14 (20–47) 8.16 26.10 (20–38) 5.22 2.88 (41) .006 0.88
DERS total 77.36 (40–141) 24.47 62.24 (42–96) 14.61 2.45 (41) .019 0.75
BDI 6.36 (0–36) 7.94 1.86 (0–8) 2.73 2.47 (41) .018 0.76
EDE-Q global 0.84 (0.00–2.49) 0.74 0.20 (0.00–0.65) 0.17 3.90 (41) o .0001 1.19

Abbreviations-AN, anorexia nervosa; HC, healthy controls; STAI, Spielberger State-Trait Anxiety Inventory; DERS, Difficulties with Emotional Regulation; BDI, Beck De-
pression Inventory; EDE-Q, Eating Disorder Examination-Questionnaire; d, Cohen's d effect size.

a Data not available for three recovered anorexia nervosa women.

Table 2
Brain regions showing a group� condition interaction.

Brain region Peak MNI coordinates Cluster size

x y z (# voxels) F (df¼41) z

Region of interest
analyses

Left amygdala �27 �3 �21 19 19.94 3.84
Right amygdala 24 �3 �24 21 19.07 3.76
Whole-brain
analyses

Right amygdalaa 24 �6 �9 85 24.27 4.19

Abbreviations-MNI, Montreal Neurological Institute. Region of interest analyses are
based on small volume corrections, thresholded at voxel-level po0.05, family-wise
error corrected. Whole-brain analyses are thresholded at voxel-level po0.001,
uncorrected for multiple comparisons, with a minimum cluster size of 20 voxels.

a Cluster extending into the hippocampus, globus pallidus, and putamen.
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For accuracy, there was a similar effect of emotional conflict, where
incongruent trials (M¼93.58%, SD¼0.06%) were associated with
lower accuracy compared with congruent trials (M¼96.95%,
SD¼0.03%; F(1,41)¼22.00, po0.001, ηp

2¼ .35). These data are in line
with previous studies using the same task (Etkin et al., 2006; Jarcho
et al., 2013). For both RTs and accuracy, we failed to detect a main
effect of group or a group� condition interaction effect (p40.05).

3.3. MRI results

There was a main effect of condition in widespread frontal,
parietal, and temporal areas. Post-hoc paired samples t-tests re-
vealed that emotional conflict (incongruent4congruent) was as-
sociated with increased activation in the inferior frontal gyrus,
middle frontal gyrus, supplementary motor area (dorsomedial
prefrontal cortex), middle temporal gyrus, insula and in a large
cluster extending from the precentral to postcentral gyrus (see
Supplemental material, Table S1). This is in line with previous
studies, which also showed increased activation in the insula,
dorsomedial prefrontal cortex, and parietal cortex in response to
emotional conflict (Etkin et al., 2010; Jarcho et al., 2013). Further,
emotional non-conflict (congruent4 incongruent) was associated
with increased activation in the precuneus/cuneus, posterior cin-
gulate cortex, and fusiform gyrus.

ROI and whole-brain analyses showed no main effect of group.
This suggests that the stimuli in the task (i.e., words and faces)
were associated with similar neural responses in both groups. No
interaction effect was observed within the ROIs in the anterior
cingulate cortex, inferior frontal gyrus, or middle frontal gyrus.

However, there was a significant group� condition interaction
effect in the bilateral amygdala ROIs (po0.05, family-wise error-
corrected, see Table 2 and Fig. 1). Post-hoc two-sample t-tests of
the β-weights (extracted from voxels showing a significant inter-
action effect within left and right amygdala ROIs) revealed that
this effect was due to lower activation in the left (t[41]¼�2.35,
p¼0.023, d¼�0.72) and right (t[41]¼�2.66, p¼0.011, d¼�0.81)
amygdala during congruent trials in recovered AN women com-
pared with healthy controls (see Fig. 1). Specifically, one-sample t-
tests showed that while healthy controls exhibited significant ac-
tivation in both left (t[20]¼2.14, p¼0.045) and right (t[20]¼2.58,
p¼0.018) amygdala during congruent trials, this activation was
absent in the recovered AN group (p40.05). In contrast, both
groups showed an absence of amygdala activation during incon-
gruent trials (p40.05).

Exploratory whole-brain analyses showed a similar group-
� condition interaction effect in a large cluster centered in the
right amygdala (po0.001 uncorrected for multiple comparisons,
see Table 2 and Fig. 2). However, this cluster extended outside the
amygdala, into the hippocampus and basal ganglia, including the
globus pallidus and putamen. No other clusters showed a sig-
nificant group� condition effect in the whole-brain analysis.

We investigated if the amygdalar hypoactivations during con-
gruent trials were similar for women with a history of restricting
AN versus binge-eating/purging AN subtype, by performing addi-
tional t-tests on the extracted β-weights from left and right
amygdala. When compared separately with healthy controls, both
AN subtypes showed similar and-in all but one comparison-sig-
nificant hypoactivation in left (binge-eating/purging AN: t[30]¼�
2.55, p¼0.016; restricting AN: (t[30]¼�1.27, p¼0.215) and right
(binge-eating/purging AN: (t[30]¼�2.16, p¼0.039; restricting
AN: t[30]¼�2.17, p¼0.038) amygdala during congruent trials.
Moreover, there were no differences between AN subtypes in
terms of amygdalar activations during congruent trials in left (t
[20]¼1.35, p¼0.193) and right (t[20]¼0.20, p¼0.843) amygdala,
indicating that the amygdalar alterations are present in recovered
AN women regardless of AN subtype history.

To investigate potential associations between the observed AN-
related amygdalar alterations and participant characteristics, β-
weights from the left and the right amygdala during congruent
trials were separately correlated (using Spearman rs) with the
following variables: age, body mass index, STAI, BDI, DERS, and
EDE-Q. This was performed both on the whole sample and sepa-
rately for the two groups. For the whole sample, the DERS (total
score) showed an inverse association with activation in the left
amygdala during congruent trials (rs¼�0.341, p¼0.025, see Fig.
S2). Within each group separately, this association showed the
same direction, but was not statistically significant (recovered AN:
rs¼�0.233, p¼0.296; healthy controls: rs¼�0.321, p¼0.155). We
then redid the ROI and whole-brain analyses including this vari-
able as a covariate, which did not significantly alter our results.
None of the other participant characteristics showed a significant



Fig. 1. Amygdala activations associated with emotional conflict (incongruent trials) and non-conflict (congruent trials). Bars show mean β-weights with standard error of
mean (*¼po0.05). Clusters contain voxels showing a group� condition interaction effect thresholded at po0.05 family-wise error corrected, and are overlaid on a group
average anatomical image displayed in neurologic convention (left side of image corresponds to left brain hemisphere). Abbreviations-AN, anorexia nervosa.
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association with the amygdalar activations (all p40.05). Within
the recovered AN group, β-weights from the left and the right
amygdala during congruent trials were also correlated with illness
duration, recovery duration, age of AN onset, and lowest weight
ever, but none of these associations reached statistical significance
(all p40.05).
4. Discussion

Using an emotional conflict task, we demonstrated bilateral
amygdala alterations in women recovered from AN. Specifically,
while emotional conflict evoked similar brain activation across
both groups, emotional non-conflict evoked greater amygdalae
activations in healthy controls compared to recovered AN women.
This was due to activation of the amygdalae during non-conflict in
healthy controls, and lack of this activation in recovered AN wo-
men. Similar alterations were also observed in the hippocampus
and basal ganglia. Despite the differential neural response,
Fig. 2. Cluster from the whole brain analysis (po0.001 uncorrected for multiple comp
active in recovered anorexia nervosa women compared with healthy controls during
extends into the hippocampus, globus pallidus, and putamen. Voxels are overlaid on a gro
corresponds to left brain hemisphere).
behavioral performance was similar between groups, showing that
recovered women's performance was unaffected. Contrary to our
expectations, there were no group differences within the dorso-
lateral prefrontal or anterior cingulate cortices.

The amygdala is a complex structure important in detecting
relevant or biological significant stimuli (Sander et al., 2003). As
such, it is highly responsive towards all emotional stimuli, parti-
cularly emotional faces (Sergerie et al., 2008). Functional altera-
tions of the amygdalae appear to characterize anxiety-prone in-
dividuals, and patients with anxiety disorders (Etkin and Tor,
2007; Stein et al., 2007). In our study, healthy controls exhibited
enhanced amygdalae activation during non-conflicting relative to
conflicting emotional stimuli. Behaviorally, both healthy controls
and recovered AN women responded faster in the absence of
emotional conflict, indicating that conflict is associated with
higher cognitive load.

These results are in line with earlier research showing that as
cognitive load increases, emotional information is suppressed
(Okon-Singer et al., 2013). For instance, Kron et al. (2010) reported
arisons) showing a group x condition interaction effect. Cluster shows regions less
non-conflict (congruent trials). The cluster is centered in the right amygdala, but
up average anatomical image displayed in neurologic convention (left side of image
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that participants performing a high cognitive load task reported
less intense negative and positive feelings following exposure to
emotional images, compared with participants performing a low
cognitive load task. Even subliminal emotional images interfere
with performance during conditions of low, but not high cognitive
load (Uher et al., 2014). Furthermore, Van Dillen and associates
(Van Dillen et al., 2009) reported that performing a demanding
arithmetic task following a negative mood-induction led to atte-
nuated amygdalae activation, and reduced subjectively experi-
enced negative emotions. Others have reported similar attenua-
tion of the amygdalae during tasks of high cognitive load, and
enhanced amygdala response during low cognitive load (Hariri
et al., 2000; Liberzon et al., 2000; Mitchell et al., 2007). These
studies suggest that emotion and cognition draw from a common
pool of resources (Kron et al., 2010), and consumption of these
reciprocally affects their manifestation. In these veins, the en-
hanced amygdala activation during non-conflict in healthy con-
trols probably reflects the higher cognitive load during emotional
conflict as opposed to non-conflict.

In contrast to the healthy controls, the recovered AN women
failed to exhibit enhanced activation of the amygdala during
emotional non-conflict. This effect was observed both in in-
dividuals with a history of restricting and binge-eating/purging AN
subtype. This suggests that recovered AN individuals do not pro-
cess the emotional information to the same extent as healthy
controls, even when available cognitive resources permit them to.
It is possible that women recovered from AN have an impaired
ability to identify or process the emotional significance of stimuli,
which do have some empirical support (Oldershaw et al., 2011). It
is worth noting that the recovered AN women in our study did not
exhibit differential neural responses to the words or faces per se,
as there was no main effect of group. Furthermore, when groups
were considered together, activation in the left amygdala during
emotional non-conflict showed a significant inverse correlation
with self-reported difficulties in emotion regulation. However, it is
possible that this association is driven by the significant between-
group differences in emotion regulation skills. Indeed, within each
group separately, the association between left amygdala and
emotion regulation was non-significant.

Our finding of decreased amygdala activation is in contrast to
previous studies of AN, which have reported greater amygdala
activation in AN individuals compared with healthy controls (El-
lison et al., 1998; Joos et al., 2011; Miyake et al., 2010; Pruis et al.,
2012; Seeger et al., 2002; Vocks et al., 2010, 2011). However, these
studies explored the processing of disorder-specific stimuli such as
food and bodies, and the enhanced amygdala activation could be
due to the greater emotional significance of such stimuli to AN
individuals. Regardless, our results are in line with the notion that
alterations of limbic circuits related to emotion are central in the
pathophysiology of AN (Hatch et al., 2010; Lipsman et al., 2014;
Southgate et al., 2005).

In addition to the amygdala alterations, we also found that
emotional non-conflict evoked less activation in the hippocampus,
globus pallidus, and putamen among recovered AN women com-
pared with healthy controls. While the role of the hippocampus in
this context probably reflects emotional processes similar to the
amygdala, the involvement of the globus pallidus and putamen is
not clear. Previous studies have reported basal ganglia alterations
among individuals recovered from AN in response to taste
(Wagner et al., 2008) and inhibition (Kullmann et al., 2014a) tasks,
and in ill patients when viewing images of bodies (Fladung et al.,
2010). It has been suggested that alterations within basal ganglia
circuits are related to the pathophysiology of AN, by influencing
how individuals with AN encode and process the reward value or
affective valence of stimuli (Kaye et al., 2013). However, the exact
nature of the basal ganglia alterations identified in the present
study is unclear. It is important to note that the alterations within
the hippocampus and basal ganglia structures were only evident at
a liberal threshold, and were part of a continuous cluster centered
in the right amygdala.

Contrary to our hypotheses, we did not find any group differ-
ences in the cognitive control circuitry, including lateral prefrontal
and anterior cingulate cortices. Several studies have reported that
ill and recovered AN patients are characterized by both decreased
(Oberndorfer et al., 2011; Sato et al., 2013; Zastrow et al., 2009)
and increased (Ehrlich et al., 2015; Lao-Kaim et al., 2015) activation
within these circuits during tasks challenging cognitive control. It
is unclear why the present study failed to detect similar altera-
tions. Two studies showed that alterations in cognitive control
circuits were only evident as cognitive demand increased
(Oberndorfer et al., 2011; Wierenga et al., 2014). It could be that
our task was not sufficiently demanding for such alterations to be
evident. Indeed, the task we employed was relatively slow-paced
and participants made few errors. Alternatively, it is possible that
the face-word stimuli used in the present study were not suffi-
ciently salient to stress the cognitive control circuitry in the re-
covered AN group. Using an emotional Stroop task, Redgrave et al.
(2008) were able to demonstrate widespread alterations within
cognitive control circuits in AN patients. However, they used AN-
related stimuli which are highly salient to AN individuals, which
might put more strain on the cognitive control system. Further-
more, the emotional conflict task employed in the present study
has not previously been used with AN samples, and it is possible
that other tasks are more suited to explore the alterations within
cognitive control circuits in AN. Our results stress the need for
more studies investigating cognitive control circuits in ill and re-
covered AN patients, and to determine their role in the
pathophysiology.

The present study has several limitations. The most important
limitation pertains to the cross-sectional design, which does not
enable us to differentiate brain scarring effects following pro-
longed emaciation from trait dispositions. Another limitation is
our lack of a non-emotional control condition. Thus, it is not
possible to say if the amygdala hypoactivation associated with the
recovered AN group is specific to emotional stimuli. However,
considering the role of the amygdala in signifying biological or
emotional significance (Sander et al., 2003), it is likely that this
effect is specific to emotional stimuli. Lastly, the present study has
a number of possible confounders, including between-group dif-
ferences in body mass index and self-reported anxiety, depressive
symptomatology, eating disorder psychopathology, and emotion
regulation difficulties. However, we did investigate the associa-
tions between these potential confounders and the amygdala ac-
tivations during congruent trials, and only the association between
self-reported emotion regulation difficulties and left amygdala was
statistically significant, and including this self-report measure as a
covariate did not significantly alter our results.

In conclusion, our study is the first to show functional amyg-
dala alterations in women recovered from AN, in response to a task
that is unrelated to AN symptomatology. This provides further
evidence of alterations within limbic circuits in AN, which persist
following recovery. Contrary to our expectations, we did not find
evidence of alterations within cognitive control circuits. Further
research is needed to determine the nature of the alterations
within emotion and cognitive control circuits, the interplay be-
tween them, and to what extent they reflect trait dispositions.
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