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A b s t r a c t - - I n  this paper, we analyze a discretized version of the dynamic programming algo- 
rithm for a parameterized family of infinite-horizon economic models, and derive error bounds for 
the approximate value and policy functions. If h is the mesh size of the discretization, then the 
approximation error for the value function is bounded by Mh 2, and the approximation error for the 
policy function is bounded by Nh, where the constants M and N can be estimated from primitive 
data of the model. 

K e y w o r d s - - D y n a m i c  programming, Value and policy functions, Error bounds, Numerical solu- 
tions. 

1. I N T R O D U C T I O N  

In th is  pape r ,  we consider  a family  of inf ini te-horizon models  of economic growth.  Via  a d y n a m i c  

p r o g r a m m i n g  a lgor i thm,  we ana lyze  a numer ica l  d i sc re t i za t ion  p rocedure  to  c ompu te  the  value 

and pol icy  funct ions.  We show t h a t  under  the  p roposed  scheme the  value funct ion converges 

q u a d r a t i c a l l y  to  the  t rue  value funct ion and the pol icy  funct ion converges l inearly,  as the  mesh 

size of the  d i sc re t i za t ion  goes to  zero. Fu r the rmore ,  the  cons tan t s  involved in the  orders  of 

convergence can be c o m p u t e d  from pr imi t ive  d a t a  of the  model .  

O u r  orders  of convergence are s t ronger  t h a n  those  typ ica l ly  found in re la ted  control  l i t e ra tu re  

(e.g., see [1-3], and  references there in) .  We should  note,  however,  t h a t  these  h igher  o rder  esti-  

ma te s  are o b t a i n e d  a t  the  expense  of fur ther  concavi ty  and in te r ior i ty  a s sumpt ions  e m b e d d e d  in 

our  o p t i m i z a t i o n  problem.  These  la te r  a s sumpt ions  are commonp lace  in economic mode l s  bu t  

are  genera l ly  res t r ic t ive  in some o ther  areas.  

Our  resul ts  are based  upon  di f ferent iabi l i ty  p roper t i e s  of the  value funct ion.  I t  is known from 

the  ana lys i s  in [4,5] t h a t  under  s t rong  concavi ty  and in te r ior i ty  a s sumpt ions  (and an a p p r o p r i a t e  

smoo thness  hypothes i s ) ,  the  value funct ion is a C 2 mapping .  I t  is also known [6,7] t h a t  under  such 

r egu la r i t y  condi t ions  the  value funct ion may  fail to  be dif ferent iable  of class C 3. Hence,  differen- 

t i ab i l i t y  analys is  suggests  t h a t  w i thou t  fur ther  specific res t r ic t ions ,  higher  orders  of convergence 

for the  c o m p u t e d  value funct ion beyond  the quad ra t i c  one may  not  be available.  
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2. T H E  M O D E L  A N D  P R E L I M I N A R Y  R E S U L T S  

Consider the following family of Ramsey-type models of capital accumulation 

oc 

w (k0, 0) = sup 3tv (kt, kt+l, 0) 
{kL}t.>o t=O 

s. t. kt+l E ~ (kt, 0), kt E K C 7~ n, 0 E 0 C ~r~m, 

k0 fixed, t = 0 , 1 , . . . ,  and 0 < 1 3 < 1 .  

(2.1) 

ASSUMPTION A. The sets K and 0 have nonempty  interiors. The correspondence ~ : K x 0 --~ K 

is continuous; moreover, for each fixed 8 in O, the relation f~(., 0) in K has convex graph with 

nonempty  interior. 

ASSUMPTION B. Let  X = graph(m). The mapping v : X -* T~ is bounded, continuous, and 

on the interior of  the domain, it is differentiable of  class C 2 with bounded first- and second- 

order partial derivatives. Moreover, for ali fixed 8, there exists some constant a > 0 such that 

v(k ,  k', O) + ( /2)llk'll 2 is concave a function on (k, k'). 

ASSUMPTION C. For each (ko,O) in K x O, there exists an optimal solution {kt}t>o to prob- 

lem (2.1) with the property that kt+l E int[ft(kt, 0)] for every t >_ O. 

The foregoing assumptions are entirely standard in the economic literature and are usually 
presumed to hold over a certain compact domain which comprises the asymptotic or recurrent 
dynamics of the optimal law of motion (e.g., see [4,8]). Optimization problem (2.1) corresponds to 
a s tandard planning problem written in "reduced form." This framework is suitable to perform 
the typical exercises on sensitivity analysis over a relevant parameter 's space O (el. [5]). In 
Assumption B, 1[. II denotes the Euclidean norm. Hence, such an assumption imposes a strong form 
of concavity on the second component of the function v, and over compact sets, the assumption 
is weaker than the more conventional form of strong concavity. The interiority requirement in 
Assumption C is indispensable for our results below (e.g., see the example in [4]). 

Under the above hypotheses, the value function W given in (2.1) is well defined and jointly 
continuous (cf. [8]). Moreover, for fixed 0, the mapping W(. ,  O) is concave on K,  and satisfies the 
so-called Bellman equation 

W (ko, O) = sup v (ko, kl, O) + ~W (kl, O) 
kl 

s. t. kl E gt (k0, 0). 
(2.2) 

The optimal value is attained at a unique point given by the policy function kl = g(ko, 0). The 
policy function is also continuous. Moreover, it follows from these definitions that  {kt}t>o is an 
optimal solution to (2.1) if and only if it satisfies equation (2.2) at all times. 

We recall that  the value function W may be obtained as the unique fixed point of the fol- 
lowing dynamic programming algorithm. Let W be the space of bounded continuous func- 
tions V on K x O with the norm IIVII = suP(k,O)eKxO I V ( k , 0 ) l .  Define the nonlinear opera- 
tor T : 14; --~ W by 

T ( V )  (ko, 0) = sup v (k0, kl, 0) + •V (kl, 0) 
kl (2.3) 

s. t. kl C ~ (k0,0) 

for V E W. It is a well-established fact (e.g., see [8]) that  T is a contractive mapping on 14; 
with modulus 0 < ~ < 1; i.e., IITVo - TVll] <_ ~llVo - ViII for Vo, V1 E W .  It follows that  W is 
the unique fixed point under T, and [IW - VaN _< ~nl]W - V0[[ for V~ = T'~Vo, where T n is the 
n-times composition of T. 

It is well known that  in general, the value function W may fail to be differentiable (cf. [2]). 
Under the asserted assumptions, however, a simple extension of the analysis of Santos [4,5} 
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suffices to validate in the present setting the differentiability of class C 2 of the value function W 
and the differentiability of class gl  of the policy function g at every interior point (k, 8) in K × O. 
Moreover, Araujo [6] and Santos [7] provide some simple counterexamples in which, under the 
above conditions, the value function fails to be a g3 mapping even if v is infinitely differentiable. 

What  has been neglected in the differentiability analysis, and it is generally useful for the design 
of computational procedures, is that  these derivatives of W may be bounded in terms of defining 
data  of the model. 1 More specifically, regarding second-order differentiability, it follows from [4] 
that  DllW(ko,8) can be characterized as a solution to the following quadratic optimization 
problem: 

oo 

xo" D11W(ko,O)'xo = max E •  t (xt,Xt+l). D2vo (kt, kt+l)" (xt, xt+l) (2.4) 
{xt }t_>o t=0 

s. t. x0 fixed. 

Here the maximization proceeds over all vector sequences {xt}t>_o with fixed x0, the one-period 
objective D2v~( ., -) is the Hessian matrix of the mapping v(., . ,  0) for 0 fixed, and {kt}t>_o is the 
optimal solution to maximization problem (2.1) for k0 given. 

From this characterization, one can also show that the optimal plan {x~'}t>_0 to optimization 
problem (2.4) determines the derivative of the policy function g with respect to ko. Tha t  is, 
x~ = Dlgt(ko, O).Xo for t > 1, where Dlgt(ko, 8) denotes the derivative of the t-times composite 
g(g(.., g(k0 ,0 ) , . . . ,  8), 8) with respect to k0. Given that  (x0, 0, 0, 0 , . . .  ) is a feasible solution to 
maximization problem (2.4), we must then have 

[ ] D l l W  (k0, 0)H _~ I l D u v  (ko, kl ,  0)l [ _~ L,  (2.5) 

where L = I[Di]vll = suP(ko,kl,0)ex I]Dllv(ko, kl,t))l [. (In these calculations, for a matrix of 
derivatives Dllv(ko, kl, 0), we have used the notation IIDllv(ko, kl, 0)l I = max,Tcn..,7#o(l[Dllv 
(ko, kl, 0)~[I/ll~ll)-) Moreover, if {xT}t>0 is an optimal solution to (2.4) with IIz~)ll = 1, then by 
virtue of the asserted concavity of v (Assumption B), we obtain that  

L 
* Z* E ~  t (Xt+a " t+ l )  ~ - - ,  (2.6) 

OL t=0 

* - x* denotes inner vector multiplication. Note that (2.6) places an upper bound on where xt+ ~ t+l 
the growth factor of the derivative of the policy function g. Indeed, for any t, it must hold that  

/3 t i[D,gt+ ~ (k0, 0)112 _< --.L (2.7) 
c~ 

On the other hand, as shown in [5], the cross-partial derivatives D12W(ko, 0) and D21W(ko, 0) 
can be determined by the following computations: 

D~2W(ko, o)T = D~lW (ko, 
o o  

= E z t  [D31v ( k t , k t + l , e ) "  D i g  t (ko, 8) + D32v  (kt ,  k t + l , ~ ) "  D i g  t+l ( k o , e ) ] .  
t=0 

Now, making use of (2.7), and after some simple calculations, we obtain that  

G, (2.8) IIDj2W]I = IID21Wll _< 1 + 1 - ~1/2 J 

where G = max{ll/93~vll, IID32vlI}. Similar upper bounds can be found for IID2gll and IID22Wli 

1 For functions v : R n × R n × R rn --* R, Dv(ko, kl, O) will denote the derivative of v evaluated at the point (k0, kl, 8), 
and Div(ko, kl,  8), i = 1,2, 3, will denote the (first-order) partial derivative of v with respect to i TM component 
variable. Similarly, Dijv(ko, kl,  O) will denote a second-order partial derivative of v with respect to the i th and 
jth components. 
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3.  A D I S C R E T I Z A T I O N  O F  T H E  D Y N A M I C  

P R O G R A M M I N G  A L G O R I T H M  

In most applications, one must face the problem of computing the value function W. Several 
computat ional  procedures are available in the existing literature (e.g., [1-3,9]). We consider here 
a discretized version of the dynamic programming algorithm as outlined in [10]. Our main goal is 
to establish the quadratic convergence of the sequence of approximate value functions as the mesh 
size of the discretization goes to zero. The implementational aspects of this numerical approach 
as well as an extension to stochastic models are dealt with in [11]. 

Let us assume that  the state space K x E) is a polyhedron. This does not entail much loss 
of generality for most  economic applications. Let {S  j } be a family of simplices which conform 
a triangulation of K x O (i.e., UjS j = K x O and int(S i) N int(S j) ~ 0 for every pair of 
simplices S ~, SJ). 2 Let 

h = supdiam {S j } < +oc.  
J 

Let (k s, 05) be a generic vertex of the triangulation. Consider the space of piecewise affine 
functions 

14;h = ~ V h : K x 0 --+ 7"¢ [ V h is bounded, continuous, / 
[ and D V  h is constant in int (SJ) for each S j J"  

Observe tha t  142 h is a closed subspace of ]iV, equipped with the norm NVhll = sup(k,0)eKxO 

IVh(k, 0)[. Define the mapping T h : 14; --+ )/V h, given by 

kl 

for each vertex point (k~,O j )  and V c 142. 

(3.1) 

Note tha t  the maximization operation on the right-hand side of (3.1) must be performed exactly. 
Also, nodal values T h (V) (kJo, O J) for all vertex points (kJo, O j)  yield a unique functional extension 
to the whole domain K x O over the space of piecewise linear functions compatible with the given 
triangulation {S 3 }. 

LEMMA 2.1. Under Assumptions  (A)- (C) ,  equation (3.1) has a unique fixed point W h in 14; h. 

The proof is the standard one (cf. [10]). One immediately checks that  T h is a contraction 
mapping with modulus 0 < / 3  < 1. By a well-known fixed-point theorem, equation (3.1) has a 
unique fixed point W h in W h. 

LEMMA 2.2. Let W be the value function defined in (2.2). Let  V = (n + m)]ID2WI]L~(KxO). 
Then under Assumptions  (A)- (C) ,  we have []TW - Thw]I  <_ (7/2)h  2. 

The proof of this result is also standard, and it amounts to an application of Taylor 's  theorem 
(cf. [11]). Observe that  by the definitions of T and T h, we have TW(kJ ,OJ)  = W(k3 ,0  j)  = 
T h W ( k J , O  j)  for every vertex point (kJ,OJ), and tha t  the function T h w  is piecewise affine. 
Hence the lemma follows from well-known results on piecewise affine approximations (cf. [12, 
Theorem 2.1.4.1]). 3 

2This kind of subdivision is not necessary for our results. For instance, rectangular subdivisions may sometimes 
be more suitable to certain applications. 
3Note that the result in [12] applies only to univamate functions f; in the univariate ca.~e, the constant revolved 
in the approximation is ~y/8 (i.e., If(x) - f (x3) l  ~ Lh 2 for L ---- "7/8). One can show that a multivariate ex- 
tension of this result is available for L = ~'/2, where ~y = In + m)[ID2WItL,c(K×e), and [[D2WIIL~tl<×O) = 
sup(ko,e)~/( ×o {[D2W(ko, 0)}}max, for I[" ]]max the matrix max norm. 
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THEOREM 2.3. Let W be the fixed point of (2.3) and W h be the fixed point of (3.1). Then under 
Assumptions (A)-(C), we have ]IW - whll < (7/2(1 - ~ ) )h  2. 

PROOF. Let T and T h be as defined previously from (2.3) and (3.1), respectively. Then 

[[W- Wh][ = HTW - ThWh[[ < {ITW- ThWI[ ÷ [IThW- ThWh[I 

<_ I[TW - T"WI[ + 9 [Iw - w"l[ , 

w h e r e  use is m a d e  in t he se  c o m p u t a t i o n s  of  t h e  t r i ang l e  i n e q u a l i t y  a n d  of  L e m m a  2.1. T h e r e f o r e ,  

1 IJTW--ThWl l  JIw - whJI _< (1 - ~----Z 

T h e o r e m  2.3 is now a d i r ec t  c o n s e q u e n c e  of  L e m m a  2.2. 

COROLLARY 2.4.  L e t  g( kJ, 0 3) be the opt imal  pol icy  for  the original value funct ion W at a ver tex  
point  (k 3, 0J),  and let gh(k3, OJ) be the  opt imal  pol icy for the approximate  value funct ion W h 
a t  v e r t e x  point  (k ' ,OJ).  Then  Ilg(ka,OJ)- gh(kJ,Oa)ll <_ (2~/~(1- 15))1/2h, for  e v e r y  ver tex  
point  (k j ,  oJ). 

This result follows essentially from the asserted concavity of the instantaneous return function v 
( A s s u m p t i o n  B) ;  for a r e l a t ed  proof ,  see [11]. T h e  l inear  c o n v e r g e n c e  in C o r o l l a r y  2.4 c a n  r ead i l y  

be  e x t e n d e d  to  any  a r b i t r a r y  p o i n t  (k, 0) in K × O. 
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