Contents lists available at SciVerse ScienceDirect

Derivations on symmetric quasi-Banach ideals of compact operators

A.F. Ber ${ }^{\text {a }}$, V.I. Chilin ${ }^{\text {a }}$, G.B. Levitina ${ }^{\text {a }}$, F.A. Sukochev ${ }^{\text {b,* }}$
a Department of Mathematics, National University of Uzbekistan, Vuzgorodok, 100174, Tashkent, Uzbekistan
${ }^{\text {b }}$ School of Mathematics and Statistics, University of New South Wales, Sydney, NSW 2052, Australia

ARTICLE INFO

Article history:

Received 20 April 2012
Available online 14 August 2012
Submitted by Stephen Power

Keywords:

Derivations
Ideals of compact operators
Symmetric quasi-Banach sequence spaces

Abstract

Let ℓ, \mathcal{g} be symmetric quasi-Banach ideals of compact operators on an infinite-dimensional complex Hilbert space H, let $\mathfrak{g}: \ell$ be the space of multipliers from ℓ to \mathcal{g}. Obviously, ideals ℓ and g are quasi-Banach algebras and it is clear that ideal g is a bimodule for ℓ. We study the set of all derivations from ℓ into \mathscr{g}. We show that any such derivation is automatically continuous and there exists an operator $a \in \mathcal{g}: \ell$ such that $\delta(\cdot)=[a, \cdot]$, moreover $\|a+\alpha \mathbb{1}\|_{\mathcal{B}(H)} \leq\|\delta\|_{\ell \rightarrow \mathcal{I}} \leq 2 C\|a\|_{\mathscr{I}:}$ for some complex number α, where C is the modulus of concavity of the quasi-norm $\|\cdot\|_{\mathcal{I}}$ and $\mathbb{1}$ is the identity operator on H . In the special case, when $\ell=\mathscr{A}=\mathcal{K}(H)$ is a symmetric Banach ideal of compact operators on H our result yields the classical fact that any derivation δ on $\mathcal{K}(H)$ may be written as $\delta(\cdot)=[a, \cdot]$, where a is some bounded operator on H and $\|a\|_{\mathcal{B}(H)} \leq\|\delta\|_{\ell \rightarrow \ell} \leq 2\|a\|_{\mathcal{B}(H)}$. © 2012 Elsevier Inc. All rights reserved.

1. Introduction

Let ℓ, \mathcal{Z} be ideals of compact operators on an infinite-dimensional complex Hilbert space H. Obviously, \mathcal{Z} is an ℓ-module and we can consider the set $\operatorname{Der}(\ell, \mathcal{Z})$ of all derivations $\delta: \ell \rightarrow \mathcal{Z}$. Consider two closely related questions (here, $\mathscr{B}(H)$ is the set of all bounded linear operators on H):

Question 1.1. Let $\delta \in \operatorname{Der}(\ell, \mathcal{Z})$. Does there exist a bounded operator $a \in \mathscr{B}(H)$ such that $\delta(x)=[a, x]$ for every $x \in \ell$?
Question 1.2. What is the set $D(\ell, \mathcal{I})=\{a \in \mathscr{B}(H):[a, x] \in \mathcal{Z}, \forall x \in \ell\}$?
The second question was completely answered by Hoffman in [1], who also coined the term \mathcal{I}-essential commutant of ℓ for the set $D(\ell, \mathcal{Z})$. We completely answer the first question in the setting when the ideals ℓ, \mathcal{g} are symmetric quasi-Banach (see precise definition in the next section). In this setting, it is also natural to ask.

Question 1.3. Let $\delta \in \operatorname{Der}(\ell, \mathcal{Z})$. Is it continuous?
Of course, if $\delta \in \operatorname{Der}(\ell, \mathcal{Z})$ is such that $\delta(x)=[a, x]$ for some $a \in \mathscr{B}(H)$ (that is when δ is implemented by the operator a), then δ is a continuous mapping from $\left(\ell,\|\cdot\|_{\ell}\right)$ to $\left(\mathcal{Z},\|\cdot\|_{\mathcal{I}}\right)$, that is a positive answer to Question 1.1 implies also a positive answer to Question 1.3. However, in this paper, we are establishing a positive answer to Question 1.1 via firstly answering Question 1.3 in positive. Both these results (Theorems 3.1 and 3.2) are proven in Section 3. We also provide a detailed discussion of the \mathcal{g}-essential commutant of ℓ in Section 4.

It is also instructive to outline a connection between Questions 1.1 and 1.3 with some classical results. It is well known [2, Lemma 4.1.3] that every derivation on a C^{*}-algebra is norm continuous. In fact, this also easily follows from the following

[^0]well-known fact [2, Corollary 4.1.7] that every derivation on a C^{*}-algebra $\mathcal{M} \subset \mathcal{B}(H)$ is given by a reduction of an inner derivation on a von Neumann algebra $\overline{\mathcal{M}}^{w o}$ (the weak closure of \mathcal{M} in the C^{*}-algebra $\mathscr{B}(H)$). The latter result [2, Lemma 4.1.4 and Theorem 4.1.6], in the setting when \mathcal{M} is a C^{*}-algebra $\mathcal{K}(H)$ of all compact operators on H states that for every derivation δ on \mathcal{M} there exists an operator $a \in \mathscr{B}(H)$ such that $\delta(x)=[a, x]$ for every $x \in \mathcal{K}(H)$, in addition, $\|a\|_{\mathcal{B}(H)} \leqslant\|\delta\|_{\mathcal{M} \rightarrow \mathcal{M}}$. The ideal $\mathcal{K}(H)$ equipped with the uniform norm is an element from the class of so-called symmetric Banach operator ideals in $\mathcal{B}(H)$ and evidently this example also suggests the statements of Questions 1.1 and 1.3. In the case of Schatten ideals $C_{p}(H)=\left\{x \in \mathcal{K}(H):\|x\|_{p}=\operatorname{tr}\left(|x|^{p}\right)^{\frac{1}{p}}<\infty\right\}$, where $|x|=\left(x^{*} x\right)^{\frac{1}{2}}, 1 \leqslant p<\infty$, somewhat similar problems concerning derivations from $C_{p}(H)$ into $C_{r}(H)$ were also considered in the work by Kissin and Shulman [3]. In particular, it is shown in [3] that every closed $*$-derivation δ from $C_{p}(H)$ into $C_{r}(H)$ is implemented by a symmetric operator S, in addition the domain $D(\delta)$ of δ is dense $*$-subalgebra in $C_{p}(H)$. In our case, we have $D(\delta)=C_{p}$ and it follows from our results that the derivation δ is necessarily continuous and implemented by an operator $a \in \mathscr{B}(H)$.

It is also worth to mention that Hoffman's results in [1] were an extension of earlier results by Calkin [4] who considered the case when $\ell=\mathscr{B}(H)$. Recently, Calkin's and Hoffman's results were extended to the setting of general von Neumann algebras in [5,6] and, in the special setting when $\ell=\mathcal{q}$, Questions 1.1 and 1.3 were also discussed in [7]. However, our methods in this paper are quite different from all the approaches applied in [1,3-6].

As a corollary of solving Questions 1.1 and 1.3, in Theorem 3.6 we present a description of all derivations δ acting from a symmetric quasi-Banach ideal ℓ into a symmetric quasi-Banach ideal \mathcal{g}. Indeed, every such derivation δ is an inner derivation $\delta(\cdot)=\delta_{a}(\cdot)=[a, \cdot]$, where a is some operator from \mathcal{g}-dual space $\mathcal{g}: \ell$ of ℓ. Recall that $D(\ell, \mathcal{Z})=\mathscr{g}: \ell+\mathbb{C} \mathbb{1}[1]$, where $\mathbb{1}$ is the identity operator in $\mathscr{B}(H)$. Theorem 3.6 gives a complete answer to Question 1.2. In particular, using the equality $C_{r}: C_{p}=C_{q}, 0<r<p<\infty, \frac{1}{q}=\frac{1}{r}-\frac{1}{p}$, we recover Hoffman's result that any derivation $\delta: C_{p} \rightarrow C_{r}$ has a form $\delta=\delta_{a}$ for some $a \in C_{q}$. If $0<p \leqslant r<\infty$, then $D\left(C_{p}, C_{r}\right)=\mathscr{B}(H)$.

When ℓ, \mathcal{I} are arbitrary symmetric quasi-Banach ideals of compact operators and $\ell \subseteq \mathcal{I}$, then $\mathcal{I}: \ell=\mathscr{B}(H)$, and, in this case, a linear operator $\delta: \ell \rightarrow \mathcal{G}$ is a derivation if and only if $\delta=\delta_{a}$ for some $a \in \mathscr{B}(H)$. However, if $\ell \not \mathscr{\mathscr { L }}$, then to obtain a complete description of \mathcal{g}-essential commutant of ℓ we need a procedure of finding $\mathfrak{g}: \ell$.

To this end, we use the classical Calkin's correspondence between two-sided ideals ℓ of compact operators and rearrangement invariant solid sequence subspaces E_{l} of the space c_{0} of null sequences. The meaning of this correspondence is the following. Take a compact operator $x \in \ell$ and consider a sequence of eigenvalues $\left\{\lambda_{n}(x)\right\}_{n=1}^{\infty} \in c_{0}$. For each sequence $\xi=\left\{\xi_{n}\right\} \in c_{0}$, let $\xi^{*}=\left\{\xi_{n}^{*}\right\}_{n=1}^{\infty}$ denote a decreasing rearrangement of the sequence $|\xi|=\left\{\left|\xi_{n}\right|\right\}_{n=1}^{\infty}$. The set

$$
E_{\ell}:=\left\{\left\{\xi_{n}\right\}_{n=1}^{\infty} \in c_{0}:\left\{\xi_{n}^{*}\right\}_{n=1}^{\infty}=\left\{\lambda_{n}^{*}(|x|)\right\}_{n=1}^{\infty} \text { for some } x \in \ell\right\}
$$

is a solid linear subspace in the Banach lattice c_{0}. In addition, the space E_{ℓ} is rearrangement invariant, that is if $\eta \in c_{0}, \xi \in$ $E_{\ell}, \eta^{*}=\xi^{*}$, then $\eta \in E_{\ell}$. Conversely, if E is a rearrangement invariant solid sequence subspace in c_{0}, then

$$
C_{E}=\left\{x \in \mathcal{K}(H):\left\{\lambda_{n}(|x|)\right\}_{n=1}^{\infty} \in E\right\}
$$

is a two-sided ideal of compact operators from $\mathscr{B}(H)$.
For the proof of the following theorem we refer to Calkin's original paper, [4], and to Simon's book, [8, Theorem 2.5].
Theorem 1.4. The correspondence $\ell \leftrightarrow E_{\ell}$ is a bijection between rearrangement invariant solid spaces in c_{0} and two-sided ideals of compact operators.

In the recent paper [9] this correspondence has been extended to symmetric quasi-Banach (Banach) ideals and p-convex symmetric quasi-Banach (Banach) sequence spaces. We use the notation $\|\cdot\|_{\mathcal{B}(H)}$ and $\|\cdot\|_{\infty}$ to denote the uniform norm on $\mathscr{B}(H)$ and on l_{∞} respectively.

Recall, that a two-sided ideal ℓ of compact operators from $B(H)$ is said to be symmetric quasi-Banach (Banach) ideal if it is equipped with a complete quasi-norm (respectively, norm) $\|\cdot\|_{\ell}$ such that

$$
\|a x b\|_{\ell} \leqslant\|a\|_{\mathcal{B}(H)}\|x\|_{\ell}\|b\|_{\mathcal{B}(H)}, \quad x \in \ell, a, b \in \mathscr{B}(H)
$$

A symmetric quasi-Banach (Banach) sequence space $E \subset c_{0}$ is a rearrangement invariant solid sequence space equipped with a complete quasi-norm (respectively, norm) $\|\cdot\|_{E}$ such that $\|\eta\|_{E} \leq\|\xi\|_{E}$ for every $\xi \in E$ and $\eta \in c_{0}$ such that $\eta^{*} \leqslant \xi^{*}$.

It is clear that if $\left(\ell,\|\cdot\|_{\ell}\right)$ is a symmetric quasi-Banach ideal of compact operators, $x \in \ell$ and $y \in \mathcal{K}(H)$ is such that $\left\{\lambda_{n}^{*}(|y|)\right\}_{n=1}^{\infty} \leqslant\left\{\lambda_{n}^{*}(|x|)\right\}_{n=1}^{\infty}$, then $y \in \ell$ and $\|y\|_{\ell} \leq\|x\|_{\ell}$. In Theorem 4.4 we show that if E_{ℓ} is a rearrangement invariant solid space in c_{0} corresponding to symmetric quasi-Banach ideal ℓ, then setting $\|\xi\|_{E_{\ell}}:=\|x\|_{\ell}$ (where $x \in \ell$ is such that $\left.\xi^{*}=\left\{\lambda_{n}^{*}(|x|)\right\}_{n=1}^{\infty}\right)$ we obtain that $\left(E_{\ell},\|\cdot\|_{E_{\ell}}\right)$ is a symmetric quasi-Banach sequence space. The converse implication is much harder [9].

Theorem 1.5. If $\left(E,\|\cdot\|_{E}\right)$ is a symmetric Banach (respectively, p-convex symmetric quasi-Banach) sequence space in c_{0}, then C_{E} equipped with the norm

$$
\|x\|_{C_{E}}:=\left\|\left\{\lambda_{n}^{*}(|x|)\right\}_{n=1}^{\infty}\right\|_{E}
$$

is a symmetric Banach (respectively, p-convex quasi-Banach) ideal of compact operators from $\mathcal{B}(H)$.

In [10] it was shown that for $\mathscr{g}=C_{1}$ is the trace class and an arbitrary two-sided ideal ℓ with $C_{1} \subset \ell \subset \mathcal{K}(H)$ the C_{1}-dual space (also sometimes called the Köthe dual) $\ell^{\times}:=C_{1}: \ell$ of ℓ is precisely an ideal corresponding to symmetric sequence space $l_{1}: E_{\ell}$, where $l_{1}: E_{\ell}$ is l_{1}-dual space of E_{ℓ} (see precise definitions in Section 4). If ℓ is a symmetric Banach ideal of compact operators, then C_{1}-dual space ℓ^{\times}is symmetric Banach ideal of compact operator and norms on $C_{1}: \ell$ and $C_{l_{1}}: E_{\ell}$ are equal [11]. We extend these results to arbitrary symmetric quasi-Banach ideals ℓ, \mathcal{g} of compact operators with $\ell \nsubseteq \mathcal{I}$, that allows to describe completely all derivations from one symmetric quasi-Banach ideal to another. In addition, we use the technique of \mathcal{g}-dual spaces in order to obtain the estimation $\left\|\delta_{a}\right\|_{\ell \rightarrow \mathcal{I}} \leqslant 2\|a\|_{\mathcal{g}: \ell}$ for an arbitrary derivation $\delta=\delta_{a}: \ell \rightarrow \mathcal{Z}, a \in \mathcal{I}: \ell$.

2. Preliminaries

Let H be an infinite-dimensional Hilbert space over the field \mathbb{C} of complex numbers and $\mathscr{B}(H)$ be the C^{*}-algebra of all bounded linear operators on H. Set

$$
\begin{aligned}
& \mathscr{B}_{h}(H)=\left\{x \in \mathscr{B}(H): x^{*}=x\right\} \\
& \mathscr{B}_{+}(H)=\left\{x \in \mathscr{B}_{h}(H): \forall \varphi \in H(x(\varphi), \varphi) \geqslant 0\right\}, \\
& \mathscr{P}(H)=\left\{p \in \mathscr{B}(H): p=p^{2}=p^{*}\right\}
\end{aligned}
$$

It is well known [12, Chapter 2, Section 4] that $\mathscr{B}_{+}(H)$ is a proper cone in $\mathscr{B}_{h}(H)$ and with the partial order given by $x \leqslant y \Leftrightarrow y-x \in \mathscr{B}_{+}(H)$ the set $\mathscr{B}_{h}(H)$ is a partially ordered vector space over the field \mathbb{R} of real numbers, satisfying $y^{*} x y \geqslant 0$ for all $y \in \mathcal{B}(H), x \in \mathcal{B}_{+}(H)$. Note, that $-\|x\|_{\mathcal{B}(H)} \mathbb{1} \leqslant x \leqslant\|x\|_{\mathcal{B}(H)} \mathbb{1}$ for all $x \in \mathcal{B}_{h}(H)$, where $\mathbb{1}$ is the identity operator on H. It is known (see e.g. [12, Chapter 4, Section 2, Proposition 4.2.3]) that every operator x in $\mathscr{B}_{h}(H)$ can be uniquely written as follows: $x=x_{+}-x_{-}$, where $x_{+}, x_{-} \in \mathscr{B}_{+}(H)$ and $x_{+} x_{-}=0$. In addition, every operator $x \in \mathscr{B}(H)$ can be represented as $x=u|x|$ (the polar decomposition of the operator x), where $|x|=\left(x^{*} x\right)^{\frac{1}{2}}$ and u is a partial isometry in $\mathcal{B}(H)$ such that $u^{*} u$ is the right support of $x[13$, Chapter VI, Section 5, Theorem VI.10].

We need the following useful proposition.
Proposition 2.1 ([14, Chapter 2, Section 4, Proposition 2.4.3]). If $x, y \in \mathscr{B}_{+}(H), x \leqslant y$, then there exists an operator $a \in \mathscr{B}(H)$ such that $\|a\|_{\mathcal{B}(H)} \leqslant 1$ and $x=a^{*} y a$.

Let $\mathcal{K}(H)$ be a two-sided ideal in $\mathscr{B}(H)$ of all compact operators and $x \in \mathcal{K}(H)$. The eigenvalues $\left\{\lambda_{n}(|x|)\right\}_{n=1}^{\infty}$ of the operator $|x|$ arranged in decreasing order and repeated according to algebraic multiplicity are called singular values of the operator x, i.e. $s_{n}(x)=\lambda_{n}(|x|), n \in \mathbb{N}$, where $\lambda_{1}(|x|) \geqslant \lambda_{2}(|x|) \geqslant \cdots$ and \mathbb{N} is the set of all natural numbers. We need the following properties of singular values.

Proposition 2.2 ([15, Chapter II]).
(a) $s_{n}(x)=s_{n}\left(x^{*}\right), s_{n}(\alpha x)=|\alpha| s_{n}(x)$ for all $x \in \mathcal{K}(H), \alpha \in \mathbb{C}$;
(b) $s_{n}(x b) \leqslant s_{n}(x)\|b\|_{\mathcal{B}(H)}, s_{n}(b x) \leqslant s_{n}(x)\|b\|_{\mathcal{B}(H)}$ for all $x \in \mathcal{K}(H), b \in \mathscr{B}(H)$.

Let $\mathcal{F}(H)$ be a two-sided ideal in $\mathscr{B}(H)$ of all operators with finite range and let ℓ be an arbitrary proper two-sided ideal in $\mathcal{B}(H)$. Then ℓ is a $*$-ideal [12, Chapter 6 , Section 8 , Proposition 6.8.9] and the following inclusion holds: $\mathcal{F}(H) \subseteq \ell$ [12, Chapter 6, Section 8, Theorem 6.8.3], in particular, ℓ contains all finite-dimensional projections from $\mathcal{P}(H)$. If H is a separable Hilbert space, then the inclusion $\ell \subseteq \mathcal{K}(H)$ also holds [4, Theorem 1.4]. If, however, H is not separable, then for proper two-sided ideals in $\mathcal{B}(H)$ we have the following proposition.

Proposition 2.3 ([10, Proposition 1]).
(i) $\mathfrak{D}=\{x \in \mathscr{B}(H): x(H)$ is separable $\}$ is a proper two-sided ideal in $\mathcal{B}(H)$, in addition $\mathcal{K}(H) \subset \mathscr{D}$;
(ii) If ℓ is an ideal in $\mathscr{B}(H)$, then either $\ell \subseteq \mathcal{K}(H)$ or $\mathfrak{D} \subseteq \ell$.

Let X be a linear space over the field \mathbb{C}. A function $\|\cdot\|$ from X to \mathbb{R} is a quasi-norm, if for all $x, y \in X, \alpha \in \mathbb{C}$ the following properties hold:
(1) $\|x\| \geqslant 0,\|x\|=0 \Leftrightarrow x=0$;
(2) $\|\alpha x\|=|\alpha|\|x\|$;
(3) $\|x+y\| \leqslant C(\|x\|+\|y\|), C \geqslant 1$.

The couple $(X,\|\cdot\|)$ is called a quasi-normed space and the least of all constants C satisfying the inequality (3) above is called the modulus of concavity of the quasi-norm $\|\cdot\|$.

It is known (see e.g. [16, Section 1]) that for each quasi-norm $\|\cdot\|$ on X there exists an equivalent p-additive quasinorm $\|\|\cdot\|$, that is a quasi-norm $\| \cdot\|\|$ on X satisfying the following property of p-additivity: $\| x+y\left\|^{p} \leqslant\right\| x\left\|^{p}+\right\| y \|^{p}$, where p is such that $C=2^{\frac{1}{p}-1}$, in particular, $0<p \leqslant 1$ since $C \geqslant 1$. In this case, the function $d: X^{2} \rightarrow \mathbb{R}$ defined by $d(x, y):=\|x-y\|^{p}, x, y \in X$ is an invariant metric on X, and in the topology τ_{d}, generated by the metric d, the linear space X is a topological vector space. If (X, d) is a complete metric space, then $(X,\|\cdot\|)$ is called a quasi-Banach space and the quasi-norm $\|\cdot\|$ is a complete quasi-norm; in this case, $\left(X, \tau_{d}\right)$ is an F-space.

Proposition 2.4. Let $(X,\|\cdot\|)$ be a quasi-Banach space with the modulus of concavity C, let $\|\|\cdot\| \mid$ be a p-additive quasi-norm equivalent to the quasi-norm $\|\cdot\|, C=2^{\frac{1}{p}-1}$. If $x_{n} \in X, n \geq 1$ and $\sum_{n=1}^{\infty}\left\|x_{n}\right\|^{p}<\infty$, then the series $\sum_{n=1}^{\infty} x_{n}$ converges in $(X,\|\cdot\|)$, i.e. there exists $x \in X$ such that $\left\|x-\sum_{n=1}^{k} x_{n}\right\| \rightarrow 0$ for $k \rightarrow \infty$.

Proof. For partial sums $S_{k}=\sum_{n=1}^{k} x_{n}$ we have

$$
d\left(S_{k+l}, S_{k}\right)=\left\|S_{k+l}-S_{k}\right\|^{p}=\| \| \sum_{n=l+1}^{k+l} x_{n}\left\|^{p} \leqslant \sum_{n=l+1}^{k+l}\right\| x_{n} \|^{p} \rightarrow 0 \quad \text { for } k, l \rightarrow \infty
$$

i.e. $\left\{S_{k}\right\}_{k=1}^{\infty}$ is a Cauchy sequence in (X, d). Since the metric space (X, d) is complete, there exists $x \in X$ such that $d\left(S_{k}, x\right)=\left\|S_{k}-x\right\|^{p} \rightarrow 0$ for $k \rightarrow \infty$. Since quasi-norms $\|\cdot\|$ and $\left\|\|\|\right.$ are equivalent we have that $\left.\| S_{k}-x\right\| \rightarrow 0$ for $k \rightarrow \infty$.

Let $\left(X,\|\cdot\|_{X}\right),\left(Y,\|\cdot\|_{Y}\right)$ be quasi-normed spaces and let $\mathscr{B}(X, Y)$ be the linear space of all bounded linear mappings $T: X \rightarrow Y$. For each $T \in \mathscr{B}(X, Y)$ set $\|T\|_{\mathcal{B}(X, Y)}=\sup \left\{\|T x\|_{Y}:\|x\| \leqslant 1\right\}$. As in the case of normed spaces, the set $\mathscr{B}(X, Y)$ coincides with the set of all continuous linear mappings from X into Y, moreover, the function $\|\cdot\|_{\mathscr{B}(X, Y)}: \mathscr{B}(X, Y) \rightarrow \mathbb{R}$ is a quasi-norm on $\mathscr{B}(X, Y)$ whose modulus of concavity, does not exceed the modulus of concavity of the quasi-norm $\|\cdot\|_{Y}$ [16, Section 1]. Furthermore, $\|T x\|_{Y} \leqslant\|T\|_{\mathscr{B}(X, Y)}\|x\|_{X}$ for all $T \in \mathscr{B}(X, Y)$ and $x \in X$.

Proposition 2.5. If $\left(Y,\|\cdot\|_{Y}\right)$ is a quasi-Banach space, then $\left(\mathcal{B}(X, Y),\|\cdot\|_{\mathcal{B}(X, Y)}\right)$ is a quasi-Banach space too.
Proof. Since $\|\cdot\|_{Y}$ is a quasi-norm on Y, there exists a p-additive quasi-norm $\left\|\left\|\|_{Y} \text { equivalent to }\right\| \cdot\right\|_{Y}$, i.e. $\alpha_{1}\|y\|_{Y} \leqslant$ $\|y\|_{Y} \leqslant \beta_{1}\|y\|_{Y}$ for all $y \in Y$ and some constants $\alpha_{1}, \beta_{1}>0$. Similarly, there exists a q-additive quasi-norm $\left\|\left\|\|_{\mathcal{B}(X, Y)}\right.\right.$ equivalent to the quasi-norm $\|\cdot\|_{\mathcal{B}(X, Y)}$, i.e. $\alpha_{2}\|T\|_{\mathcal{B}(X, Y)} \leqslant\|T\|_{\mathcal{B}(X, Y)} \leqslant \beta_{2}\|T\|_{\mathcal{B}(X, Y)}$ for all $T \in \mathscr{B}(X, Y)$ and some $\alpha_{2}, \beta_{2}>0,0<p, q \leqslant 1$.

Let $\left\{T_{n}\right\}_{n=1}^{\infty}$ be a Cauchy sequence in $(\mathscr{B}(X, Y), d)$, where $d(T, S)=\|T-S\|_{\mathscr{B}(X, Y)}^{q}, T, S \in \mathscr{B}(X, Y)$. Fix $\varepsilon>0$ and select a positive integer $n(\varepsilon)$ such that $\left\|T_{n}-T_{m}\right\|_{\mathcal{B}(X, Y)}^{q}<\varepsilon^{q}$ for all $n, m \geqslant n(\varepsilon)$. For every $x \in X$ we have

$$
\begin{aligned}
\left\|T_{n} x-T_{m} x\right\|_{Y}^{p} & \leqslant \frac{1}{\alpha_{1}^{p}}\left\|T_{n} x-T_{m} x\right\|_{Y}^{p} \leqslant \frac{1}{\alpha_{1}^{p}}\left\|T_{n}-T_{m}\right\|_{\mathcal{B}(X, Y)}^{p}\|x\|_{X}^{p} \\
& \leqslant\left(\frac{\beta_{2}}{\alpha_{1}}\right)^{p}\left\|T_{n}-T_{m}\right\|_{\mathcal{B}(X, Y)}^{p}\|x\|_{X}^{p}<\left(\frac{\beta_{2}}{\alpha_{1}}\right)^{p}\|x\|_{X}^{p} \varepsilon^{p} \quad \text { for } n, m \geqslant n(\varepsilon) .
\end{aligned}
$$

Thus, $\left\{T_{n} x\right\}_{n=1}^{\infty}$ is a Cauchy sequence in $\left(Y, d_{Y}\right)$, where $d_{Y}(x, y)=\|x-y\|_{Y}^{p}$. Since the metric space $\left(Y, d_{Y}\right)$ is complete, there exists $T(x) \in Y$ such that $\left\|T_{n}(x)-T(x)\right\|_{Y}^{p} \rightarrow 0$ for $n \rightarrow \infty$. The verification that $T \in \mathcal{B}(X, Y)$ and $\left\|T_{n}-T\right\|_{\mathcal{B}(X, Y)}^{q} \rightarrow 0$ for $n \rightarrow \infty$ is routine and is therefore omitted.

Let ℓ be a nonzero two-sided ideal in $\mathscr{B}(H)$.
A quasi-norm $\|\cdot\|_{\ell}: \ell \rightarrow \mathbb{R}$ is called symmetric quasi-norm if
(1) $\|a x b\|_{\ell} \leqslant\|a\|_{\mathcal{B}(H)}\|x\|_{\ell}\|b\|_{\mathcal{B}(H)}$ for all $x \in \ell, a, b \in \mathscr{B}(H)$;
(2) $\|p\|_{\ell}=1$ for any one-dimensional projection $p \in \ell$.

Proposition 2.6 (Compare [15, Chapter III, Section 2]). Let $\|\cdot\|_{\ell}$ be a symmetric quasi-norm on a two-sided ideal ℓ. Then
(a) $\|x\|_{\ell}=\left\|x^{*}\right\|_{\ell}=\||x|\|_{\ell}$ for all $x \in \ell$;
(b) If $x \in \ell \subset \mathcal{K}(H), y \in \mathcal{K}(H), s_{n}(y) \leqslant s_{n}(x), n=1,2, \ldots$, then $y \in \ell$ and $\|y\|_{\ell} \leqslant\|x\|_{\ell}$;
(c) If $\ell \subset \mathcal{K}(H)$, then $\|x\|_{\mathcal{B}(H)} \leqslant\|x\|_{\ell}$ for all $x \in \ell$.

Proof. (a) Let $x=u|x|$ be the polar decomposition of the operator x. Then $\|x\|_{\ell}=\|u|x|\|_{\ell} \leqslant\||x|\|_{l}$. Since $u^{*} x=|x|$, the inequality $\||x|\|_{\ell} \leqslant\|x\|_{\ell}$ holds and so $\||x|\|_{\ell}=\|x\|_{\ell}$. Using the equalities $x^{*}=|x| u^{*}, x^{*} u=|x|$ in the same manner, we obtain that $\||x|\|_{\ell}=\left\|x^{*}\right\|_{\ell}$.
(b) Since x, y are compact operators and $s_{n}(y) \leqslant s_{n}(x)$ we have $s_{n}(y)=\alpha_{n} s_{n}(x)$, where $0 \leqslant \alpha_{n} \leqslant 1, n \in \mathbb{N}$. By the Hilbert-Schmidt theorem, there exists an orthogonal system of eigenvectors $\left\{\varphi_{n}\right\}_{n=1}^{\infty}$ for the operator $|y|$ such that $|y|(\varphi)=\sum_{n=1}^{\infty} s_{n}(y) c_{n} \varphi_{n}$, where $c_{n}=\left(\varphi, \varphi_{n}\right), \varphi \in H$. Since $s_{n}(y)=\alpha_{n} s_{n}(x)$, it follows that card $\left\{\varphi_{n}\right\} \leqslant \operatorname{card}\left\{\psi_{n}\right\}$, where $\left\{\psi_{n}\right\}_{n=1}^{\infty}$ is an orthogonal system of eigenvectors for the operator $|x|$. Thus, there exists a unitary operator $u \in \mathscr{B}(H)$ such that $u\left(\psi_{n}\right)=\varphi_{n}$, in addition, $u|x| u^{-1} \geqslant|y|$.

By Proposition 2.1, there exists an operator $a \in \mathscr{B}(H)$ with $\|a\|_{\mathcal{B}(H)} \leqslant 1$ such that $|y|=a^{*} u|x| u^{-1} a$. Consequently, $|y| \in \ell$ and $\||y|\|_{\ell} \leqslant\||x|\|_{\ell}$, thus $y \in \ell$ and $\|y\|_{\ell} \leqslant\|x\|_{\ell}$.
(c) Let $y(\cdot)=s_{1}(x)(\cdot, \varphi) \varphi$, where φ is an arbitrary vector in H with $\|\varphi\|_{H}=1$. Whereas $s_{n}(y) \leqslant s_{n}(x)$, we have $\|x\|_{\mathcal{B}(H)}=s_{1}(x)=\|y\|_{\mathcal{B}(H)}=\|y\|_{\ell} \leqslant\|x\|_{\ell}($ see $(\mathrm{b}))$.

A two-sided ideal ℓ of compact operators from $\mathcal{B}(H)$ is called a symmetric quasi-Banach (respectively, Banach) ideal, if ℓ is equipped with a complete symmetric quasi-norm (respectively, norm).

Let ℓ, \mathcal{Z} be two-sided ideals of compact operators from $\mathscr{B}(H)$. A linear mapping $\delta: \ell \rightarrow \mathcal{g}$ is called a derivation, if $\delta(x y)=\delta(x) y+x \delta(y)$ for all $x, y \in \ell$. If, in addition, $\delta\left(x^{*}\right)=(\delta(x))^{*}$ for all $x \in \ell$, then δ is called a $*$-derivation. Denote by $\operatorname{Der}(\ell, \mathcal{Z})$ the linear space of all derivations from ℓ into \mathcal{g}.

For each derivation $\delta: \ell \rightarrow \mathcal{Z}$ define the mappings $\delta_{\mathrm{Re}}(x):=\frac{\delta(x)+\delta\left(x^{*}\right)^{*}}{2}$ and $\delta_{\operatorname{Im}}(x):=\frac{\delta(x)-\delta\left(x^{*}\right)^{*}}{2 i}, x \in \ell$. It is easy to see that δ_{Re} and δ_{Im} are $*$-derivations from ℓ into \mathcal{g}, moreover $\delta=\delta_{\mathrm{Re}}+i \delta_{\mathrm{Im}}$.

If $a \in \mathscr{B}(H)$, then the mapping $\delta_{a}: \mathscr{B}(H) \rightarrow \mathcal{B}(H)$ given by $\delta_{a}(x):=[a, x]=a x-x a, x \in \mathscr{B}(H)$, is a derivation. Derivations of this type are called inner. When ℓ is a two-sided ideal in $\mathscr{B}(H)$, then $\delta_{a}(\ell) \subset \ell$ for all $a \in \mathscr{B}(H)$. If \mathfrak{g} is also a two-sided ideal in $\mathscr{B}(H)$ and $a \in \mathcal{F}$, then $\delta_{a}(\ell) \subset \ell \cap \mathcal{g}$.

3. The set $\operatorname{Der}(\boldsymbol{\ell}, \mathcal{I})$ for symmetric quasi-Banach ideals $\boldsymbol{\ell}$ and \mathscr{g}

The following theorem gives a positive answer to Question 1.3.
Theorem 3.1. Let ℓ, \mathcal{Z} be symmetric quasi-Banach ideals of compact operators from $\mathcal{B}(H)$ and δ is a derivation from ℓ into \mathcal{g}. Then δ is a continuous mapping from ℓ into \mathfrak{g}, i.e. $\delta \in \mathscr{B}(\ell, \mathcal{F})$.
Proof. Without loss of generality we may assume that δ is a $*$-derivation. The spaces $\left(\ell,\|\cdot\|_{\ell}\right),\left(\mathcal{I},\|\cdot\|_{\mathcal{I}}\right)$ are F-spaces, and therefore it is sufficient to prove that the graph of δ is closed. Suppose a contrary, that is there exists a sequence $\left\{x_{n}\right\}_{n=1}^{\infty} \subset \ell$ such that $\|\cdot\|_{\ell}-\lim _{n \rightarrow \infty} x_{n}=0$ and $\|\cdot\|_{g}-\lim _{n \rightarrow \infty} \delta\left(x_{n}\right)=x \neq 0$.

Since $x_{n}=\operatorname{Re} x_{n}+\operatorname{IIm} x_{n}$ for all $n \in \mathbb{N}$, where $\operatorname{Re} x_{n}=\frac{x_{n}+x_{n}^{*}}{2}, \operatorname{Im} x_{n}=\frac{x_{n}-x_{n}^{*}}{2}$, and $\left\|x_{n}\right\|_{\ell} \rightarrow 0,\left\|x_{n}^{*}\right\|_{\ell}=\left\|x_{n}\right\|_{\ell} \rightarrow 0$, we have

$$
\left\|\operatorname{Re} x_{n}\right\|_{\ell}=\left\|\frac{x_{n}+x_{n}^{*}}{2}\right\|_{\ell} \leqslant \frac{C\left(\left\|x_{n}\right\|_{\ell}+\left\|x_{n}^{*}\right\|_{\ell}\right)}{2} \rightarrow 0
$$

and

$$
\left\|\operatorname{Im} x_{n}\right\|_{\ell}=\left\|\frac{x_{n}-x_{n}^{*}}{2}\right\|_{\ell} \leqslant \frac{C\left(\left\|x_{n}\right\|_{\ell}+\left\|x_{n}^{*}\right\|_{\ell}\right)}{2} \rightarrow 0
$$

where C is the modulus of concavity of the quasi-norm $\|\cdot\|_{\ell}$. Consequently, we may assume that $x_{n}^{*}=x_{n}$ for all $n \in \mathbb{N}$. In this case, from the relationships

$$
x \stackrel{\|\cdot\| \neq g}{\longleftrightarrow} \delta\left(x_{n}\right)=\delta\left(x_{n}^{*}\right)=\delta\left(x_{n}\right)^{*} \xrightarrow{\|\cdot\| g} x^{*},
$$

we obtain $x=x^{*}$.
Writing $x=x_{+}-x_{-}$, where $x_{+}, x_{-} \geqslant 0$ and $x_{+} x_{-}=0$, we may assume that $x_{+} \neq 0$, otherwise we consider the sequence $\left\{-x_{n}\right\}_{n=1}^{\infty}$. Since x_{+}is a nonzero positive compact operator, $\lambda=\left\|x_{+}\right\|_{\mathscr{B}(H)}$ is an eigenvalue of x_{+}corresponding to a finite-dimensional eigensubspace. Let q be a projection onto this subspace.

Fix an arbitrary non-zero vector $\varphi \in q(H)$ and consider the projection p onto the one-dimensional subspace spanned by φ. Combining the inequality $p \leqslant q$ with the equality $q x_{+} q=\lambda q$, we obtain $p x p=p q x q p=\lambda p q p=\lambda p$. Replacing, if necessary, the sequence $\left\{x_{n}\right\}_{n=1}^{\infty}$ with the sequence $\left\{\frac{x_{n}}{\lambda}\right\}_{n=1}^{\infty}$, we may assume

$$
\begin{equation*}
p x p=p \tag{1}
\end{equation*}
$$

Since p is one-dimensional, it follows that pap $=\alpha p, \alpha \in \mathbb{C}$ for any operator $a \in \mathscr{B}(H)$, in particular, $p x_{n} p=\alpha_{n} p$, therefore $\left|\alpha_{n}\right|=\left\|p x_{n} p\right\|_{\ell} \rightarrow 0$ for $n \rightarrow \infty$. Writing

$$
\left\|\delta(p) x_{n} p\right\|_{\mathcal{I}} \leqslant\|\delta(p)\|_{\mathcal{I}}\left\|x_{n} p\right\|_{\mathcal{B}(H)} \leqslant\|\delta(p)\|_{\mathcal{I}}\left\|x_{n}\right\|_{\mathcal{B}(H)} \leqslant\|\delta(p)\|_{\mathcal{I}}\left\|x_{n}\right\|_{\mathscr{L}}
$$

we infer $\left\|\delta(p) x_{n} p\right\|_{\mathcal{I}} \rightarrow 0$ and $\left\|p x_{n} \delta(p)\right\|_{\mathcal{I}}=\left\|\left(\delta(p) x_{n} p\right)^{*}\right\|_{\mathcal{I}} \rightarrow 0$.
Since $\operatorname{pxp} \stackrel{(1)}{=} p \in \mathcal{L}$, we have

$$
\begin{aligned}
\left\|\delta\left(p x_{n} p\right)-p x p\right\|_{\mathcal{I}} & =\left\|\delta(p) x_{n} p+p \delta\left(x_{n}\right) p+p x_{n} \delta(p)-p x p\right\|_{\mathcal{I}} \\
& \leqslant C_{1}\left\|\delta(p) x_{n} p+p x_{n} \delta(p)\right\|_{\mathcal{I}}+C_{1}\left\|p \delta\left(x_{n}\right) p-p x p\right\|_{\mathcal{I}} \\
& \leqslant C_{1}^{2}\left\|\delta(p) x_{n} p\right\|_{\mathcal{I}}+C_{1}^{2}\left\|p x_{n} \delta(p)\right\|_{\mathcal{I}}+C_{1}\left\|p \delta\left(x_{n}\right) p-p x p\right\|_{\mathcal{I}} \rightarrow 0
\end{aligned}
$$

where C_{1} is the modulus of concavity of the quasi-norm $\|\cdot\|_{\mathcal{g}}$, i.e. $\delta\left(p x_{n} p\right) \xrightarrow{\|\cdot\|_{\mathcal{g}}} p x p$. Hence

$$
p \stackrel{(1)}{=} p x p=\|\cdot\|_{\mathcal{I}}-\lim _{n \rightarrow \infty} \delta\left(p x_{n} p\right)=\|\cdot\|_{\mathcal{I}}-\lim _{n \rightarrow \infty} \delta\left(\alpha_{n} p\right)=\|\cdot\|_{\mathcal{I}}-\lim _{n \rightarrow \infty} \alpha_{n} \delta(p)=0
$$

which is a contradiction, since $p \neq 0$.
Consequently, δ is a continuous mapping from $\left(\ell,\|\cdot\|_{\ell}\right)$ into $\left(\mathcal{G},\|\cdot\|_{\mathcal{I}}\right)$.

Note, that in [7, Theorem 8] a version of Theorem 3.1 is obtained for the case of an arbitrary symmetric Banach ideal $\ell=\mathcal{F}$ of τ-compact operators in a von Neumann algebra \mathcal{M} equipped with a semi-finite normal faithful trace τ.

The following theorem gives a positive answer to Question 1.1.
Theorem 3.2. If ℓ, \mathcal{Z} are symmetric quasi-Banach ideals of compact operators from $\mathcal{B}(H)$, then for every derivation $\delta: \ell \rightarrow \mathcal{g}$ there exists an operator $a \in \mathcal{B}(H)$ such that $\delta(\cdot)=\delta_{a}(\cdot)=[a, \cdot]$, in addition, $\|a\|_{\mathcal{B}(H)} \leqslant\|\delta\|_{\mathcal{B}(\ell, \mathcal{G})}$.
Proof. Fix an arbitrary vector $\varphi_{0} \in H$ with $\left\|\varphi_{0}\right\|_{H}=1$ and consider projection $p_{0}(\cdot):=\left(\cdot, \varphi_{0}\right) \varphi_{0}$ onto one-dimensional subspace spanned by φ_{0}. Obviously, $p_{0} \in \ell \cap \mathcal{g}$.

Let $x \in \ell, x\left(\varphi_{0}\right)=0$ and $\varphi \in H$. Since

$$
x p_{0}(\varphi)=x\left(p_{0}(\varphi)\right)=x\left(\left(\varphi, \varphi_{0}\right) \varphi_{0}\right)=\left(\varphi, \varphi_{0}\right) x\left(\varphi_{0}\right)=0
$$

it follows that $x p_{0}=0$, and so $\delta\left(x p_{0}\right)\left(\varphi_{0}\right)=0$. Consequently, the linear operator $a\left(z\left(\varphi_{0}\right)\right)=\delta\left(z p_{0}\right)\left(\varphi_{0}\right)$ is correctly defined on the linear subspace $L:=\left\{z\left(\varphi_{0}\right): z \in \ell\right\} \subset H$. If $\varphi \in H, z(\cdot)=\left(\cdot, \varphi_{0}\right) \varphi$, then $z \in \ell$ and $z\left(\varphi_{0}\right)=\varphi$, which implies $L=H$.

For arbitrary $z \in \mathscr{B}(H), \varphi \in H$, we have

$$
\begin{aligned}
\left|z p_{0}\right|^{2}(\varphi) & =\left(p_{0} z^{*} z p_{0}\right)(\varphi)=\left(p_{0} z^{*} z\right)\left(\left(\varphi, \varphi_{0}\right) \varphi_{0}\right)=\left(\varphi, \varphi_{0}\right) p_{0}\left(z^{*} z\left(\varphi_{0}\right)\right) \\
& =\left(z \varphi_{0}, z \varphi_{0}\right)\left(\varphi, \varphi_{0}\right) \varphi_{0}=\left(z \varphi_{0}, z \varphi_{0}\right) p_{0}(\varphi)=\left\|z\left(\varphi_{0}\right)\right\|_{H}^{2} p_{0}(\varphi)
\end{aligned}
$$

in particular, $\left\|z p_{0}\right\|_{\mathcal{B}(H)}=\left\|\left|z p_{0}\right|\right\|_{\mathcal{B}(H)}=\| \| z\left(\varphi_{0}\right)\left\|_{H} p_{0}\right\|_{\mathcal{B}(H)}=\left\|z\left(\varphi_{0}\right)\right\|_{H}$. Applying this observation together with Theorem 3.1 guaranteeing $\|\delta(x)\|_{\mathcal{I}} \leqslant\|\delta\|_{\mathcal{B}(\ell, \mathcal{g})}\|x\|_{\ell}$ for all $x \in \ell$, we have

$$
\begin{aligned}
\left\|a\left(x\left(\varphi_{0}\right)\right)\right\|_{H} & =\left\|\delta\left(x p_{0}\right)\left(\varphi_{0}\right)\right\|_{H}=\left\|\delta\left(x p_{0}\right) p_{0}\right\|_{\mathcal{B}(H)} \leqslant\left\|\delta\left(x p_{0}\right)\right\|_{\mathcal{B}(H)}\left\|p_{0}\right\|_{\mathcal{B}(H)} \\
& \leqslant\left\|\delta\left(x p_{0}\right)\right\|_{\mathcal{g}} \leqslant\|\delta\|_{\mathcal{B}(\ell, \mathcal{g})}\left\|x p_{0}\right\|_{\ell} \\
& \leqslant\|\delta\|_{\mathcal{B}(\ell, \mathcal{g})}\left\|p_{0}\right\|_{\ell}\left\|x p_{0}\right\|_{\mathcal{B}(H)}=\|\delta\|_{\mathcal{B}(\ell, \mathcal{g})}\left\|x\left(\varphi_{0}\right)\right\|_{H} .
\end{aligned}
$$

This shows that a is a bounded operator on H and $\|a\|_{\mathcal{B}(H)} \leqslant\|\delta\|_{\mathcal{B}(l, \mathcal{g})}$.
Finally, for all $x, z \in \ell$ we have

$$
\begin{aligned}
{[a, x]\left(z\left(\varphi_{0}\right)\right) } & =a x\left(z\left(\varphi_{0}\right)\right)-x a\left(z\left(\varphi_{0}\right)\right)=a\left(x z\left(\varphi_{0}\right)\right)-x a\left(z\left(\varphi_{0}\right)\right) \\
& =\delta\left(x z p_{0}\right)\left(\varphi_{0}\right)-x \delta\left(z p_{0}\right)\left(\varphi_{0}\right)=\delta(x) z p_{0}\left(\varphi_{0}\right)=\delta(x) z\left(\varphi_{0}\right)
\end{aligned}
$$

and since $L=H$, it follows $\delta(\cdot)=[a, \cdot]=\delta_{a}(\cdot)$.
Let ℓ, \mathcal{g} be arbitrary two-sided ideals in $\mathscr{B}(H)$. The set

$$
D(\ell, \mathcal{F})=\{a \in \mathscr{B}(H): a x-x a \in \mathcal{I}, \forall x \in \ell\}
$$

is called the \mathcal{g}-essential commutant of ℓ, and the set

$$
\mathcal{G}: \ell=\{a \in \mathscr{B}(H): a x \in \mathcal{G}, \forall x \in \ell\}
$$

is called the \mathscr{g}-dual space of ℓ. It is clear that $\mathcal{g}: \ell$ is a two-sided ideal in $\mathcal{B}(H)$. Hence $\mathcal{g}: \ell$ is a $*$-ideal, and therefore $x a \in \mathcal{g}$ for all $x \in \ell, a \in \mathcal{G}: \ell$. If $\ell \nsubseteq \mathcal{g}$, then $\mathbb{1} \notin \mathcal{g}: \ell$, i.e. $\mathcal{g}: \ell \neq \mathscr{B}(H)$, and so $\mathcal{G}: \ell$ is a proper ideal in $\mathscr{B}(H)$. However, in case when $\ell \subseteq \mathcal{g}$ we have $\mathcal{g}: \ell=\mathscr{B}(H)$, in particular, $C_{r}: C_{p}=\mathscr{B}(H)$ for all $0<p \leqslant r$, where $C_{p}=\left\{x \in \mathcal{K}(H):\|x\|_{p}=\left(\operatorname{tr}\left(|x|^{p}\right)\right)^{\frac{1}{p}}<\infty\right\}$ is the Schatten ideal of compact operators from $\mathscr{B}(H), 0<p<\infty$, tr is the standard trace on $\mathscr{B}_{+}(H)$.

Proposition 3.3. If ℓ, \mathcal{G} are proper two-sided ideals of compact operators in $\mathcal{B}(H)$ and $\ell \nsubseteq \mathscr{F}$, then $\mathcal{g}: \ell \subset \mathcal{K}(H)$.
Proof. Since $\ell \nsubseteq \mathscr{g}, \mathcal{g}: \ell$ is a proper two-sided ideal in $\mathcal{B}(H)$. If H is a separable Hilbert space, then $\mathcal{g}: \ell \subset \mathscr{K}(H)$ [4, Theorem 1.4]. Suppose that H is not separable and $\mathcal{Z}: \ell \nsubseteq \mathcal{K}(H)$. By Proposition 2.3, the proper two-sided ideal $\mathscr{D}=\{x \in \mathscr{B}(H): x(H)$ is separable $\} \subset \mathcal{G}: \ell$. Since $\ell \nsubseteq \mathcal{g}$ there exists a positive compact operator $a \in \ell \backslash \mathcal{g}$. Since $a \in \mathcal{D}$, we have that $L:=\overline{a(H)}$ is separable. Let $p \in \mathcal{P}(H)$ be the orthogonal projection onto L. Since $a \notin \mathcal{G}$, it follows that L is infinite-dimensional subspace. Indeed, if it were not the case, then a would be a finite rank operator and automatically belonging to $a \in \mathscr{G}$. Therefore $p \in \mathscr{D} \backslash \mathcal{K}(H) \subset \mathcal{G}: \ell$, in addition, $0 \neq a=p a p \in(p \ell p) \backslash(p \mathcal{I} p)$, i.e. $p \ell p \nsubseteq p \mathscr{g} p$. Since L is a separable Hilbert space, we have $(p \mathcal{q} p):(p \ell p) \subset \mathcal{K}(L)$.

Let $y \in p \ell p$, i.e. $y=p y^{\prime} p$ for some $y^{\prime} \in \ell$. Since $p \in \mathscr{D} \subset \mathcal{I}: \ell$ we have $p y^{\prime} \in \mathscr{I}$, hence, $p\left(p y^{\prime}\right) p \in p \mathscr{g} p$. Consequently, $p \in(p \mathcal{g} p):(p \ell p)$, i.e. p is a compact operator in L, which is a contradiction. Thus, $\mathcal{g}: \ell \subset \mathcal{K}(H)$.

For arbitrary two-sided ideals ℓ, \mathcal{Z} in $\mathscr{B}(H)$ we denote by $d(\ell, \mathscr{\mathscr { C }})$ the set of all derivations δ from $\mathscr{B}(H)$ into $\mathscr{B}(H)$ such that $\delta(\ell) \subset \mathcal{g}$. To characterize the set $d(\ell, \mathcal{g})$ we need the following theorem.

Theorem 3.4 ([1, Theorem 1.1]). $D(\ell, \mathcal{g})=\mathfrak{g}: \ell+\mathbb{C} \mathbb{1}$.

It should be noted that Theorem 3.4 holds for arbitrary von Neumann algebras, i.e. for any two-sided ideals ℓ, \mathcal{g} in von Neumann algebra \mathcal{M} we have $D(\ell, \mathcal{I})=\mathcal{I}: \ell+Z(\mathcal{M})$, where $Z(\mathcal{M})$ is the center of \mathcal{M} [5, Corollary 5].

Proposition 3.5. $d(\ell, \mathcal{Z})=\left\{\delta_{a}: a \in D(\ell, \mathcal{F})\right\}=\left\{\delta_{a}: a \in \mathcal{G}: \ell\right\}$.
Proof. Let $\delta \in d(\ell, \mathcal{F})$. Since δ is a derivation from $\mathcal{B}(H)$ into $\mathscr{B}(H)$ there exists an operator $a \in \mathscr{B}(H)$ such that $\delta=\delta_{a}$. If $x \in \ell$, then $[a, x]=\delta(x) \in \mathcal{Z}$, i.e. $a \in D(\ell, \mathcal{Z})$. Using Theorem 3.4, we have that $a=b+\alpha \mathbb{1}$, where $b \in \mathcal{G}: \ell, \alpha \in \mathbb{C}$, and therefore $\delta=\delta_{a}=\delta_{b}$.

Further, let $\delta_{a}(\cdot)=[a, \cdot]$ be the inner derivation on $\mathscr{B}(H)$ generated by an operator $a \in \mathcal{I}: \ell$. For all $x \in \ell$ we have $\delta_{a}(x)=[a, x]=a x-x a \in \mathcal{Z}$. Consequently, $\delta_{a} \in d(\ell, \mathcal{Z})$.

Now, let ℓ, \mathcal{I} be arbitrary symmetric quasi-Banach ideals of compact operators from $\mathscr{B}(H)$. According to Theorem 3.2, for each derivation $\delta \in \operatorname{Der}(\ell, \mathcal{Z})$ there exists an operator $a \in \mathscr{B}(H)$ such that $\delta(x)=\delta_{a}(x)=[a, x]$ for all $x \in \ell$. Since $\delta(\ell) \subset \mathcal{I}$ we have $[a, x] \in \mathcal{Z}$ for all $x \in \ell$, i.e. $a \in D(\ell, \mathcal{Z})$. Hence, $\delta_{a} \in d(\ell, \mathcal{Z})$ (see Proposition 3.5). On the other hand, if $a \in \mathcal{I}: \ell$, then $\delta_{a} \in d(\ell, \mathcal{Z})$ (see Proposition 3.5), in particular, $\delta_{a}(\ell) \subset \mathcal{g}$.

Hence, in view of Proposition 3.5 and Theorem 3.2, the following theorem holds.

Theorem 3.6. For arbitrary symmetric quasi-Banach ideals ℓ, \mathcal{g} of compact operators in $\mathscr{B}(H)$ each derivation $\delta: \ell \rightarrow \mathcal{I}$ has a form $\delta=\delta_{a}$ for some $a \in \mathcal{g}: \ell$, in addition $\|a+\alpha \mathbb{1}\|_{\mathcal{B}(H)} \leqslant\left\|\delta_{a}\right\|_{\mathcal{B}(\ell, \mathcal{g})}$ for some $\alpha \in \mathbb{C}$. Conversely, if $a \in \mathcal{g}: \ell$ then the restriction of the derivation δ_{a} on ℓ is a derivation from ℓ into \mathcal{g}.

If $0<r<p<\infty$, then we have $C_{r}: C_{p}=C_{q}$, where $\frac{1}{q}=\frac{1}{r}-\frac{1}{p}$ [1, Proposition 5.6]. Therefore, the following corollary follows immediately from Theorem 3.6.

Corollary 3.7. If $0<p \leqslant r<\infty$, then the mapping $\delta: C_{p} \rightarrow C_{r}$ is a derivation if and only if $\delta=\delta_{a}$ for some $a \in \mathscr{B}(H)$. If $0<r<p<\infty$, then the mapping $\delta: C_{p} \rightarrow C_{r}$ is a derivation if and only if $\delta=\delta_{a}$ for some $a \in C_{q}$, where $\frac{1}{q}=\frac{1}{r}-\frac{1}{p}$.

4. The \mathscr{g}-dual space of $\boldsymbol{\ell}$ for symmetric quasi-Banach ideals $\boldsymbol{\ell}$ and \mathscr{g}

In this section we show that any symmetric quasi-Banach ideal $\left(\ell,\|\cdot\|_{\ell}\right)$ of compact operators from $\mathscr{B}(H)$ has a form of $\ell=C_{E_{\ell}}$ with the quasi-norm $\|\cdot\|_{\ell}=\|\cdot\|_{C_{E_{\ell}}}$ for a special symmetric quasi-Banach sequence space $\left(E_{\ell},\|\cdot\|_{E_{\ell}}\right)$ in c_{0} constructed by ℓ with the help of Calkin correspondence. The equality $g: \ell=C_{E_{g}: E_{\ell}}$ established in this section provides a full description of all derivations $\delta \in \operatorname{Der}(\ell, \mathcal{g})$ in terms of $E_{\mathcal{g}}$-dual space $E_{\mathcal{g}}: E_{\ell}$ of E_{ℓ} of symmetric quasi-Banach sequence spaces E_{ℓ} and $E_{\mathcal{g}}$ in c_{0}.

A quasi-Banach lattice E is a vector lattice with a complete quasi-norm $\|\cdot\|_{E}$, such that $\|a\|_{E} \leqslant\|b\|_{E}$ whenever $a, b \in E$ and $|a| \leqslant|b|$. In this case, $\||a|\|_{E}=\|a\|_{E}$ for all $a \in E$ and the lattice operations $a \vee b$ and $a \wedge b$ are continuous in the topology τ_{d}, generated by the metric $d(a, b)=\|a-b\|_{E}^{p}$, where $\left\|\|\cdot\|_{E}\right.$ is a p-additive quasi-norm equivalent to the quasi-norm $\| \cdot \|_{E}$. Consequently, the set $E_{+}=\{a \in E: a \geqslant 0\}$ is closed in $\left(E, \tau_{d}\right)$. Thus, for any increasing sequence $\left\{a_{k}\right\}_{k=1}^{\infty} \subset E$ converging in the topology τ_{d} to some $a \in E$, we have $a=\sup _{k \geq 1} a_{k}$ [17, Chapter V, Section 4].

A sequence $\left\{a_{n}\right\}_{n=1}^{\infty}$ from a vector lattice E is said to be (r)-convergent to $a \in E$ (notation: $a_{n} \xrightarrow{(r)} a$) with the regulator $b \in E_{+}$, if and only if there exists a sequence of positive numbers $\varepsilon_{n} \downarrow 0$ such that $\left|a_{n}-a\right| \leqslant \varepsilon_{n} b$ for all $n \in \mathbb{N}$ (see e.g. [18, Chapter III, Section 11].

Observe, that in any quasi-Banach lattice $\left(E,\|\cdot\|_{E}\right)$ it follows from $a_{n} \xrightarrow{(r)} a, a_{n}, a \in E$ that $\left\|a_{n}-a\right\|_{E} \rightarrow 0$.
The following proposition is a quasi-Banach version of the well-known criterion of sequential convergence in Banach lattices.

Proposition 4.1 (Compare [18, Chapter VII, Theorem VII.2.1]). Let ($E,\|\cdot\|_{E}$) be a quasi-Banach lattice, $a, a_{n} \in E$. The following conditions are equivalent:
(i) $\left\|a_{n}-a\right\|_{E} \rightarrow 0$ for $n \rightarrow \infty$;
(ii) for any subsequence $a_{n_{k}}$ there exists a subsequence $a_{n_{k_{s}}}$ such that $a_{n_{k_{\mathrm{s}}}} \xrightarrow{(r)} a$.

Proof. Without loss of generality we may assume that $a=0$.
(i) \Rightarrow (ii) For an equivalent p-additive quasi-norm $\|\mid \cdot\|_{E}$ we have $\left\|\left\|\left|a_{n}\right|\right\|_{E} \rightarrow 0\right.$ for $n \rightarrow \infty$. Hence, we may choose an increasing sequence of positive integers $n_{1}<n_{2}<\cdots<n_{k}<\cdots$ such that $\left\|\left|\left|a_{n_{k}}\right|\right|\right\|^{p} \leqslant \frac{1}{k^{3}}$. The estimate

$$
\sum_{k=1}^{\infty}\left\|\left|k^{\frac{1}{p}}\right| a_{n_{k}}| |\right\|^{p}=\sum_{k=1}^{\infty} k\| \|\left|a_{n_{k}}\right| \|^{p} \leqslant \sum_{k=1}^{\infty} \frac{1}{k^{2}}<\infty
$$

shows that the series $\sum_{k=1}^{\infty} k^{\frac{1}{p}}\left|a_{n_{k}}\right|$ converges in $\left(E,\|\cdot\|_{E}\right)$ to some $b \in E_{+}$(see Proposition 2.4) and therefore there exists $b=\sup _{n \geq 1} \sum_{k=1}^{n} k^{\frac{1}{p}}\left|a_{n_{k}}\right|$ such that we also have $k^{\frac{1}{p}}\left|a_{n_{k}}\right| \leqslant b$ for all $k \in \mathbb{N}$. In particular, $\left|a_{n_{k}}\right| \leqslant k^{-\frac{1}{p}} b$, which immediately implies $a_{n_{k}} \xrightarrow{(r)} 0$. The same reasoning may be repeated for any subsequence $\left\{a_{n_{k}}\right\}_{k=1}^{\infty}$.

The proof of the implication (ii) \Rightarrow (i) is the verbatim repetition of the analogous result for Banach lattices [18, Chapter VII, Theorem VII.2.1].

Let m be the Lebesgue measure on the semi-axis $(0, \infty)$, let $L_{1}(0, \infty)$ be the Banach space of all integrable functions on $(0, \infty)$ with the norm $\|f\|_{1}:=\int_{0}^{\infty}|f| d m$ and let $L_{\infty}(0, \infty)$ be the Banach space of all essentially bounded measurable functions on $(0, \infty)$ with the norm $\left.\|f\|_{\infty}:=\operatorname{esssup}\{|f(t)|: 0<t<\infty\}\right)$. For each $f \in L_{1}(0, \infty)+L_{\infty}(0, \infty)$ we define the decreasing rearrangement f^{*} of f by setting

$$
f^{*}(t):=\inf \{s>0: m(\{|f|>s\}) \leqslant t\}, t>0
$$

The function $f^{*}(t)$ is equimeasurable with $|f|$, in particular, $f^{*} \in L_{1}(0, \infty)+L_{\infty}(0, \infty)$ and $f^{*}(t)$ is non-increasing and right-continuous.

We need the following properties of decreasing rearrangements (see e.g. [19, Chapter II, Section 2]).
Proposition 4.2. Let $f, g \in L_{1}(0, \infty)+L_{\infty}(0, \infty)$. We have
(i) if $|f| \leqslant|g|$, then $f^{*} \leqslant g^{*}$;
(ii) $(\alpha f)^{*}=|\alpha| f^{*}$ for all $\alpha \in \mathbb{R}$;
(iii) if $f \in L_{\infty}(0, \infty)$, then $(f g)^{*} \leqslant\|f\|_{\infty} g^{*}$;
(iv) $(f+g)^{*}(t+s) \leqslant f^{*}(t)+g^{*}(s)$;
(v) if $f g \in L_{1}(0, \infty)+L_{\infty}(0, \infty)$, then $(f g)^{*}(t+s) \leqslant f^{*}(t) g^{*}(s)$.

Let l_{∞} be the Banach lattice of all bounded real-valued sequences $\xi:=\left\{\xi_{n}\right\}_{n=1}^{\infty}$ equipped with the norm $\|\xi\|_{\infty}=$ $\sup _{n \geqslant 1}\left|\xi_{n}\right|$. For each $\xi=\left\{\xi_{n}\right\}_{n=1}^{\infty} \in l_{\infty}$ the function $f_{\xi}(t):=\sum_{n=1}^{\infty} \xi_{n} \chi_{[n-1, n)}(t), t>0$ is contained in $L_{\infty}(0, \infty)$. For the decreasing rearrangement f_{ξ}^{*}, we obviously have $f_{\xi}^{*}(t)=\sum_{n=1}^{\infty} \xi_{n}^{*} \chi_{[n-1, n)}(t), t>0$, where $\xi^{*}:=\left\{\xi_{n}^{*}\right\}_{n=1}^{\infty}$ is a decreasing sequence of nonnegative numbers with $\left|\xi_{1}^{*}\right|=\sup _{n \geq 1}\left|\xi_{n}\right|$, which, in case when $\xi \in c_{0}$, coincides with the decreasing rearrangement of the sequence $\left\{\left|\xi_{n}\right|\right\}_{n=1}^{\infty}$. By Proposition $4.2(\mathrm{i})$, (ii) we have $\xi^{*} \leqslant \eta^{*}$ for $\xi, \eta \in l_{\infty}$ with $|\xi| \leqslant|\eta|$, and $(\alpha \xi)^{*}=|\alpha| \xi^{*}, \alpha \in \mathbb{R}$.

A linear subspace $\{0\} \neq E \subset l_{\infty}$ is said to be solid rearrangement-invariant, if for every $\eta \in E$ and every $\xi \in l_{\infty}$ the assumption $\xi^{*} \leqslant \eta^{*}$ implies that $\xi \in E$. Every solid rearrangement-invariant space E contains the space c_{00} of all finitely supported sequences from c_{0}. If E contains an element $\left\{\xi_{n}\right\}_{n=1}^{\infty} \notin c_{0}$, then $E=l_{\infty}$. Thus, for any solid rearrangement-invariant space $E \neq l_{\infty}$ the embeddings $c_{00} \subset E \subset c_{0}$ hold.

A solid rearrangement-invariant space E equipped with a complete quasi-norm (norm) $\|\cdot\|_{E}$ is called symmetric quasiBanach (Banach) sequence space, if
(1) $\|\xi\|_{E} \leqslant\|\eta\|_{E}$, provided $\xi^{*} \leqslant \eta^{*}, \xi, \eta \in E$;
(2) $\|\{1,0,0, \ldots\}\|_{E}=1$.

The inequality $\|a \xi\|_{E} \leqslant\|a\|_{\infty}\|\xi\|_{E}$ for all $a \in l_{\infty}, \xi \in E$ immediately follows from Proposition 4.2(iii). In particular, if $E=l_{\infty}$, then the norm $\|\cdot\|_{E}$ is equivalent to $\|\cdot\|_{\infty}$; for example, this is the case for any Lorentz space $\left(l_{\psi},\|\cdot\|_{\psi}\right)$, where $\psi:[0, \infty) \rightarrow \mathbb{R}$ is an arbitrary nonnegative increasing concave function with the properties $\psi(0)=0, \psi(+0) \neq$ $0, \lim _{t \rightarrow \infty} \psi(t)<\infty$ (see details in [19, Chapter II, Section 5]).

The spaces $\left(c_{0},\|\cdot\|_{\infty}\right),\left(l_{p},\|\cdot\|_{p}\right), 1 \leqslant p<\infty$ (respectively, $\left(l_{p},\|\cdot\|_{p}\right)$ for $0<p<1$), where

$$
l_{p}=\left\{\left\{\xi_{n}\right\}_{n=1}^{\infty} \in c_{0}:\left\|\left\{\xi_{n}\right\}\right\|_{p}=\left(\sum_{n=1}^{\infty}\left|\xi_{n}\right|^{p}\right)^{\frac{1}{p}}<\infty\right\}
$$

are examples of the classical symmetric Banach (respectively, quasi-Banach) sequence spaces in c_{0}.
Let $\left(E,\|\cdot\|_{E}\right)$ be a symmetric quasi-Banach sequence space. For every $\xi=\left\{\xi_{n}\right\}_{n=1}^{\infty} \in E, m \in \mathbb{N}$, we set

$$
\begin{aligned}
& \sigma_{m}(\xi)=(\underbrace{\xi_{1}, \ldots, \xi_{1}}_{m \text { times }}, \underbrace{\xi_{2}, \ldots, \xi_{2}}_{m \text { times }}, \ldots) \\
& \eta^{(1)}=(\xi_{1}, \underbrace{0, \ldots, 0}_{m-1 \text { times }}, \xi_{m-1 \text { times }}^{\xi_{2}, \underbrace{0, \ldots, 0}_{m}, \ldots)} \\
& \eta^{(2)}=(0, \xi_{1}^{\xi_{1}, \underbrace{0, \ldots, 0}_{m-2}, 0, \xi_{2}, \underbrace{0, \ldots, 0}_{m-2}, \ldots)} \\
& \ldots, \\
& \eta^{(m)}=(\underbrace{0, \ldots, 0}_{m-1 \text { times }}, \xi_{1}, \underbrace{0, \ldots, 0}_{m-1 \text { times }}, \xi_{2}, \ldots)
\end{aligned}
$$

Since $\left(\eta^{(1)}\right)^{*}=\left(\eta^{(2)}\right)^{*}=\cdots=\left(\eta^{(m)}\right)^{*}=\xi^{*} \in E$, it follows $\eta^{(1)}, \ldots, \eta^{(m)} \in E$. Consequently, $\sigma_{m}(\xi)=$ $\eta^{(1)}+\eta^{(2)}+\cdots+\eta^{(m)} \in E$, i.e. σ_{m} is a linear operator from E into E. In addition, we have

$$
\begin{aligned}
\left\|\sigma_{m}(\xi)\right\|_{E} & =\left\|\eta^{(1)}+\eta^{(2)}+\cdots+\eta^{(m)}\right\|_{E} \leqslant C\left(\left\|\eta^{(1)}\right\|_{E}+\left\|\eta^{(2)}+\eta^{(3)}+\cdots+\eta^{(m)}\right\|_{E}\right) \\
& \leqslant C\left(\left\|\eta^{(1)}\right\|_{E}+C\left(\left\|\eta^{(2)}\right\|_{E}+\left\|\eta^{(3)}+\cdots+\eta^{(m)}\right\|_{E}\right)\right) \leqslant\left(C+C^{2}+\cdots+C^{m-1}+C^{m-1}\right)\|\xi\|_{E}
\end{aligned}
$$

where C is the modulus of concavity of the quasi-norm $\|\cdot\|_{E}$, in particular $\left\|\sigma_{m}\right\|_{\mathcal{B}(E, E)} \leqslant C+C^{2}+\cdots+C^{m-2}+2 C^{m-1}$ for all $m \in \mathbb{N}$.

Proposition 4.3. The inequalities

$$
(\xi+\eta)^{*} \leqslant \sigma_{2}\left(\xi^{*}+\eta^{*}\right),(\xi \eta)^{*} \leqslant \sigma_{2}\left(\xi^{*} \eta^{*}\right)
$$

hold for all $\xi=\left\{\xi_{n}\right\}_{n=1}^{\infty}, \eta=\left\{\eta_{n}\right\}_{n=1}^{\infty} \in l_{\infty}$.
Proof. Since $f_{\xi+\eta}(t)=\sum_{n=1}^{\infty}\left(\xi_{n}+\eta_{n}\right) \chi_{[n-1, n)}(t)=f_{\xi}(t)+f_{\eta}(t), t>0$, we have by Proposition 4.2 (iv) that

$$
\begin{align*}
\sum_{n=1}^{\infty}\left(\xi_{n}+\eta_{n}\right)^{*} \chi_{[n-1, n)}(2 t) & =f_{\xi+\eta}^{*}(2 t)=\left(f_{\xi}+f_{\eta}\right)^{*}(2 t) \\
& \leqslant f_{\xi}^{*}(t)+f_{\eta}^{*}(t)=\sum_{n=1}^{\infty}\left(\xi_{n}^{*}+\eta_{n}^{*}\right) \chi_{[n-1, n)}(t)=\sum_{n=1}^{\infty}\left(\sigma_{2}\left(\xi^{*}+\eta^{*}\right)\right)_{n} \chi_{[n-1, n)} \tag{2t}
\end{align*}
$$

for all $t>0$, where $\left\{\left(\sigma_{2}\left(\xi^{*}+\eta^{*}\right)\right)_{n}\right\}_{n=1}^{\infty}=\sigma_{2}\left(\xi^{*}+\eta^{*}\right)$. In other words, $(\xi+\eta)^{*} \leqslant \sigma_{2}\left(\xi^{*}+\eta^{*}\right)$. The proof of the inequality $(\xi \eta)^{*} \leqslant \sigma_{2}\left(\xi^{*} \eta^{*}\right)$ is very similar (one needs to use Proposition 4.2(v)) and is therefore omitted.

For a symmetric quasi-Banach sequence space $\left(E,\|\cdot\|_{E}\right)$, we set

$$
C_{E}:=\left\{x \in \mathcal{K}(H):\left\{s_{n}(x)\right\}_{n=1}^{\infty} \in E\right\}, \quad\|x\|_{C_{E}}:=\left\|s_{n}(x)\right\|_{E}, x \in C_{E}
$$

If $E=l_{p}$ (respectively, $E=c_{0}$) then $C_{l_{p}}=C_{p},\|\cdot\|\left\|_{c_{p}}=\right\| \cdot \|_{C_{p}}, 0<p<\infty\left(\right.$ respectively, $\left.C_{c_{0}}=\mathcal{K}(H),\|\cdot\|_{c_{c_{0}}}=\|\cdot\|_{\mathcal{B}(H)}\right)$.
A quasi-Banach vector sublattice $\left(E,\|\cdot\|_{E}\right)$ in l_{∞} is said to be p-convex, $0<p<\infty$, if there is a constant M, so that

$$
\begin{equation*}
\left\|\left(\sum_{i=1}^{n}\left|x_{i}\right|^{p}\right)^{\frac{1}{p}}\right\|_{E} \leqslant M\left(\sum_{i=1}^{n}\left\|x_{i}\right\|_{E}^{p}\right)^{\frac{1}{p}} \tag{2}
\end{equation*}
$$

for every finite collection $\left\{x_{i}\right\}_{i=1}^{n} \subset E, n \in \mathbb{N}$.
If the estimate (2) holds for elements from a symmetric quasi-Banach ideal ($\ell,\|\cdot\|_{\ell}$) of compact operators from $\mathscr{B}(H)$, then the ideal $\left(\ell,\|\cdot\|_{\ell}\right)$ is said to be p-convex. As already stated in Theorem 1.5 , for every symmetric Banach (respectively, symmetric p-convex quasi-Banach, $0<p<\infty$) sequence space E in c_{0} the couple ($C_{E},\|\cdot\| \|_{C_{E}}$) is a symmetric Banach (respectively, p-convex symmetric quasi-Banach) ideal of compact operators in $\mathscr{B}(H)$.

Thus, for every symmetric Banach (p-convex quasi-Banach) sequence space ($E,\|\cdot\|_{E}$) the corresponding symmetric Banach (p-convex quasi-Banach) ideal ($C_{E},\|\cdot\|_{C_{E}}$) of compact operators from $\mathscr{B}(H)$ is naturally constructed. This extends the classical Calkin correspondence [4].

Conversely, if $\left(\ell,\|\cdot\|_{\ell}\right)$ is a symmetric quasi-Banach ideal $\left(\ell,\|\cdot\|_{\ell}\right)$ of compact operators from $\mathscr{B}(H)$, then it is of the form $C_{E_{\ell}}$ with $\|\cdot\|_{\ell}=\|\cdot\|_{C_{E_{\ell}}}$ for the corresponding symmetric quasi-Banach sequence space ($E_{\ell},\|\xi\|_{E_{\ell}}$). The definition of the latter space is given below.

Denote by E_{ℓ} the set of all $\xi \in c_{0}$, for which there exists some $x \in \ell$, such that $\xi^{*}=\left\{s_{n}(x)\right\}_{n=1}^{\infty}$. For $\xi \in E_{\ell}$ with $\xi^{*}=\left\{s_{n}(x)\right\}_{n=1}^{\infty}, x \in \ell$ set $\|\xi\|_{E_{\ell}}=\|x\|_{\ell}$.

Fix an orthonormal set $\left\{e_{n}\right\}_{n=1}^{\infty}$ in H and for every $\xi=\left\{\xi_{n}\right\}_{n=1}^{\infty} \in c_{0}$ consider the diagonal operator $x_{\xi} \in \mathcal{K}(H)$ defined as follows

$$
x_{\xi}(\varphi)=\sum_{n=1}^{\infty} \xi_{n} c_{n}(\varphi) e_{n}
$$

where $c_{n}(\varphi)=\left(\varphi, e_{n}\right), \varphi \in H$. If $\xi \in E_{\ell}$, then $\xi^{*}=\left\{s_{n}(x)\right\}_{n=1}^{\infty}$ for some $x \in \ell$, and due to equalities $\left\{s_{n}\left(x_{\xi^{*}}\right)\right\}_{n=1}^{\infty}=\left\{\xi_{n}^{*}\right\}_{n=1}^{\infty}=$ $\left\{s_{n}(x)\right\}_{n=1}^{\infty}$ we have $x_{\xi^{*}} \in \ell$ and $\left\|x_{\xi^{*}}\right\|_{\ell}=\|x\|_{\ell}=\|\xi\|_{E_{\ell}}$ (see Proposition 2.6(b)). Moreover, since $\left\{s_{n}\left(x_{\xi}\right)\right\}_{n=1}^{\infty}=\left\{s_{n}\left(x_{\xi^{*}}\right)\right\}_{n=1}^{\infty}$ and $x_{\xi^{*}} \in \ell$, it follows that $x_{\xi} \in \ell$ and $\|\xi\|_{E_{\ell}}=\left\|x_{\xi}\right\|_{\ell}$. Thus, a sequence $\xi \in c_{0}$ is contained in E_{ℓ}, if and only if operators x_{ξ} and $x_{\xi^{*}}$ are in ℓ, in addition, $\|\xi\|_{E_{\ell}}=\left\|x_{\xi^{*}}\right\|_{\ell}=\left\|x_{\xi}\right\|_{\ell}$. In particular, if $\eta \in c_{0}, \xi \in E_{\ell}, \eta^{*} \leqslant \xi^{*}$, then $\eta \in E_{\ell}$ and $\|\eta\|_{E_{l}} \leqslant\|\xi\|_{E_{l}}$.

Theorem 4.4. For any symmetric quasi-Banach ideal ℓ of compact operators from $\mathscr{B}(H)$ the couple $\left(E_{\ell},\|\cdot\|_{E_{\ell}}\right)$ is a symmetric quasi-Banach sequence space in c_{0} with the modulus of concavity which does not exceed the modulus of concavity of the quasinorm $\|\cdot\|_{\ell}$, in addition, $C_{E_{\ell}}=\ell$ and $\|\cdot\|_{C_{E_{\ell}}}=\|\cdot\|_{\ell}$.

Proof. If $\xi, \eta \in E_{\ell}$, then $x_{\xi}, x_{\eta} \in \ell$, hence $x_{\xi}+x_{\eta} \in \ell$. Since

$$
\left(x_{\xi}+x_{\eta}\right)(\varphi)=\sum_{n=1}^{\infty} \xi_{n} c_{n}(\varphi) e_{n}+\sum_{n=1}^{\infty} \eta_{n} c_{n}(\varphi) e_{n}=\sum_{n=1}^{\infty}\left(\xi_{n}+\eta_{n}\right) c_{n}(\varphi) e_{n}=x_{\xi+\eta}(\varphi), \quad \varphi \in H
$$

we have $x_{\xi+\eta} \in \ell$. Consequently, $\xi+\eta \in E_{\ell}$, moreover,

$$
\|\xi+\eta\|_{E_{\ell}}=\left\|x_{\xi+\eta}\right\|_{\ell}=\left\|x_{\xi}+x_{\eta}\right\|_{\ell} \leqslant C\left(\left\|x_{\xi}\right\|_{\ell}+\left\|x_{\eta}\right\|_{\ell}\right)=C\left(\|\xi\|_{E_{l}}+\|\eta\|_{E_{\ell}}\right)
$$

where C is the modulus of concavity of the quasi-norm $\|\cdot\|_{l}$.
Now, let $\xi \in E_{\ell}, \alpha \in \mathbb{R}$. Since

$$
x_{\alpha \xi}(\varphi)=\sum_{n=1}^{\infty} \alpha \xi_{n} c_{n}(\varphi) e_{n}=\alpha x_{\xi}(\varphi), \quad \varphi \in H
$$

we have $\alpha \xi \in E_{\ell}$ and $\|\alpha \xi\|_{E_{\ell}}=\left\|x_{\alpha \xi}\right\|_{\ell}=\left\|\alpha x_{\xi}\right\|_{\ell}=|\alpha|\left\|x_{\xi}\right\|_{\ell}=|\alpha|\|\xi\|_{E_{\ell}}$.
It is easy to see that $\|\xi\|_{E_{\ell}} \geqslant 0$ and $\|\xi\|_{E_{\ell}}=0 \Leftrightarrow \xi=0$.
Hence, E_{ℓ} is a solid rearrangement-invariant subspace in c_{0} and $\|\cdot\|_{E_{\ell}}$ is a quasi-norm on E_{l}.
Let us show that ($E_{\ell},\|\cdot\|_{E_{\ell}}$) is a quasi-Banach space. Let $\left\|\left\|\|_{\ell}\right.\right.$ (respectively, $\left.\|\right\| \cdot \|_{E_{\ell}}$) be a p-additive (respectively, q-additive) quasi-norm equivalent to the quasi-norm $\|\cdot\|_{\ell}$ (respectively, $\|\cdot\|_{E_{\ell}}$), $0<p, q \leqslant 1$.

Let $\xi^{(k)}=\left\{\xi_{n}^{(k)}\right\}_{n=1}^{\infty} \in E_{\ell}$ and $\left\|\xi^{(k)}-\xi^{(m)}\right\|_{E_{\ell}} \rightarrow 0$ for $k, m \rightarrow \infty$. Then $\left\|x_{\xi^{(k)}}-x_{\xi^{(m)}}\right\|_{\ell} \rightarrow 0$ and $\left\|x_{\xi^{(k)}}-x_{\xi^{(m)}}\right\|_{\ell}^{p} \rightarrow 0$ for $k, m \rightarrow \infty$, i.e. $x_{\xi^{(k)}}$ is a Cauchy sequence in $\left(\ell, d_{\ell}\right)$, where $d_{\ell}(x, y)=\|x-y\|_{\ell}^{p}$. Since $\left(\ell, d_{\ell}\right)$ is a complete metric space, there exists an operator $x \in \ell$ such that $\left\|x_{\xi^{(k)}}-x\right\|_{\ell}^{p} \rightarrow 0$ for $k \rightarrow \infty$. If p_{n} is the one-dimensional projection onto subspace spanned by e_{n}, then

$$
\begin{aligned}
& \xi^{(k)} p_{n}=p_{n} x_{\xi_{n}^{(k)}} p_{n} \xrightarrow{\|\cdot\|_{l}} p_{n} x p_{n}:=\lambda_{n} p_{n} \\
& 0=p_{n} x_{\xi_{n}^{(k)}} p_{m} \rightarrow p_{n} x p_{m}, \quad n \neq m
\end{aligned}
$$

Hence, x is also a diagonal operator, i.e. $x=x_{\xi}$, where $\xi=\left\{\lambda_{n}\right\}_{n=1}^{\infty}$. Since $x \in \ell$ we have $\xi \in E_{\ell}$, moreover, $\left\|\xi^{(k)}-\xi\right\|_{E_{\ell}}=\left\|x_{\xi^{(k)}}-x_{\xi}\right\|_{\ell} \rightarrow 0$ for $k \rightarrow \infty$.

Consequently, $\left(E_{\ell},\|\cdot\|_{E_{\ell}}\right)$ is a symmetric quasi-Banach sequence space in c_{0}.
Now, let us show that $C_{E_{l}}=\ell$ and $\|x\|_{C_{E_{\ell}}}=\|x\|_{\ell}$ for all $x \in \ell$. Let $x \in C_{E_{\ell}}$, i.e. $\left\{s_{n}(x)\right\}_{n=1}^{\infty} \in E_{\ell}$. Hence, there exists an operator $y \in \ell$, such that $s_{n}(x)=s_{n}(y), n \in \mathbb{N}$. Consequently, $x \in \ell$, moreover, $\|x\|_{\ell}=\left\|\left\{s_{n}(x)\right\}_{n=1}^{\infty}\right\|_{E_{\ell}}=\|x\|_{C_{E_{l}}}$. Conversely, if $x \in \ell$, then $\left\{s_{n}(x)\right\}_{n=1}^{\infty} \in E_{\ell}$ and therefore $x \in C_{E_{\ell}}$.

The definition of symmetric Banach (p-convex quasi-Banach) ideal ($C_{E},\|\cdot\|_{C_{E}}$) of compact operators from $\mathscr{B}(H)$ jointly with Theorem 4.4 implies the following corollary:

Corollary 4.5. Let $\left(E,\|\cdot\|_{E}\right.$) be a symmetric Banach (p-convex quasi-Banach) sequence space from c_{0}. Then $E_{C_{E}}=E$ and $\|\cdot\|_{E_{C_{E}}}=\|\cdot\|_{E}$.
Proof. If $\xi \in E$, then $x_{\xi^{*}} \in C_{E}$, and due to the equality $\left\{s_{n}\left(x_{\xi^{*}}\right)\right\}_{n=1}^{\infty}=\xi^{*}$, we have $\xi \in E_{C_{E}}$ and $\|\xi\|_{E_{C_{E}}}=\left\|x_{\xi^{*}}\right\|_{C_{E}}=\left\|\xi^{*}\right\|_{E}=$ $\|\xi\|_{E}$. The converse inclusion $E_{C_{E}} \subset E$ may be proven similarly.

Let G, F be solid rearrangement-invariant spaces in c_{0}. It is easy to see that G and F are ideals in the algebra l_{∞}, in particular, it follows from the assumptions $|\xi| \leqslant|\eta|, \xi \in l_{\infty}, \eta \in G$ that $\xi \in G$, i.e. G and F are solid linear subspaces in l_{∞}. We define F-dual space $F: G$ of G by setting

$$
F: G=\left\{\xi \in l_{\infty}: \xi \eta \in F, \forall \eta \in G\right\} .
$$

It is clear that $F: G$ is an ideal in l_{∞} containing c_{00}. If $G \subset F$, then $F: G=l_{\infty}$, in particular, $l_{\infty}: G=l_{\infty}$ for any solid rearrangement-invariant space G. However, if $G \nsubseteq F$, then $F: G \neq l_{\infty}$.

Proposition 4.6. If $F: G \neq l_{\infty}$, then $F: G \subset c_{0}$.
Proof. Suppose that there exists $\xi=\left\{\xi_{n}\right\}_{n=1}^{\infty} \in(F: G), \xi \notin c_{0}$. Let $\alpha_{n}=\operatorname{sign} \xi_{n}, n \in \mathbb{N}, \eta=\left\{\eta_{n}\right\}_{n=1}^{\infty} \in G$. Obviously, $\left\{\alpha_{n} \eta_{n}\right\}_{n=1}^{\infty} \in G$ and hence, $|\xi| \eta=\left\{\xi_{n} \alpha_{n} \eta_{n}\right\}_{n=1}^{\infty} \in F$ for all $\eta \in G$, that is $|\xi| \in(F: G)$, and, in addition, $|\xi| \notin c_{0}$. This implies that there exists a subsequence $0 \neq\left|\xi_{n_{k}}\right| \rightarrow \alpha>0$ for $k \rightarrow \infty$. Consider a sequence $\zeta=\left\{\zeta_{k}\right\}_{k=1}^{\infty}$ from $l_{\infty} \backslash c_{0}$ such that $\zeta_{k}=\left|\xi_{n_{k}}\right|$ and show that $\zeta \in F: G$.

For every $\eta=\left\{\eta_{n}\right\}_{n=1}^{\infty} \in G$ define the sequence $a_{\eta}=\left\{a_{n}\right\}_{n=1}^{\infty}$ such that $a_{n_{k}}=\eta_{k}$ and $a_{n}=0$, if $n \neq n_{k}, k \in \mathbb{N}$. Since $a_{\eta}^{*}=\eta^{*}$, we have $a_{\eta} \in G$, and therefore $\zeta \eta=\left\{\left|\xi_{n_{k}}\right| \eta_{k}\right\}_{k=1}^{\infty}=\left\{\left|\xi_{n}\right| a_{n}\right\}_{n=1}^{\infty}=|\xi| a_{\eta} \in F$ for all $\eta \in G$. Consequently, $\zeta=\left\{\zeta_{n}\right\}_{n=1}^{\infty} \in F: G$, moreover, $\zeta_{n} \geqslant \beta$ for some $\beta>0$ and all $n \in \mathbb{N}$. Since $F: G$ is an ideal in l_{∞}, it follows that $F: G$ is a solid linear subspace in l_{∞}, containing the sequence $\left\{\zeta_{n}\right\}_{n=1}^{\infty}$ with $\zeta_{n} \geqslant \beta>0, n \in \mathbb{N}$, that implies $F: G=l_{\infty}$.

Proposition 4.7. If $F: G \neq l_{\infty}$, then $F: G=\left\{\xi \in c_{0}: \xi^{*} \eta^{*} \in F, \forall \eta \in G\right\}$.
Proof. By Proposition 4.6, we have that $F: G \subset c_{0}$. Let $\xi=\left\{\xi_{n}\right\}_{n=1}^{\infty} \in c_{0}$ and $\xi^{*} \eta^{*} \in F$ for all $\eta \in G$. Due to Proposition 4.3, we have $(\xi \eta)^{*} \leqslant \sigma_{2}\left(\xi^{*} \eta^{*}\right) \in F$, i.e. $(\xi \eta)^{*} \in F$. Since F is a symmetric sequence space, it follows that $\xi \eta \in F$ for all $\eta \in G$, i.e. $\xi \in F: G$.

Conversely, suppose that $\xi=\left\{\xi_{n}\right\}_{n=1}^{\infty} \in F: G$. Let $\alpha_{n}=\operatorname{sign} \xi_{n}, \eta=\left\{\eta_{n}\right\}_{n=1}^{\infty} \in G$. Then $\left\{\alpha_{n} \eta_{n}\right\}_{n=1}^{\infty} \in G$, and therefore $|\xi| \eta=\left\{\xi_{n} \alpha_{n} \eta_{n}\right\}_{n=1}^{\infty} \in F$ for all $\eta \in G$, i.e. $|\xi| \in F: G \subset c_{0}$. Since $|\xi|=\left\{\left|\xi_{n}\right|\right\}_{n=1}^{\infty} \in c_{0}$, there exists a bijection of the set \mathbb{N} of natural numbers, such that $\xi^{*}=\left|\xi_{\pi(n)}\right|$. For linear bijective mapping $U_{\pi}: l_{\infty} \rightarrow l_{\infty}$ defined by $U_{\pi}\left(\left\{\eta_{n}\right\}_{n=1}^{\infty}\right)=\left\{\eta_{\pi(n)}\right\}_{n=1}^{\infty}$ we have $U_{\pi}(\eta \zeta)=U_{\pi}(\eta) U_{\pi}(\zeta),\left(U_{\pi}(\zeta)\right)^{*}=\zeta^{*},\left(U_{\pi}^{-1}(\zeta)\right)^{*}=\zeta^{*}$ for all $\zeta \in l_{\infty}$, in particular, $U_{\pi}(E)=E$ for any solid rearrangement-invariant space $E \subset l_{\infty}$. Consequently, for all $\eta \in G$ we have $\xi^{*} \eta^{*}=U_{\pi}(|\xi|) U_{\pi}\left(U_{\pi}^{-1}\left(\eta^{*}\right)\right)=U_{\pi}\left(|\xi| U_{\pi}^{-1}\left(\eta^{*}\right)\right) \in F$.

Propositions 4.6 and 4.7 imply the following corollary.
Corollary 4.8. $F: G$ is a solid rearrangement-invariant space, moreover, if $F: G \neq l_{\infty}$, then $c_{00} \subset F: G \subset c_{0}$.
Proof. The definition of $F: G$ immediately implies that $F: G$ is an ideal in l_{∞} and $c_{00} \subset F: G$. If $F: G \neq l_{\infty}$, then, due to Proposition 4.6, we have $F: G \subset c_{0}$.

In the case when $F: G \neq l_{\infty}$, we have for any $\xi \in c_{0}, \eta \in F: G, \xi^{*} \leqslant \eta^{*}, \zeta \in G$ that $\xi^{*} \zeta^{*} \leqslant \eta^{*} \zeta^{*} \in F$ (see Proposition 4.7). Consequently, $\xi^{*} \zeta^{*} \in F$ for any $\zeta \in G$, which implies the inclusion $\xi \in F: G$.

We need some complementary properties of singular values of compact operators. For every operator $x \in \mathscr{B}(H)$ define the decreasing rearrangement $\mu(x, t)$ of x by setting

$$
\mu(x, t)=\inf \{s>0: \operatorname{tr}(|x|>s) \leqslant t\}, \quad t>0
$$

(see e.g. [20]). If $x \in \mathcal{K}(H)$, then

$$
\mu(x, t)=\sum_{n=1}^{\infty} s_{n}(x) \chi_{[n-1, n)}(t)=f_{\left\{s_{n}(x)\right]_{n=1}^{\infty}}^{*}(t)
$$

In [20, Lemma 2.5 (v),(vii)] it is established that for every $x, y \in \mathscr{B}(H)$ the inequalities

$$
\begin{aligned}
& \mu(x+y, t+s) \leqslant \mu(x, t)+\mu(y, s) \\
& \mu(x y, t+s) \leqslant \mu(x, t) \mu(y, s)
\end{aligned}
$$

hold, in particular, if $x, y \in \mathcal{K}(H)$, then

$$
\begin{align*}
& \left\{s_{n}(x+y)\right\}_{n=1}^{\infty} \leqslant \sigma_{2}\left(\left\{s_{n}(x)+s_{n}(y)\right\}_{n=1}^{\infty}\right), \tag{3}\\
& \left\{s_{n}(x y)\right\}_{n=1}^{\infty} \leqslant \sigma_{2}\left(\left\{s_{n}(x) s_{n}(y)\right\}_{n=1}^{\infty}\right) . \tag{4}
\end{align*}
$$

Let ℓ, \mathcal{I} be symmetric quasi-Banach ideals of compact operators from $\mathcal{B}(H)$ and $\ell \nsubseteq \mathcal{I}$. In this case, $\mathcal{I}: \ell \subset \mathcal{K}(H)$ (see Proposition 3.3) and $E_{\ell} \nsubseteq E_{\mathcal{g}}$ (see Theorem 4.4), therefore $E_{\mathcal{g}}: E_{\ell} \subset c_{0}$ (see Proposition 4.6). The following proposition establishes that the set of operators belonging to the \mathcal{g}-dual space $\mathcal{g}: \ell$ of ℓ coincides with the set

$$
C_{E_{\mathcal{q}}: E_{\ell}}=\left\{x \in \mathcal{K}(H):\left\{s_{n}(x)\right\}_{n=1}^{\infty} \in E_{\mathcal{Z}}: E_{\ell}\right\} .
$$

Proposition 4.9. $\mathcal{g}: \ell=C_{E_{g}: E_{l}}$.
Proof. Let $a \in \mathcal{g}: \ell$. We claim that $a \in C_{E_{g}: E_{\ell}}$, i.e. $\xi=\left\{s_{n}(a)\right\}_{n=1}^{\infty} \in E_{\mathcal{g}}: E_{\ell}$. For any sequence $\eta \in E_{\ell}$ consider operators x_{ξ} and $x_{\eta^{*}}$. Since $x_{\xi} \in \mathcal{g}: \ell, x_{\eta^{*}} \in \ell$, we have $x_{\xi} x_{\eta^{*}} \in \mathcal{g}$. On the other hand, $x_{\xi} x_{\eta^{*}}(\varphi)=\|\cdot\|_{H}-$ $\lim _{n \rightarrow \infty}\left(\sum_{k=1}^{n} s_{k}(a) c_{k}\left(x_{\eta^{*}}(\varphi)\right) e_{k}\right)=\sum_{n=1}^{\infty} s_{n}(a) \eta_{n}^{*} c_{n}(\varphi) e_{n}=x_{\xi \eta^{*}}(\varphi)$ for all $\varphi \in H$. Thus $x_{\xi \eta^{*}} \in \mathcal{G}$, i.e. $\xi \eta^{*} \in E_{g}$. Consequently, $\left\{s_{n}(a)\right\}_{n=1}^{\infty} \in E_{\mathcal{q}}: E_{\ell}$ (see Proposition 4.7) yielding our claim.

Conversely, let $a \in C_{E_{g}: E_{l}}$, i.e. $\left\{s_{n}(a)\right\}_{n=1}^{\infty} \in E_{g}: E_{\ell}$. Due to (4), for all $x \in \ell$ we have $\left\{s_{n}(a x)\right\}_{n=1}^{\infty} \leqslant \sigma_{2}\left(\left\{s_{n}(a) s_{n}(x)\right\}_{n=1}^{\infty}\right)$. Since $\left\{s_{n}(a) s_{n}(x)\right\}_{n=1}^{\infty} \in E_{\mathcal{g}}$, it follows that $\sigma_{2}\left(\left\{s_{n}(a) s_{n}(x)\right\}_{n=1}^{\infty}\right) \in E_{\mathcal{g}}$, and therefore $\left\{s_{n}(a x)\right\}_{n=1}^{\infty} \in E_{\mathcal{g}}$, i.e. $a x \in \mathcal{Z}$. Consequently, $a \in \mathcal{g}: \ell$.

Let ℓ, \mathcal{I} be symmetric quasi-Banach ideals of compact operators from $\mathcal{B}(H), \ell \nsubseteq \mathcal{I}$ and $\mathcal{g}: \ell$ be the \mathcal{I}-dual space of ℓ. For any $a \in \mathcal{G}: \ell$ define a linear mapping $T_{a}: \ell \rightarrow \mathcal{G}$ by setting $T_{a}(x)=a x, x \in \ell$.

Proposition 4.10. T_{a} is a continuous linear mapping from ℓ into \mathcal{G} for every $a \in \mathcal{G}: \ell$.

Proof. Let $a \in \mathcal{G}: \ell, \xi=\left\{s_{n}(a)\right\}_{n=1}^{\infty}, x_{k} \in \ell$ and $\left\|x_{k}\right\|_{\ell} \rightarrow 0$ for $k \rightarrow \infty$. Then $\xi^{(k)}=\left\{s_{n}\left(x_{k}\right)\right\}_{n=1}^{\infty} \in E_{\ell}$ and $\left\|\xi^{(k)}\right\|_{E_{\ell}} \rightarrow 0$. By Proposition 4.1, for every subsequence $\left\{\xi^{\left(k_{l}\right)}\right\}_{l=1}^{\infty}$ there exists a subsequence $\left\{\xi^{\left(k_{l s}\right)}\right\}_{s=1}^{\infty}$ such that $\xi^{\left(k_{l s}\right)} \xrightarrow{(r)} 0$ for $s \rightarrow \infty$, i.e. there exist $0 \leqslant \eta \in E_{l}$ and a sequence $\left\{\varepsilon_{s}\right\}_{s=1}^{\infty}$ of positive numbers decreasing to zero such that $\left|\xi^{\left(k_{l_{s}}\right)}\right| \leqslant \varepsilon_{s} \eta$. Since $a \in \mathcal{g}: \ell$, we have $\xi \in E_{g}: E_{l}$ (see Proposition 4.9), and therefore $\zeta=\xi \eta \in E_{g}$, in addition, $\zeta \geqslant 0$. Since $\left|\xi \xi^{\left(k_{l s}\right)}\right| \leqslant \varepsilon_{s} \zeta$, it follows that $\xi \xi^{\left(k_{s}\right)} \xrightarrow{(r)} 0$. By Proposition 4.1, we have $\left\|\xi \xi^{(k)}\right\|_{E g} \rightarrow 0$. Consequently,

$$
\left\|a x_{k}\right\|_{\mathcal{I}}=\left\|\left\{s_{n}\left(a x_{k}\right)\right\}\right\|_{E_{\mathcal{F}}} \leqslant\left\|\sigma_{2}\left(\xi \xi^{(k)}\right)\right\|_{E_{\mathcal{g}}} \leqslant 2 C\left\|\xi \xi^{(k)}\right\|_{E_{\mathcal{I}}} \rightarrow 0 \quad \text { for } k \rightarrow \infty
$$

By Proposition 4.10, T_{a} is a bounded linear operator from ℓ into \mathcal{g}, therefore $\left\|T_{a}\right\|_{\mathcal{B}(\ell, \mathcal{g})}=\sup \left\{\left\|T_{a}(x)\right\|_{\mathcal{Z}}:\|x\|_{\ell} \leqslant 1\right\}=$ $\sup \left\{\|a x\|_{\mathcal{g}}:\|x\|_{\ell} \leqslant 1\right\}<\infty$, i.e. for all $a \in \mathcal{I}: \ell$ the quantity

$$
\|a\|_{\mathcal{F}: \ell}:=\sup \left\{\|a x\|_{\mathcal{I}}: x \in \ell,\|x\|_{\ell} \leqslant 1\right\}
$$

is well-defined.
Theorem 4.11. Let ℓ, \mathcal{F} be symmetric quasi-Banach ideals of compact operators in $\mathcal{B}(H)$ such that $\ell \nsubseteq \mathcal{G}$. Then ($\left.\mathcal{g}: \ell,\|\cdot\|_{\mathfrak{g}: \ell}\right)$ is a symmetric quasi-Banach ideal of compact operators whose modulus of concavity does not exceed the modulus of concavity of the quasi-norm $\|\cdot\|_{\mathcal{g}}$, in addition, $\|a x\|_{\mathcal{g}} \leqslant\|a\|_{\mathcal{g}: \ell}\|x\|_{\ell}$ for all $a \in \mathcal{I}: \ell, x \in \ell$.
Proof. Since $\|\cdot\|_{\mathcal{B}(l, \mathcal{G})}$ is a quasi-norm with the modulus of concavity which does not exceed the modulus of concavity of the quasi-norm $\|\cdot\|_{\mathcal{I}}$, we see that $\|\cdot\|_{\mathcal{I}: \ell}$ is a quasi-norm on $\mathcal{g}: \ell$ with the modulus of concavity which does not exceed the modulus of concavity of the quasi-norm $\|\cdot\|_{\mathcal{I}}$.

If $y \in \mathscr{B}(H), a \in \mathcal{F}: \ell$, then

$$
\begin{aligned}
\|y a\|_{\mathcal{g}: \ell} & =\sup \left\{\|(y a) x\|_{\mathcal{I}}: x \in \ell,\|x\|_{\ell} \leqslant 1\right\} \\
& \leqslant \sup \left\{\|y\|_{\mathcal{B}(H)}\|a x\|_{\mathcal{I}}: x \in \ell,\|x\|_{\ell} \leqslant 1\right\}=\|y\|_{\mathcal{B}(H)}\|a\|_{\mathcal{I}: \ell} .
\end{aligned}
$$

Since $y x \in \ell$ for all $x \in \ell$ and $\|y x\|_{\ell} \leqslant\|y\|_{\mathcal{B}(H)}\|x\|_{\ell}$ then for $y \neq 0$ and $\|x\|_{\ell} \leqslant 1$ we have $\left\|\frac{y x}{\|y\|_{\mathcal{B}(H)}}\right\|_{\ell} \leqslant 1$. Hence,

$$
\begin{aligned}
\|a y\|_{\mathcal{Z}: \ell} & =\sup \left\{\|a(y x)\|_{\mathcal{I}}: x \in \ell,\|x\|_{\ell} \leqslant 1\right\} \\
& =\|y\|_{\mathcal{B}(H)} \sup \left\{\left\|a\left(\frac{y x}{\|y\|_{\mathcal{B}(H)}}\right)\right\|_{\mathcal{I}}: x \in \ell,\|x\|_{\ell} \leqslant 1\right\} \\
& \leqslant\|y\|_{\mathcal{B}(H)} \sup \left\{\|a x\|_{\mathcal{I}}: x \in \ell,\|x\|_{\ell} \leqslant 1\right\}=\|y\|_{\mathcal{B}(H)}\|a\|_{\ell: \mathcal{I}} .
\end{aligned}
$$

If p is a one-dimensional projection from $\mathscr{B}(H)$, then $p \in \ell,\|p\|_{\ell}=1$, and so

$$
\|p\|_{\mathcal{g}: \ell}=\sup \left\{\|p x\|_{\mathcal{I}}: x \in \ell,\|x\|_{\ell} \leqslant 1\right\} \geqslant\|p\|_{\mathcal{I}}=1
$$

On the other hand, for $x \in \ell$ with $\|x\|_{\ell} \leqslant 1$ we have $\|x\|_{\mathcal{B}(H)} \leqslant 1$ (see Proposition 2.6(c)), and therefore

$$
\|p x\|_{\mathcal{g}}=\|p(p x)\|_{\mathcal{g}} \leqslant\|p x\|_{\mathcal{B}(H)}\|p\|_{\mathcal{I}} \leqslant 1 .
$$

Consequently, $\|p\|_{g: \ell}=1$.
Thus, $\|\cdot\|_{\mathcal{g}: \ell}$ is a symmetric quasi-norm on the two-sided ideal $\mathcal{g}: \ell$. The inequality $\|a x\|_{\mathcal{g}} \leqslant\|a\|_{\mathcal{g}: \ell}\|x\|_{\ell}$ immediately follows from the definition of $\|\cdot\|_{g: \Omega}$.

Let us show that (g: $\left.\ell,\|\cdot\|_{\mathcal{f}: \ell}\right)$ is a quasi-Banach space.
Denote by $\left\|\left\|\|_{g}\right.\right.$ (respectively $\left.\|\right\| \cdot \|_{g: \ell}$) a p-additive (respectively, q-additive) quasi-norm on \mathcal{g} (respectively, on $\mathcal{g}: \ell$) which is equivalent to the quasi-norm $\|\cdot\|_{\mathcal{g}}$ (respectively, $\|\cdot\|_{\mathscr{g}: \ell}$), where $0<p, q \leqslant 1$. In particular, we have $\alpha_{1}\|x\|_{\mathcal{g}} \leqslant\|x\|_{\mathcal{g}} \leqslant \beta_{1}\|x\|_{\mathcal{g}}$ and $\alpha_{2}\|a\|_{\mathcal{g}: \ell} \leqslant\|a\|_{\mathcal{g}: \ell} \leqslant \beta_{2}\|a\|_{\mathcal{g}: \ell}$ for all $x \in \mathcal{F}, a \in \mathcal{g}: \ell$ and some constants $\alpha_{1}, \alpha_{2}, \beta_{1}, \beta_{2}>0$. Let $d_{\mathcal{g}}(x, y)=\|x-y\|_{\mathcal{g}}^{p}, d_{\mathcal{g}: \ell}(a, b)=\|a-b\|_{\mathcal{g}: \ell}^{q}$ be metrics on \mathcal{g} and $\mathcal{g}: \ell$ respectively.

Let $\left\{a_{n}\right\}_{n=1}^{\infty}$ be a Cauchy sequence in $\left(\mathcal{g}: \ell, d_{g: \ell}\right)$, i.e. $\left\|a_{n}-a_{m}\right\|_{g: \ell}^{q} \leqslant \varepsilon^{q}$ for all $n, m \geqslant n(\varepsilon), \varepsilon>0$, thus

$$
\begin{align*}
\left\|a_{n} x-a_{m} x\right\|_{\mathcal{I}} & \leqslant \frac{1}{\alpha_{1}}\left\|a_{n} x-a_{m} x\right\|_{\mathcal{I}} \leqslant \frac{1}{\alpha_{1}}\left\|a_{n}-a_{m}\right\|_{\mathcal{I}: \ell}\|x\|_{\ell} \\
& \leqslant \frac{\beta_{2}}{\alpha_{1}}\left\|a_{n}-a_{n}\right\|_{\mathcal{I}: \ell}\|x\|_{\ell} \leqslant \frac{\beta_{2}}{\alpha_{1}} \varepsilon\|x\|_{\ell} \tag{5}
\end{align*}
$$

for all $x \in \ell, n, m \geqslant n(\varepsilon)$. Consequently, the sequence $\left\{a_{n} x\right\}_{n=1}^{\infty}$ is a Cauchy sequence in $\left(\mathcal{g}, d_{\mathcal{g}}\right), x \in \ell$. Since the metric space $\left(\mathcal{g}, d_{\mathcal{g}}\right)$ is complete, there exists an operator $z(x) \in \mathcal{g}$ such that $\left\|a_{n} x-z(x)\right\|_{\mathcal{g}}^{p} \rightarrow 0$ for $n \rightarrow \infty$. Since

$$
\left\|a_{n} x-z(x)\right\|_{\mathcal{B}(H)} \leqslant\left\|a_{n} x-z(x)\right\|_{\mathcal{g}} \leqslant \beta_{1}\left\|a_{n} x-z(x)\right\|_{\mathcal{g}}
$$

it follows that $\left\|a_{n} x-z(x)\right\|_{\mathcal{B}(H)} \rightarrow 0$.

Since

$$
\left\|a_{n}-a_{m}\right\|_{\mathcal{B}(H)} \leqslant\left\|a_{n}-a_{m}\right\|_{\mathcal{F}: l} \leqslant \beta_{2}\left\|a_{n}-a_{m}\right\|_{\text {g:l }} \rightarrow 0
$$

for $n, m \rightarrow \infty$, there exists $a \in \mathcal{B}(H)$ such that $\left\|a_{n}-a\right\|_{\mathcal{B}(H)} \rightarrow 0$ for $n \rightarrow \infty$. For an arbitrary $x \in \ell$, we have $\left\|a_{n} x-a x\right\|_{\mathcal{B}(H)} \leqslant\left\|a_{n}-a\right\|_{\mathcal{B}(H)}\|x\|_{l} \rightarrow 0$ for $n \rightarrow \infty$.

Thus, $a x=z(x)$ for all $x \in \ell$. Since $z(x) \in \mathcal{g}$ for all $x \in \ell$, it follows that $a \in \mathcal{g}: \ell$, moreover, due to (5), $\left\|a_{n} x-a x\right\|_{\mathcal{I}} \leqslant \frac{\beta_{1} \beta_{2}}{\alpha_{1}} \varepsilon\|x\|_{\mathcal{L}}$ for $n \geqslant n(\varepsilon)$ and for all $x \in \ell$. Consequently,

$$
\left\|a_{n}-a\right\|_{\mathcal{Z}: l} \leqslant \frac{1}{\alpha_{2}}\left\|a_{n}-a\right\|_{g: l}=\frac{1}{\alpha_{2}} \sup \left\{\left\|a_{n} x-a x\right\|_{\mathcal{I}}: x \in \ell,\|x\|_{\ell} \leqslant 1\right\} \leqslant \frac{\beta_{1} \beta_{2}}{\alpha_{1} \alpha_{2}} \varepsilon
$$

for $n \geqslant n(\varepsilon)$, i.e. $\left\|a_{n}-a\right\|_{\text {g: }} \rightarrow 0$. Thus, the metric space $\left(\mathcal{g}: \ell, d_{\ell: \mathcal{Z}}\right)$ is complete, i.e. $\left(\mathcal{g}: \ell,\|\cdot\|_{\text {g: }}\right)$ is a quasi-Banach space.

Remark 4.12. Since the quasi-norms $\|\cdot\|_{\mathcal{g}}$ and $\|\cdot\|_{\text {g:l }}$ are symmetric, for all $a \in \mathcal{g}: \ell$ the relations

$$
\begin{aligned}
\|a\|_{g: l} & =\left\|a^{*}\right\|_{g: l}=\sup \left\{\left\|a^{*} x\right\|_{g}: x \in \ell,\|x\|_{l} \leqslant 1\right\} \\
& =\sup \left\{\left\|x^{*} a\right\|_{g}: x \in \ell,\|x\|_{l} \leqslant 1\right\}=\sup \left\{\|x a\|_{\mathcal{I}}: x \in \ell,\|x\|_{l} \leqslant 1\right\}
\end{aligned}
$$

hold, i.e. for any $a \in \mathcal{I}: \ell$ we have

$$
\begin{equation*}
\|a\|_{\{: \ell}=\sup \left\{\|x a\|_{\mathcal{I}}: x \in \ell,\|x\|_{\ell} \leqslant 1\right\} . \tag{6}
\end{equation*}
$$

When $\ell \subseteq \mathcal{I}$ we have $\mathcal{I}: \ell=\mathcal{B}(H)$ and for any $a \in \mathscr{g}: \ell$ the mapping $T_{a}(x)=a x$ is a bounded linear operator from ℓ into \mathcal{g}. As in the proof of Theorem 4.11 we may establish that $\|a\|_{\mathcal{F}: \ell}=\sup \left\{\|a x\|_{\mathcal{g}}: x \in \ell,\|x\|_{\ell} \leqslant 1\right\}$ is a complete symmetric quasi-norm on $\mathfrak{g}: \ell$. In addition, in case $\ell=\mathscr{g}$ we have

$$
\begin{aligned}
\|a\|_{\ell: L} & =\sup \left\{\|a x\|_{\mathscr{L}}: x \in \ell,\|x\|_{\mathcal{L}} \leqslant 1\right\} \\
& \leqslant \sup \left\{\|a\|_{\mathcal{B}(H)}\|x\|_{\mathcal{L}}: x \in \ell,\|x\|_{\mathscr{L}} \leqslant 1\right\} \leqslant\|a\|_{\mathcal{B}(H)}
\end{aligned}
$$

i.e.

$$
\begin{equation*}
\|a\|_{l: \ell} \leqslant\|a\|_{\mathcal{B}(H)} \quad \text { for all } a \in \ell: \ell . \tag{7}
\end{equation*}
$$

Thus, the norm $\|\cdot\|_{\mathcal{B}(H)}$ and the quasi-norm $\|\cdot\|_{\text {:: }}$ are equivalent.
Now, let G and F be arbitrary symmetric quasi-Banach sequence spaces in l_{∞}. For every $\xi \in F: G$ set

$$
\|\xi\|_{F: G}=\sup \left\{\|\xi \eta\|_{F}: \eta \in G,\|\eta\|_{G} \leqslant 1\right\} .
$$

The following theorem is a "commutative" version of Theorem 4.11.
Theorem 4.13. If $G \nsubseteq F$, then ($F: G,\|\cdot\|_{F: G}$) is a symmetric quasi-Banach sequence space in c_{0} with the modulus of concavity, which does not exceed the modulus of concavity of the quasi-norm $\|\cdot\|_{F}$, in addition, $\|\xi \eta\|_{F} \leqslant\|\xi\|_{F: G}\|\eta\|_{G}$ for all $\xi \in F: G, \eta \in G$.
Proof. Since $G \nsubseteq F$, it follows that $F \neq l_{\infty}, F: G \neq l_{\infty}$, and therefore, according to Corollary 4.8, $F: G$ is a solid rearrangement invariant space and $F: G \subset c_{0}$.

As in the proof of Theorem 4.11 it is established that $\|\cdot\|_{F: G}$ is a complete quasi-norm on $F: G$ with the modulus of concavity which does not exceed the modulus of concavity of the quasi-norm $\|\cdot\|_{F}$.

If $\xi, \eta \in F: G$ and $\xi^{*} \leqslant \eta^{*}$, then $\xi^{*}=a \eta^{*}$ for some $a \in l_{\infty}$ with $\|a\|_{\infty} \leqslant 1$. Hence,

$$
\begin{aligned}
\left\|\xi^{*}\right\|_{F: G} & =\left\|a \eta^{*}\right\|_{F: G}=\sup \left\{\left\|a \eta^{*} \zeta\right\|_{F}: \zeta \in G,\|\zeta\|_{G} \leqslant 1\right\} \\
& \leqslant\|a\|_{\infty} \sup \left\{\left\|\eta^{*} \zeta\right\|_{F}: \zeta \in G,\|\zeta\|_{G} \leqslant 1\right\} \leqslant\left\|\eta^{*}\right\|_{F: G} .
\end{aligned}
$$

Let us show that $\|\xi\|_{F: G}=\left\|\xi^{*}\right\|_{F: G}$ for all $\xi=\left\{\xi_{n}\right\}_{n=1}^{\infty} \in F: G$. Since $\xi \in c_{0}$ there exists a bijection $\pi: \mathbb{N} \rightarrow \mathbb{N}$ such that $U_{\pi}(\xi):=\left\{\xi_{\pi(n)}\right\}_{n=1}^{\infty}=\left\{\xi_{n}^{*}\right\}_{n=1}^{\infty}=\xi^{*}$. It is clear that the mapping $U_{\pi}: l_{\infty} \rightarrow l_{\infty}$ defined by the equality $U_{\pi}(\eta)=$ $U_{\pi}\left(\left\{\eta_{n}\right\}_{n=1}^{\infty}\right)=\left\{\eta_{\pi(n)}\right\}_{n=1}^{\infty}, \eta=\left\{\eta_{n}\right\}_{n=1}^{\infty} \in l_{\infty}$, is a linear bijective mapping, such that $U_{\pi}(\eta \zeta)=U_{\pi}(\eta) U_{\pi}(\zeta), \eta, \zeta \in l_{\infty}$. In addition, $U_{\pi}(G)=G, U_{\pi}(F)=F$, and $\left\|U_{\pi}(\eta)\right\|_{G}=\|\eta\|_{G},\left\|U_{\pi}(\zeta)\right\|_{F}=\|\zeta\|_{F}$ for all $\eta \in G, \zeta \in F$.

Since $U_{\pi}(\xi)=\xi^{*}$, we have

$$
\begin{aligned}
\left\|\xi^{*}\right\|_{F: G} & =\sup \left\{\left\|U_{\pi}(\xi) \eta\right\|_{F}: \eta \in G,\|\eta\|_{G} \leqslant 1\right\}=\sup \left\{\left\|U_{\pi}\left(\xi U_{\pi}^{-1}(\eta)\right)\right\|_{F}: \eta \in G,\|\eta\|_{G} \leqslant 1\right\} \\
& =\sup \left\{\left\|\xi U_{\pi}^{-1}(\eta)\right\|_{F}: \eta \in G,\|\eta\|_{G} \leqslant 1\right\}=\sup \left\{\|\xi \zeta\|_{F}: U_{\pi}(\zeta) \in G,\left\|U_{\pi}(\zeta)\right\|_{G} \leqslant 1\right\} \\
& =\sup \left\{\|\xi \zeta\|_{F}: \zeta \in G,\|\zeta\|_{G} \leqslant 1\right\}=\|\xi\|_{F: G} .
\end{aligned}
$$

Thus, from $\xi, \eta \in F: G, \xi^{*} \leqslant \eta^{*}$ it follows that

$$
\|\xi\|_{F: G}=\left\|\xi^{*}\right\|_{F: G} \leqslant\left\|\eta^{*}\right\|_{F: G}=\|\eta\|_{F: G} .
$$

The equality $\|\xi\|_{F: G}=1$ is established similarly to the equality $\|p\|_{g: \ell}=1$, where p is a one-dimensional projection from $\mathcal{B}(H)$ (see the proof of Theorem 4.11).

Consequently, $\left(F: G,\|\cdot\|_{F: G}\right)$ is a symmetric quasi-Banach sequence space in c_{0}. The inequality $\|\xi \eta\|_{F} \leqslant\|\xi\|_{F: G}\|\eta\|_{G}$ immediately follows from the definition of $\|\cdot\|_{F: G}$.

Let ℓ, \mathcal{I} be symmetric quasi-Banach ideals of compact operators from $\mathcal{B}(H), \ell \nsubseteq \mathscr{g}$. By Proposition $4.9, \mathcal{g}: \ell=C_{E_{g}: E_{\ell}}$, i.e. $C_{E_{g}: E_{\ell}}$ is a two-sided ideal of compact operators from $\mathcal{B}(H)$. For every $a \in C_{E_{g}: E_{l}}$ we set

$$
\|a\|_{C_{E_{g}: E_{\ell}}}:=\left\|\left\{s_{n}(a)\right\}\right\|_{E_{\ell}: E_{g}} .
$$

Proposition 4.14. $\|\cdot\|_{C_{E_{g}: E_{l}}}$ is a symmetric quasi-norm on $C_{E_{g}: E_{l}}$.
Proof. Obviously, $\|a\|_{C_{E_{g}: E_{\ell}}} \geqslant 0$ for all $a \in C_{E_{q}: E_{l}}$ and $\|a\|_{C_{E_{g}: \varepsilon_{l}}}=0 \Leftrightarrow a=0$. If $a, b \in C_{E_{g}: E_{l}}, \lambda \in \mathbb{C}$, then

$$
\|\lambda a\|_{C_{E_{g}: E_{l}}}=\left\|\left\{s_{n}(\lambda a)\right\}_{n=1}^{\infty}\right\|_{E_{g}: E_{\ell}}=|\lambda|\|a\|_{C_{E_{g}: E_{\ell}}}
$$

and

$$
\begin{aligned}
\|a+b\|_{C_{E_{g}: E_{\ell}}} & =\left\|\left\{s_{n}(a+b)\right\}\right\|_{E_{q}: E_{\ell}} \stackrel{(3)}{\leq}\left\|\sigma_{2}\left(\left\{s_{n}(a)+s_{n}(b)\right\}\right)\right\|_{E_{q}: E_{\ell}} \\
& \leqslant 2 C\left\|\left\{s_{n}(a)\right\}+\left\{s_{n}(b)\right\}\right\|_{E_{q}: E_{\ell}} \\
& \leqslant 2 C^{2}\left(\left\|\left\{s_{n}(a)\right\}\right\|_{E_{q}: E_{l}}+\left\|\left\{s_{n}(b)\right\}\right\|_{E_{q}: E_{\ell}}\right) \\
& =2 C^{2}\left(\|a\|_{C_{E_{q}: E_{\ell}}}+\|b\|_{C_{E_{g}: E_{\ell}}}\right) .
\end{aligned}
$$

Hence, $\|\cdot\|_{C_{E_{g}: E_{\ell}}}$ is a quasi-norm on $C_{E_{g}: E_{\ell}}$ and the modulus of concavity of $\|\cdot\|_{C_{E_{g}}: E_{\ell}}$ does not exceed $2 C^{2}$, where C is the modulus of concavity of the quasi-norm $\|\cdot\|_{E_{q}}$.

Since $s_{n}(x a y) \leqslant\|x\|_{\mathcal{B}(H)}\|y\|_{\mathcal{B}(H)} s_{n}(a)$ for all $a \in \mathcal{K}(H), x, y \in \mathscr{B}(H), n \in \mathbb{N}$ (see Proposition 2.2), it follows

$$
\|x a y\|_{C_{E_{g}: E_{\ell}}}=\|\left\{s_{n}(\text { xay })\right\}\left\|_{E_{g}: E_{\ell}} \leqslant\right\| x\left\|_{\mathcal{B}(H)}\right\| y\left\|_{\mathcal{B}(H)}\right\| a \|_{C_{E_{g}: E_{\ell}}}
$$

It is clear that $\|p\|_{C_{E_{q}: E_{\ell}}}=1$ for every one-dimensional projection p.
Thus, $\|\cdot\|_{C_{E_{g}}: E_{l}}$ is a symmetric quasi-norm on $C_{E_{g}: E_{l}}$.
Remark 4.15. (i) If ℓ, \mathcal{G} are symmetric Banach ideals of compact operators in $\mathcal{B}(H)$ and $\ell \nsubseteq \mathscr{I}$, then $\left(\mathcal{G}: \ell,\|\cdot\|_{\mathscr{g}: \ell}\right.$) is a symmetric Banach ideal of compact operators (Theorem 4.11), and therefore ($E_{q: \ell},\|\cdot\|_{E_{g: \ell}}$) is a symmetric Banach sequence space in c_{0} (Theorem 4.4).
(ii) If G, F are symmetric Banach sequence spaces in c_{0} and $G \nsubseteq F$, then $\left(F: G,\|\cdot\|_{F: G}\right.$) is a symmetric Banach sequence space in c_{0} (Theorem 4.13), and therefore ($C_{F: G},\|\cdot\|_{C_{F: G}}$) is a symmetric Banach ideal of compact operators from $\mathscr{B}(H)$ (Theorem 1.5).

Theorem 4.16. Let ℓ, \mathcal{g} be symmetric quasi-Banach ideals of compact operators from $\mathscr{B}(H)$ and $\ell \nsubseteq \mathcal{I}$. Then
(i) $E_{\mathcal{g}: \ell}=E_{\mathcal{g}}: E_{\ell}$ and $\|\cdot\|_{E_{g}: E_{\ell}} \leqslant\|\cdot\|_{E_{\mathcal{F}: \ell}} \leqslant 2 C\|\cdot\|_{E_{g}: E_{\ell}}$, where C is the modulus of concavity of the quasi-norm $\|\cdot\|_{\mathcal{g}}$;
(ii) $\mathcal{g}: \ell=C_{E_{g}: E_{l}}$ and $\|\cdot\|_{C_{E_{g}}: E_{\ell}} \leqslant\|\cdot\|_{\mathcal{g}: \ell} \leqslant 2 C\|\cdot\|_{C_{E_{g}: E_{l}}}$, where C is the modulus of concavity of the quasi-norm $\|\cdot\|_{E_{g}}$.

Proof. If $\xi=\xi^{*} \in E_{\mathcal{g}: \ell}$, then $x_{\xi} \in \mathcal{G}: \ell$ (see Theorem 4.4). Hence, for every $\eta=\eta^{*} \in E_{\ell}$ we have $x_{\eta} \in \ell$ and $x_{\xi \eta}=x_{\xi} x_{\eta} \in \mathcal{I}$, i.e. $\xi \eta \in E_{g}$. Therefore, due to Proposition $4.7, \xi \in E_{\mathcal{g}}: E_{l}$, in addition,

$$
\begin{aligned}
\|\xi\|_{E_{g: l}} & =\left\|x_{\xi}\right\|_{\mathcal{g}: \ell}=\sup \left\{\left\|x_{\xi} y\right\|_{\mathcal{g}}: y \in \ell,\|y\|_{\ell} \leqslant 1\right\} \\
& \geqslant \sup \left\{\left\|x_{\xi} x_{\eta}\right\|_{\mathcal{g}}: \eta \in E_{\ell},\|\eta\|_{E_{\ell}} \leqslant 1\right\} \\
& =\sup \left\{\left\|x_{\xi \eta}\right\|_{\mathcal{g}}: \eta \in E_{\ell},\|\eta\|_{E_{\ell}} \leqslant 1\right\} \\
& =\sup \left\{\|\xi \eta\|_{E_{g}}: \eta \in E_{\ell},\|\eta\|_{E_{\ell}} \leqslant 1\right\}=\|\xi\|_{E_{g}: E_{\ell}} .
\end{aligned}
$$

Conversely, if $\xi=\xi^{*} \in E_{\mathcal{g}}: E_{\ell}$, then $x_{\xi} \in C_{E_{g}: E_{\ell}}=\mathcal{g}: \ell$ (see Proposition 4.9), and so $\xi \in E_{g: \ell}$. Moreover,

$$
\begin{aligned}
\|\xi\|_{E_{\mathcal{g}: \ell}} & =\left\|x_{\xi}\right\|_{\mathcal{g}: \ell}=\sup \left\{\left\|x_{\xi} y\right\|_{\mathcal{g}}: y \in \ell,\|y\|_{\ell} \leqslant 1\right\} \\
& \left.=\sup \left\{\| x_{\left\{s_{n\left(x_{\xi}\right)}\right)}\right\}\left\|_{\mathcal{g}}: y \in \ell,\right\| y \|_{\ell} \leqslant 1\right\} \\
& \stackrel{(4)}{\leq} \sup \left\{\left\|x_{\sigma_{2}\left(\left\{\xi s_{n(y)}\right)\right)}\right\|_{\mathcal{g}}: y \in \ell,\|y\|_{\ell} \leqslant 1\right\} \\
& \leqslant 2 C \sup \left\{\left\|\xi\left\{s_{n}(y)\right\}\right\|_{E_{\mathcal{g}}}: y \in \ell,\|y\|_{\ell} \leqslant 1\right\} \\
& \leqslant 2 C \sup \left\{\|\xi \eta\|_{E_{\mathcal{g}}}: \eta \in E_{\ell},\|\eta\|_{E_{\ell}} \leqslant 1\right\}=2 C\|\xi\|_{E_{g}: E_{\ell}} .
\end{aligned}
$$

Thus, $E_{\mathcal{g}: \ell}=E_{\mathcal{g}}: E_{\ell}$ and $\|\xi\|_{E_{g}: E_{\ell}} \leqslant\|\xi\|_{E_{g: l}} \leqslant 2 C\|\xi\|_{E_{g}: E_{\ell}}$ for all $\xi \in E_{g: \ell}$.
(ii) The equality $\mathcal{g}: \ell=C_{E_{g}: E_{\ell}}$ is proven in Proposition 4.9. For an arbitrary $a \in \mathcal{g}: \ell$ we have

$$
\begin{aligned}
\|a\|_{C_{E_{\mathcal{Z}}: E_{\ell}}} & =\left\|\left\{s_{n}(a)\right\}\right\|_{E_{\ell}: E_{\mathcal{Z}}} \\
& =\sup \left\{\left\|\left\{s_{n}(a)\right\} \eta\right\|_{E_{\mathcal{Z}}}: \eta \in E_{\ell},\|\eta\|_{E_{\ell}} \leqslant 1\right\} \\
& =\sup \left\{\left\|x_{\left\{s_{n}(a)\right\}} x_{\eta}\right\|_{\mathcal{I}}: x_{\eta} \in \ell,\left\|x_{\eta}\right\|_{\ell} \leqslant 1\right\} \\
& \leqslant \sup \left\{\left\|x_{\left\{s_{s_{n}}(a)\right\}} y\right\|_{\mathcal{I}}: y \in \ell,\|y\|_{\ell} \leqslant 1\right\} \\
& =\left\|x_{\left\{s_{n}(a)\right\}}\right\|_{\mathcal{g}: \ell}=\|a\|_{\mathcal{g}: \ell} .
\end{aligned}
$$

On the other hand,

$$
\begin{aligned}
\|a\|_{\mathcal{g}: \ell} & =\sup \left\{\|a y\|_{\mathcal{g}}: y \in \ell,\|y\|_{\ell} \leqslant 1\right\} \\
& =\sup \left\{\left\|\left\{s_{n}(a y)\right\}_{n=1}^{\infty}\right\|_{E_{\mathcal{g}}}: y \in \ell,\|y\|_{\ell} \leqslant 1\right\} \\
& \stackrel{(4)}{\leq} \sup \left\{\left\|\sigma_{2}\left(\left\{s_{n}(a) s_{n}(y)\right\}_{n=1}^{\infty}\right)\right\|_{E_{\mathcal{g}}}: y \in \ell,\|y\|_{\ell} \leqslant 1\right\} \\
& =2 C \sup \left\{\left\|\left\{s_{n}(a) s_{n}(y)\right\}\right\|_{E_{\mathcal{g}}}: y \in \ell,\|y\|_{\ell} \leqslant 1\right\} \\
& =2 C\left\|\left\{s_{n}(a)\right\}\right\|_{E_{\mathcal{g}}: E_{\ell}}=2 C\|a\|_{C_{E_{g}: E_{\ell}}} .
\end{aligned}
$$

Since $\left(\mathcal{g}: \ell,\|\cdot\|_{\mathcal{g}: \ell}\right)$ is a quasi-Banach space (see Theorem 4.11) and quasi-norms $\|\cdot\|_{g: \ell}$ and $\|\cdot\|_{C_{E_{g}: E_{\ell}}}$ are equivalent (see Theorem 4.16(ii)), we have the following corollary.

Corollary 4.17. For any symmetric quasi-Banach ideals ℓ, \mathcal{g} of compact operators from $\mathcal{B}(H), \ell \nsubseteq \mathcal{I}$, the couple $\left(C_{E_{g}: E_{\ell}}, \| \cdot\right.$ $\|_{\mathrm{E}_{\mathrm{E}_{\mathrm{g}}: E_{\ell}}}$) is a symmetric quasi-Banach ideal of compact operators from $\mathcal{B}(H)$.

The following theorem gives the full description of the set $\operatorname{Der}(\ell, \mathcal{q})$.

Theorem 4.18. (i) Let ℓ and \mathcal{A} be symmetric quasi-Banach ideals of compact operators from $\mathcal{B}(H), \ell \nsubseteq \mathcal{A}$. Then any derivation δ from ℓ into \mathcal{I} has a form $\delta=\delta_{a}$ for some $a \in C_{E_{g}: E_{l}}$ and $\|a+\alpha \mathbb{1}\|_{\mathcal{B}(H)} \leqslant\left\|\delta_{a}\right\|_{\mathcal{B}(\ell, \mathcal{g})}$ for some $\alpha \in \mathbb{C}$. Conversely, if $a \in C_{E_{g}: E_{\ell}}$, then the restriction of δ_{a} on ℓ is a derivation from ℓ into \mathcal{g}. In addition, $\left\|\delta_{a}\right\|_{\mathcal{B}(\ell, \mathcal{g})} \leqslant 2 C\|a\|_{\mathfrak{f}: \ell}$, where C is the modulus of concavity of the quasi-norm $\|\cdot\|_{\text {g }}$;
(ii) Let G and F be symmetric Banach (respectively, F is a p-convex, G is a q-convex quasi-Banach with $0<p, q<\infty$) sequence spaces in c_{0} and $G \nsubseteq F$. Then any derivation $\delta: C_{G} \rightarrow C_{F}$ has a form $\delta=\delta_{a}$ for some $a \in C_{F: G}$ and $\|a+\alpha \mathbb{1}\|_{\mathcal{B}(H)} \leqslant\left\|\delta_{a}\right\|_{\mathcal{B}\left(C_{G}, C_{F}\right)}$ for some $\alpha \in \mathbb{C}$. Conversely, if $a \in C_{F: G}$, then the restriction of δ_{a} on C_{G} is a derivation from C_{G} into C_{F}. In addition, $\left\|\delta_{a}\right\|_{\mathcal{B}\left(C_{G}, C_{F}\right)} \leqslant 2 C\|a\|_{C_{F}: C_{G}}$, where C is the modulus of concavity of the quasi-norm $\|\cdot\|_{C_{F}}$.

Proof. (i) By Theorem 3.6, any derivation $\delta: \ell \rightarrow \mathcal{g}$ has a form $\delta=\delta_{a}$ for some $a \in \mathcal{g}: \ell$, in addition $\|a+\alpha \mathbb{1}\|_{\mathcal{B}(H)} \leqslant$ $\left\|\delta_{a}\right\|_{\mathcal{B}(\ell, g)}$ for some $\alpha \in \mathbb{C}$. Since $\mathcal{g}: \ell=C_{E_{q}: E_{\ell}}$ (see Theorem 4.16), we have $a \in C_{E_{g}: E_{l}}$.

Conversely, if $a \in C_{E_{g}: E g}$, then $a \in \mathcal{F}: \ell$, and, according to Theorem 3.6, $\delta_{a}(\ell) \subset \mathcal{A}$.
Moreover,

$$
\begin{align*}
\left\|\delta_{a}\right\|_{\mathcal{B}(\ell, \mathcal{G})} & =\sup \left\{\left\|\delta_{a}(x)\right\|_{\mathcal{I}}: x \in \ell,\|x\|_{\ell} \leqslant 1\right\} \\
& =\sup \left\{\|a x-x a\|_{\mathcal{I}}: x \in \ell,\|x\|_{\ell} \leqslant 1\right\} \\
& \leqslant \sup \left\{C\left(\|a x\|_{\mathcal{I}}+\|x a\|_{\mathcal{I}}\right): x \in \ell,\|x\|_{\ell} \leqslant 1\right\} \\
& \stackrel{(6)}{=} 2 C \sup \left\{\|a x\|_{\mathcal{g}}: x \in \ell,\|x\|_{\ell} \leqslant 1\right\}=2 C\|a\|_{\mathcal{g}: \ell} . \tag{8}
\end{align*}
$$

Item (ii) follows from (i) and Theorems 1.5 and 4.16. The inequality $\left\|\delta_{a}\right\|_{\mathcal{B}\left(C_{F}, C_{G}\right)} \leqslant 2 C\|a\|_{C_{G}: C_{F}}$ is proven in the same manner.

We illustrate Theorem 4.18 with an example drawn from the theory of Lorentz and Marcinkiewicz sequence spaces. Let $\omega=\left\{\omega_{n}\right\}_{n=1}^{\infty}$ be a decreasing weight sequence of positive numbers. Letting $W(j)=\sum_{n=1}^{j} w_{n}, j \in \mathbb{N}$, we shall assume that $W(\infty)=\sum_{n=1}^{\infty} w_{n}=\infty$.

The Lorentz sequence space $l_{\omega}^{p}, 1 \leqslant p<\infty$, consists of all sequences $\xi=\left\{\xi_{n}\right\}_{n=1}^{\infty} \in c_{0}$ such that

$$
\|\xi\|_{l_{\omega}^{p}}=\left(\sum_{n=1}^{\infty}\left(\xi_{n}^{*}\right)^{p} w_{n}\right)^{\frac{1}{p}}<\infty
$$

The Lorentz (Marcinkiewicz) sequence space $m_{W}^{p}, 1 \leqslant p<\infty$, is the space of all sequences $\xi=\left\{\xi_{n}\right\}_{n=1}^{\infty} \in c_{0}$ satisfying

$$
\|\xi\|_{m_{W}^{p}}=\sup _{k \geq 1}\left(\frac{\sum_{n=1}^{k}\left(\xi_{n}^{*}\right)^{p}}{W_{k}}\right)^{\frac{1}{p}}<\infty
$$

It is well known (see e.g. [21] and [22, Proposition 1]) that $\left(l_{\omega}^{p},\|\cdot\|_{\omega_{\omega}^{p}}\right)$ and ($m_{W}^{p},\|\cdot\|_{m_{w}^{p}}$) are symmetric Banach sequence spaces in c_{0}.

Hence, $\left(C_{l_{\omega}^{p}},\|\cdot\|_{C_{p_{\omega}}}\right)$ and $\left(C_{m_{w}^{p}},\|\cdot\|_{C_{m_{w}^{p}}}\right)$ are symmetric Banach ideals of compact operators (Theorem 1.5). Since $l_{1}: l_{\omega}=m_{W}^{1}$ (see e.g. [21]) it follows that $l_{p}: l_{\omega}^{p}=m_{W}^{p}$ for every $1 \leqslant p<\infty$ [22, Section 2]. By Theorem 4.16, $C_{p}: C_{l_{\omega}^{p}}=C_{m_{W}^{p}}$ and $\|a\|_{C_{p}: C_{\omega}^{p}} \leqslant 2\|a\|_{C_{m}^{p}}$ for all $a \in C_{p}: C_{l_{\omega}^{p}}$. From Theorem 4.18 (ii), we obtain the following example significantly extending similar results from [1].

Corollary 4.19. A linear mapping $\delta: C_{l_{\omega}^{p}} \rightarrow C_{p}, 1 \leqslant p<\infty$ is a derivation if and only if $\delta=\delta_{a}$ for some $a \in C_{m_{w}^{p}}$, in addition, $\|\delta\|_{\mathcal{B}\left(C_{l_{\omega}^{p}}, c_{p}\right)} \leqslant 2\|a\|_{c_{p}: C_{p_{\omega}^{p}}} \leqslant 4\|a\|_{c_{m_{W}^{p}}}$.

In conclusion, note that, by Theorem 3.2, (8), any derivation δ from a symmetric quasi-Banach ideal ℓ into a symmetric quasi-Banach ideal \mathcal{g}, such that $\ell \subseteq \mathcal{g}$, has a form $\delta=\delta_{a}$ for some $a \in \mathscr{B}(H)$ and, in addition, $\|a\|_{\mathcal{B}(H)} \leqslant\left\|\delta_{a}\right\|_{\mathcal{B}(\ell, \mathcal{F})} \leqslant$ $2 C\|a\|_{\mathcal{g}: l}$, where C is the modulus of concavity of the quasi-norm $\|\cdot\|_{g}$. Moreover, for the case when $l=g$ we have $\|a\|_{\mathcal{B}(H)} \leqslant\left\|\delta_{a}\right\|_{\mathcal{B}(\ell, \ell)} \leqslant 2 C\|a\|_{\mathcal{B}(H)}$, where C is the modulus of concavity of the quasi-norm $\|\cdot\|_{\ell}($ see $(7))$. This complements results from [7].

References

[1] M.J. Hoffman, Essential commutants and multiplier ideals, Indiana Univ. Math. J. 30 (1981) 859-869.
[2] S. Sakai, C*-Algebras and W^{*}-Algebras, Springer-Verlag, New York, Heidelberg, Berlin, 1971.
[3] E. Kissin, V.S. Shulman, Differential Schatten $*$-algebras. Approximation property and approximate identities, J. Oper. Theory 45 (2001) $303-334$.
[4] J.W. Calkin, Two-sided ideals and congruences in the ring of bounded operators in Hilbert space, Ann. of Math. 42 (1941) $839-873$.
[5] A.F. Ber, F.A. Sukochev, Commutator estimates in W^{*}-algebras, J. Funct. Anal. 262 (2012) 537-568.
[6] A.F. Ber, F.A. Sukochev, Commutator estimates in W^{*}-factors, Trans. Amer. Math. Soc. 364 (10) (2012) 5571-5587
[7] A.F. Ber, F.A. Sukochev, Derivations in the Banach ideals of τ-compact operators, 18 April, 2012, p. 12. arXiv:1204.4052v1.
[8] B. Simon, Trace Ideals and their Applications, second ed., in: Mathematical Surveys and Monographs, vol. 120, American Mathematical Society, Providence, RI, 2005.
[9] N.J. Kalton, F.A. Sukochev, Symmetric norms and spaces of operators, J. Reine Angew. Math. 621 (2008) 81-121.
[10] D.J.H. Garling, On ideals of operators in Hilbert space, Proc. Lond. Math. Soc. (3) 17 (1967) 115-138.
[11] P.G. Dodds, T.K. Dodds, B. de Pagter, Non-commutative Köthe duality, Trans. Amer. Math. Soc. 339 (1993) 717-750.
[12] R.Y. Kadison, J.R. Ringrose, Fundamentals of the Theory of Operator Algebras I, II, Academic Press, Orlando, 1983.
[13] M. Reed, B. Simon, Methods of Modern Mathematical Physics. Vol. 1: Functional Analysis, Academic Press, 1980.
[14] M.A. Muratov, V.I. Chilin, Algebras of measurable and locally measurable operators, Proc. Inst. Math. of Nat. Acad. Sci. of Ukraine, Kiev 69 (2007) (Russian).
[15] I. Gohberg, M. Krein, Introduction to the Theory of Linear Nonselfadjoint Operators, in: Trans. Math. Monog., vol. 18, American Mathematical Society, Providence, RI, 1969.
[16] N.J. Kalton, Quasi-Banach spaces, in: Handbook of the Geometry of Banach Spaces. Vol. 2, Elsevier, 2003, pp. 1099-1130.
[17] H.H. Schaefer, Topological Vector Spaces, The Machmillan Company, Collier-Machmillan Limited, New York, London, 1966.
[18] B.Z. Vulich, Introduction to the Theory of Partially Ordered Spaces, Wolters-Noordhoff, Groningen, 1967.
[19] S.G. Krein, Y.I. Petunin, E.M. Semenov, Interpolation of Linear Operators, in: Trans. Math. Monogr., vol. 54, American Mathematical Society, Providence, RI, 1982.
[20] T. Fack, H. Kosaki, Generalised s-numbers of τ-measurable operators, Pacific J. Math. 123 (1986) 265-300.
[21] A. Kamińska, A.M. Parrish, Convexity and concavity constants in Lorentz and Marcinkiewicz spaces, J. Math. Anal. Appl. 343 (2008) $337-351$.
[22] L. Maligranda, L.E. Persson, Generalized duality of some Banach function spaces, Indag. Math. 51 (1989) 323-338.

[^0]: * Corresponding author.

 E-mail addresses: ber@ucd.uz (A.F. Ber), chilin@ucd.uz (V.I. Chilin), bob_galina@mail.ru (G.B. Levitina), f.sukochev@unsw.edu.au (F.A. Sukochev).

