J. Math. Anal. Appl. 397 (2013) 628-643



Contents lists available at SciVerse ScienceDirect

Journal of Mathematical Analysis and Applications



journal homepage: www.elsevier.com/locate/jmaa

# Derivations on symmetric quasi-Banach ideals of compact operators

## A.F. Ber<sup>a</sup>, V.I. Chilin<sup>a</sup>, G.B. Levitina<sup>a</sup>, F.A. Sukochev<sup>b,\*</sup>

<sup>a</sup> Department of Mathematics, National University of Uzbekistan, Vuzgorodok, 100174, Tashkent, Uzbekistan <sup>b</sup> School of Mathematics and Statistics, University of New South Wales, Sydney, NSW 2052, Australia

#### ARTICLE INFO

Article history: Received 20 April 2012 Available online 14 August 2012 Submitted by Stephen Power

Keywords: Derivations Ideals of compact operators Symmetric quasi-Banach sequence spaces

## ABSTRACT

Let  $\mathfrak{l}, \mathfrak{f}$  be symmetric quasi-Banach ideals of compact operators on an infinite-dimensional complex Hilbert space H, let  $\mathfrak{f}: \mathfrak{l}$  be the space of multipliers from  $\mathfrak{l}$  to  $\mathfrak{f}$ . Obviously, ideals  $\mathfrak{l}$  and  $\mathfrak{f}$  are quasi-Banach algebras and it is clear that ideal  $\mathfrak{f}$  is a bimodule for  $\mathfrak{l}$ . We study the set of all derivations from  $\mathfrak{l}$  into  $\mathfrak{f}$ . We show that any such derivation is automatically continuous and there exists an operator  $a \in \mathfrak{f}: \mathfrak{l}$  such that  $\delta(\cdot) = [a, \cdot]$ , moreover  $||a + \alpha \mathbb{1}||_{\mathscr{B}(H)} \leq ||\delta||_{1 \to \mathfrak{f}} \leq 2C ||a||_{\mathfrak{f}:\mathfrak{l}}$  for some complex number  $\alpha$ , where C is the modulus of concavity of the quasi-norm  $|| \cdot ||_{\mathfrak{f}}$  and  $\mathbb{1}$  is the identity operator on H. In the special case, when  $\mathfrak{l} = \mathfrak{f} = \mathscr{K}(H)$  is a symmetric Banach ideal of compact operators on H our result yields the classical fact that any derivation  $\delta$  on  $\mathscr{K}(H)$  may be written as  $\delta(\cdot) = [a, \cdot]$ , where a is some bounded operator on H and  $||a||_{\mathscr{B}(H)} \leq ||\delta||_{\mathfrak{l} \to \mathfrak{l}} \leq 2||a||_{\mathscr{B}(H)}$ . © 2012 Elsevier Inc. All rights reserved.

## 1. Introduction

Let  $\mathfrak{l}, \mathfrak{J}$  be ideals of compact operators on an infinite-dimensional complex Hilbert space H. Obviously,  $\mathfrak{J}$  is an  $\mathfrak{l}$ -module and we can consider the set  $Der(\mathfrak{l}, \mathfrak{J})$  of all derivations  $\delta \colon \mathfrak{l} \to \mathfrak{J}$ . Consider two closely related questions (here,  $\mathfrak{B}(H)$  is the set of all bounded linear operators on H):

**Question 1.1.** Let  $\delta \in \text{Der}(\mathfrak{1}, \mathfrak{Z})$ . Does there exist a bounded operator  $a \in \mathcal{B}(H)$  such that  $\delta(x) = [a, x]$  for every  $x \in \mathfrak{I}$ ?

**Question 1.2.** What is the set  $D(\mathfrak{l}, \mathfrak{J}) = \{a \in \mathcal{B}(H) : [a, x] \in \mathfrak{J}, \forall x \in \mathfrak{l}\}$ ?

The second question was completely answered by Hoffman in [1], who also coined the term  $\mathcal{J}$ -essential commutant of  $\mathcal{I}$  for the set  $D(\mathcal{I}, \mathcal{J})$ . We completely answer the first question in the setting when the ideals  $\mathcal{I}, \mathcal{J}$  are symmetric quasi-Banach (see precise definition in the next section). In this setting, it is also natural to ask.

## **Question 1.3.** Let $\delta \in \text{Der}(\mathfrak{l}, \mathfrak{J})$ . Is it continuous?

Of course, if  $\delta \in \text{Der}(\mathfrak{I}, \mathfrak{J})$  is such that  $\delta(x) = [a, x]$  for some  $a \in \mathcal{B}(H)$  (that is when  $\delta$  is implemented by the operator a), then  $\delta$  is a continuous mapping from  $(\mathfrak{I}, \|\cdot\|_{\mathfrak{I}})$  to  $(\mathfrak{J}, \|\cdot\|_{\mathfrak{J}})$ , that is a positive answer to Question 1.1 implies also a positive answer to Question 1.3. However, in this paper, we are establishing a positive answer to Question 1.1 via firstly answering Question 1.3 in positive. Both these results (Theorems 3.1 and 3.2) are proven in Section 3. We also provide a detailed discussion of the  $\mathfrak{J}$ -essential commutant of  $\mathfrak{I}$  in Section 4.

It is also instructive to outline a connection between Questions 1.1 and 1.3 with some classical results. It is well known [2, Lemma 4.1.3] that every derivation on a C\*-algebra is norm continuous. In fact, this also easily follows from the following

\* Corresponding author. *E-mail addresses:* ber@ucd.uz (A.F. Ber), chilin@ucd.uz (V.I. Chilin), bob\_galina@mail.ru (G.B. Levitina), f.sukochev@unsw.edu.au (F.A. Sukochev).

<sup>0022-247</sup>X/\$ – see front matter 0 2012 Elsevier Inc. All rights reserved. doi:10.1016/j.jmaa.2012.07.068

well-known fact [2, Corollary 4.1.7] that every derivation on a  $C^*$ -algebra  $\mathcal{M} \subset \mathcal{B}(H)$  is given by a reduction of an inner derivation on a von Neumann algebra  $\overline{\mathcal{M}}^{wo}$  (the weak closure of  $\mathcal{M}$  in the  $C^*$ -algebra  $\mathcal{B}(H)$ ). The latter result [2, Lemma 4.1.4 and Theorem 4.1.6], in the setting when  $\mathcal{M}$  is a  $C^*$ -algebra  $\mathcal{K}(H)$  of all compact operators on H states that for every derivation  $\delta$  on  $\mathcal{M}$  there exists an operator  $a \in \mathcal{B}(H)$  such that  $\delta(x) = [a, x]$  for every  $x \in \mathcal{K}(H)$ , in addition,  $\|a\|_{\mathcal{B}(H)} \leq \|\delta\|_{\mathcal{M} \to \mathcal{M}}$ . The ideal  $\mathcal{K}(H)$  equipped with the uniform norm is an element from the class of so-called symmetric Banach operator ideals in  $\mathcal{B}(H)$  and evidently this example also suggests the statements of Questions 1.1 and 1.3. In the case of Schatten ideals  $C_p(H) = \{x \in \mathcal{K}(H) : \|x\|_p = \operatorname{tr}(|x|^p)^{\frac{1}{p}} < \infty\}$ , where  $|x| = (x^*x)^{\frac{1}{2}}$ ,  $1 \leq p < \infty$ , somewhat similar problems concerning derivations from  $C_p(H)$  into  $C_r(H)$  were also considered in the work by Kissin and Shulman [3]. In particular, it is shown in [3] that every closed \*-derivation  $\delta$  from  $C_p(H)$ . In our case, we have  $D(\delta) = C_p$  and it follows from our results that the derivation  $\delta$  is necessarily continuous and implemented by an operator  $a \in \mathcal{B}(H)$ .

It is also worth to mention that Hoffman's results in [1] were an extension of earlier results by Calkin [4] who considered the case when  $\ell = \mathcal{B}(H)$ . Recently, Calkin's and Hoffman's results were extended to the setting of general von Neumann algebras in [5,6] and, in the special setting when  $\ell = \mathcal{J}$ , Questions 1.1 and 1.3 were also discussed in [7]. However, our methods in this paper are quite different from all the approaches applied in [1,3–6].

As a corollary of solving Questions 1.1 and 1.3, in Theorem 3.6 we present a description of all derivations  $\delta$  acting from a symmetric quasi-Banach ideal  $\mathfrak{I}$  into a symmetric quasi-Banach ideal  $\mathfrak{I}$ . Indeed, every such derivation  $\delta$  is an inner derivation  $\delta(\cdot) = \delta_a(\cdot) = [a, \cdot]$ , where a is some operator from  $\mathfrak{I}$ -dual space  $\mathfrak{I} : \mathfrak{I}$  of  $\mathfrak{I}$ . Recall that  $D(\mathfrak{I}, \mathfrak{I}) = \mathfrak{I} : \mathfrak{I} + \mathbb{C}\mathbb{1}$  [1], where  $\mathfrak{I}$  is the identity operator in  $\mathfrak{B}(H)$ . Theorem 3.6 gives a complete answer to Question 1.2. In particular, using the equality  $C_r : C_p = C_q, 0 < r < p < \infty, \frac{1}{q} = \frac{1}{r} - \frac{1}{p}$ , we recover Hoffman's result that any derivation  $\delta : C_p \to C_r$  has a form  $\delta = \delta_a$  for some  $a \in C_q$ . If  $0 , then <math>D(C_p, C_r) = \mathfrak{B}(H)$ .

When  $\mathfrak{l}, \mathfrak{J}$  are arbitrary symmetric quasi-Banach ideals of compact operators and  $\mathfrak{l} \subseteq \mathfrak{J}$ , then  $\mathfrak{J} : \mathfrak{l} = \mathfrak{B}(H)$ , and, in this case, a linear operator  $\delta : \mathfrak{l} \to \mathfrak{J}$  is a derivation if and only if  $\delta = \delta_a$  for some  $a \in \mathfrak{B}(H)$ . However, if  $\mathfrak{l} \not\subseteq \mathfrak{J}$ , then to obtain a complete description of  $\mathfrak{J}$ -essential commutant of  $\mathfrak{l}$  we need a procedure of finding  $\mathfrak{J} : \mathfrak{l}$ .

To this end, we use the classical Calkin's correspondence between two-sided ideals  $\pounds$  of compact operators and rearrangement invariant solid sequence subspaces  $E_{\pounds}$  of the space  $c_0$  of null sequences. The meaning of this correspondence is the following. Take a compact operator  $x \in \pounds$  and consider a sequence of eigenvalues  $\{\lambda_n(x)\}_{n=1}^{\infty} \in c_0$ . For each sequence  $\xi = \{\xi_n\} \in c_0$ , let  $\xi^* = \{\xi_n\}_{n=1}^{\infty}$  denote a decreasing rearrangement of the sequence  $|\xi| = \{|\xi_n|\}_{n=1}^{\infty}$ . The set

$$E_{\mathfrak{l}} := \{\{\xi_n\}_{n=1}^{\infty} \in c_0 : \{\xi_n^*\}_{n=1}^{\infty} = \{\lambda_n^*(|x|)\}_{n=1}^{\infty} \text{ for some } x \in \mathfrak{l}\},\$$

is a solid linear subspace in the Banach lattice  $c_0$ . In addition, the space  $E_1$  is rearrangement invariant, that is if  $\eta \in c_0, \xi \in E_1, \eta^* = \xi^*$ , then  $\eta \in E_1$ . Conversely, if E is a rearrangement invariant solid sequence subspace in  $c_0$ , then

$$C_E = \{x \in \mathcal{K}(H) : \{\lambda_n(|x|)\}_{n=1}^{\infty} \in E\}$$

is a two-sided ideal of compact operators from  $\mathcal{B}(H)$ .

For the proof of the following theorem we refer to Calkin's original paper, [4], and to Simon's book, [8, Theorem 2.5].

**Theorem 1.4.** The correspondence  $\mathfrak{L} \leftrightarrow E_{\mathfrak{L}}$  is a bijection between rearrangement invariant solid spaces in  $c_0$  and two-sided ideals of compact operators.

In the recent paper [9] this correspondence has been extended to symmetric quasi-Banach (Banach) ideals and *p*-convex symmetric quasi-Banach (Banach) sequence spaces. We use the notation  $\|\cdot\|_{\mathcal{B}(H)}$  and  $\|\cdot\|_{\infty}$  to denote the uniform norm on  $\mathcal{B}(H)$  and on  $l_{\infty}$  respectively.

Recall, that a two-sided ideal  $\pounds$  of compact operators from B(H) is said to be symmetric quasi-Banach (Banach) ideal if it is equipped with a complete quasi-norm (respectively, norm)  $\|\cdot\|_{\pounds}$  such that

$$\|axb\|_{\mathcal{I}} \leq \|a\|_{\mathcal{B}(H)} \|x\|_{\mathcal{I}} \|b\|_{\mathcal{B}(H)}, \quad x \in \mathcal{I}, a, b \in \mathcal{B}(H).$$

A symmetric quasi-Banach (Banach) sequence space  $E \subset c_0$  is a rearrangement invariant solid sequence space equipped with a complete quasi-norm (respectively, norm)  $\|\cdot\|_E$  such that  $\|\eta\|_E \leq \|\xi\|_E$  for every  $\xi \in E$  and  $\eta \in c_0$  such that  $\eta^* \leq \xi^*$ .

It is clear that if  $(\mathfrak{l}, \|\cdot\|_{\mathfrak{l}})$  is a symmetric quasi-Banach ideal of compact operators,  $x \in \mathfrak{l}$  and  $y \in \mathcal{K}(H)$  is such that  $\{\lambda_n^*(|y|)\}_{n=1}^{\infty} \leq \{\lambda_n^*(|x|)\}_{n=1}^{\infty}$ , then  $y \in \mathfrak{l}$  and  $||y||_{\mathfrak{l}} \leq ||x||_{\mathfrak{l}}$ . In Theorem 4.4 we show that if  $E_{\mathfrak{l}}$  is a rearrangement invariant solid space in  $c_0$  corresponding to symmetric quasi-Banach ideal  $\mathfrak{l}$ , then setting  $||\xi||_{E_{\mathfrak{l}}} := ||x||_{\mathfrak{l}}$  (where  $x \in \mathfrak{l}$  is such that  $\xi^* = \{\lambda_n^*(|x|)\}_{n=1}^{\infty}$ ) we obtain that  $(E_{\mathfrak{l}}, \|\cdot\|_{E_{\mathfrak{l}}})$  is a symmetric quasi-Banach sequence space. The converse implication is much harder [9].

**Theorem 1.5.** If  $(E, \|\cdot\|_E)$  is a symmetric Banach (respectively, p-convex symmetric quasi-Banach) sequence space in  $c_0$ , then  $C_E$  equipped with the norm

$$\|x\|_{C_E} := \|\{\lambda_n^*(|x|)\}_{n=1}^\infty\|_{L^2}$$

is a symmetric Banach (respectively, p-convex quasi-Banach) ideal of compact operators from  $\mathcal{B}(H)$ .

In [10] it was shown that for  $\mathcal{J} = C_1$  is the trace class and an arbitrary two-sided ideal  $\mathfrak{I}$  with  $C_1 \subset \mathfrak{I} \subset \mathcal{K}(H)$  the  $C_1$ -dual space (also sometimes called the Köthe dual)  $\mathfrak{I}^{\times} := C_1 : \mathfrak{I}$  of  $\mathfrak{I}$  is precisely an ideal corresponding to symmetric sequence space  $l_1 : E_{\mathfrak{I}}$ , where  $l_1 : E_{\mathfrak{I}}$  is  $l_1$ -dual space of  $E_{\mathfrak{I}}$  (see precise definitions in Section 4). If  $\mathfrak{I}$  is a symmetric Banach ideal of compact operators, then  $C_1$ -dual space  $\mathfrak{I}^{\times}$  is symmetric Banach ideal of compact operator and norms on  $C_1 : \mathfrak{I}$  and  $C_{l_1:E_{\mathfrak{I}}}$  are equal [11]. We extend these results to arbitrary symmetric quasi-Banach ideals  $\mathfrak{I}$ ,  $\mathfrak{J}$  of compact operators with  $\mathfrak{I} \not\subseteq \mathfrak{J}$ , that allows to describe completely all derivations from one symmetric quasi-Banach ideal to another. In addition, we use the technique of  $\mathfrak{J}$ -dual spaces in order to obtain the estimation  $\|\delta_a\|_{\mathfrak{I} \to \mathfrak{J}} \leq 2\|a\|_{\mathfrak{J}:\mathfrak{I}}$  for an arbitrary derivation  $\delta = \delta_a : \mathfrak{I} \to \mathfrak{J}, a \in \mathfrak{J} : \mathfrak{I}$ .

## 2. Preliminaries

Let *H* be an infinite-dimensional Hilbert space over the field  $\mathbb{C}$  of complex numbers and  $\mathcal{B}(H)$  be the *C*<sup>\*</sup>-algebra of all bounded linear operators on *H*. Set

$$\mathcal{B}_h(H) = \{ x \in \mathcal{B}(H) : x^* = x \},\$$

 $\mathcal{B}_{+}(H) = \{ x \in \mathcal{B}_{h}(H) : \forall \varphi \in H (x(\varphi), \varphi) \ge 0 \},\$  $\mathcal{P}(H) = \{ p \in \mathcal{B}(H) : p = p^{2} = p^{*} \}.$ 

It is well known [12, Chapter 2, Section 4] that  $\mathscr{B}_+(H)$  is a proper cone in  $\mathscr{B}_h(H)$  and with the partial order given by  $x \leq y \Leftrightarrow y - x \in \mathscr{B}_+(H)$  the set  $\mathscr{B}_h(H)$  is a partially ordered vector space over the field  $\mathbb{R}$  of real numbers, satisfying  $y^*xy \geq 0$  for all  $y \in \mathscr{B}(H)$ ,  $x \in \mathscr{B}_+(H)$ . Note, that  $-||x||_{\mathscr{B}(H)}\mathbb{1} \leq x \leq ||x||_{\mathscr{B}(H)}\mathbb{1}$  for all  $x \in \mathscr{B}_h(H)$ , where  $\mathbb{1}$  is the identity operator on H. It is known (see e.g. [12, Chapter 4, Section 2, Proposition 4.2.3]) that every operator x in  $\mathscr{B}_h(H)$  can be uniquely written as follows:  $x = x_+ - x_-$ , where  $x_+, x_- \in \mathscr{B}_+(H)$  and  $x_+x_- = 0$ . In addition, every operator  $x \in \mathscr{B}(H)$  can be represented as x = u|x| (the polar decomposition of the operator x), where  $|x| = (x^*x)^{\frac{1}{2}}$  and u is a partial isometry in  $\mathscr{B}(H)$  such that  $u^*u$  is the right support of x [13, Chapter VI, Section 5, Theorem VI.10].

We need the following useful proposition.

**Proposition 2.1** ([14, Chapter 2, Section 4, Proposition 2.4.3]). If  $x, y \in \mathcal{B}_+(H), x \leq y$ , then there exists an operator  $a \in \mathcal{B}(H)$  such that  $||a||_{\mathcal{B}(H)} \leq 1$  and  $x = a^*ya$ .

Let  $\mathcal{K}(H)$  be a two-sided ideal in  $\mathcal{B}(H)$  of all compact operators and  $x \in \mathcal{K}(H)$ . The eigenvalues  $\{\lambda_n(|x|)\}_{n=1}^{\infty}$  of the operator |x| arranged in decreasing order and repeated according to algebraic multiplicity are called singular values of the operator x, i.e.  $s_n(x) = \lambda_n(|x|), n \in \mathbb{N}$ , where  $\lambda_1(|x|) \ge \lambda_2(|x|) \ge \cdots$  and  $\mathbb{N}$  is the set of all natural numbers. We need the following properties of singular values.

## Proposition 2.2 ([15, Chapter II]).

(a)  $s_n(x) = s_n(x^*), s_n(\alpha x) = |\alpha|s_n(x)$  for all  $x \in \mathcal{K}(H), \alpha \in \mathbb{C}$ ; (b)  $s_n(xb) \leq s_n(x) ||b||_{\mathcal{B}(H)}, s_n(bx) \leq s_n(x) ||b||_{\mathcal{B}(H)}$  for all  $x \in \mathcal{K}(H), b \in \mathcal{B}(H)$ .

Let  $\mathcal{F}(H)$  be a two-sided ideal in  $\mathcal{B}(H)$  of all operators with finite range and let  $\mathcal{I}$  be an arbitrary proper two-sided ideal in  $\mathcal{B}(H)$ . Then  $\mathcal{I}$  is a \*-ideal [12, Chapter 6, Section 8, Proposition 6.8.9] and the following inclusion holds:  $\mathcal{F}(H) \subseteq \mathcal{I}$  [12, Chapter 6, Section 8, Theorem 6.8.3], in particular,  $\mathcal{I}$  contains all finite-dimensional projections from  $\mathcal{P}(H)$ . If H is a separable Hilbert space, then the inclusion  $\mathcal{I} \subseteq \mathcal{K}(H)$  also holds [4, Theorem 1.4]. If, however, H is not separable, then for proper two-sided ideals in  $\mathcal{B}(H)$  we have the following proposition.

#### Proposition 2.3 ([10, Proposition 1]).

(i)  $\mathcal{D} = \{x \in \mathcal{B}(H) : x(H) \text{ is separable}\}$  is a proper two-sided ideal in  $\mathcal{B}(H)$ , in addition  $\mathcal{K}(H) \subset \mathcal{D}$ ; (ii) If  $\mathfrak{l}$  is an ideal in  $\mathcal{B}(H)$ , then either  $\mathfrak{l} \subseteq \mathcal{K}(H)$  or  $\mathcal{D} \subseteq \mathfrak{l}$ .

Let *X* be a linear space over the field  $\mathbb{C}$ . A function  $\|\cdot\|$  from *X* to  $\mathbb{R}$  is a quasi-norm, if for all  $x, y \in X, \alpha \in \mathbb{C}$  the following properties hold:

(1)  $||x|| \ge 0$ ,  $||x|| = 0 \Leftrightarrow x = 0$ ;

(2)  $\|\alpha x\| = |\alpha| \|x\|;$ 

(3)  $||x + y|| \leq C(||x|| + ||y||), C \geq 1.$ 

The couple  $(X, \|\cdot\|)$  is called a quasi-normed space and the least of all constants *C* satisfying the inequality (3) above is called the modulus of concavity of the quasi-norm  $\|\cdot\|$ .

It is known (see e.g. [16, Section 1]) that for each quasi-norm  $\|\cdot\|$  on X there exists an equivalent p-additive quasinorm  $\|\|\cdot\|$ , that is a quasi-norm  $\|\|\cdot\|$  on X satisfying the following property of p-additivity:  $\||x + y||^p \leq \||x\||^p + \||y\||^p$ , where p is such that  $C = 2^{\frac{1}{p}-1}$ , in particular,  $0 since <math>C \geq 1$ . In this case, the function  $d : X^2 \to \mathbb{R}$  defined by  $d(x, y) := \||x - y\||^p$ ,  $x, y \in X$  is an invariant metric on X, and in the topology  $\tau_d$ , generated by the metric d, the linear space X is a topological vector space. If (X, d) is a complete metric space, then  $(X, \|\cdot\|)$  is called a quasi-Banach space and the quasi-norm  $\|\cdot\|$  is a complete quasi-norm; in this case,  $(X, \tau_d)$  is an F-space. **Proposition 2.4.** Let  $(X, \|\cdot\|)$  be a quasi-Banach space with the modulus of concavity C, let  $\|\cdot\|$  be a p-additive quasi-norm equivalent to the quasi-norm  $\|\cdot\|$ ,  $C = 2^{\frac{1}{p}-1}$ . If  $x_n \in X$ ,  $n \ge 1$  and  $\sum_{n=1}^{\infty} \|x_n\|^p < \infty$ , then the series  $\sum_{n=1}^{\infty} x_n$  converges in  $(X, \|\cdot\|)$ , i.e. there exists  $x \in X$  such that  $\|x - \sum_{n=1}^{k} x_n\| \to 0$  for  $k \to \infty$ .

**Proof.** For partial sums  $S_k = \sum_{n=1}^k x_n$  we have

$$d(S_{k+l}, S_k) = |||S_{k+l} - S_k|||^p = ||| \sum_{n=l+1}^{k+l} x_n |||^p \leq \sum_{n=l+1}^{k+l} |||x_n|||^p \to 0 \quad \text{for } k, l \to \infty,$$

i.e.  $\{S_k\}_{k=1}^{\infty}$  is a Cauchy sequence in (X, d). Since the metric space (X, d) is complete, there exists  $x \in X$  such that  $d(S_k, x) = |||S_k - x|||^p \to 0$  for  $k \to \infty$ . Since quasi-norms  $|| \cdot ||$  and  $||| \cdot |||$  are equivalent we have that  $||S_k - x|| \to 0$  for  $k \to \infty$ .  $\Box$ 

Let  $(X, \|\cdot\|_X)$ ,  $(Y, \|\cdot\|_Y)$  be quasi-normed spaces and let  $\mathscr{B}(X, Y)$  be the linear space of all bounded linear mappings  $T : X \to Y$ . For each  $T \in \mathscr{B}(X, Y)$  set  $\|T\|_{\mathscr{B}(X,Y)} = \sup\{\|Tx\|_Y : \|x\| \le 1\}$ . As in the case of normed spaces, the set  $\mathscr{B}(X, Y)$  coincides with the set of all continuous linear mappings from X into Y, moreover, the function  $\|\cdot\|_{\mathscr{B}(X,Y)} : \mathscr{B}(X, Y) \to \mathbb{R}$  is a quasi-norm on  $\mathscr{B}(X, Y)$  whose modulus of concavity, does not exceed the modulus of concavity of the quasi-norm  $\|\cdot\|_Y$  [16, Section 1]. Furthermore,  $\|Tx\|_Y \le \|T\|_{\mathscr{B}(X,Y)} \|x\|_X$  for all  $T \in \mathscr{B}(X, Y)$  and  $x \in X$ .

**Proposition 2.5.** If  $(Y, \|\cdot\|_Y)$  is a quasi-Banach space, then  $(\mathscr{B}(X, Y), \|\cdot\|_{\mathscr{B}(X,Y)})$  is a quasi-Banach space too.

**Proof.** Since  $\|\cdot\|_Y$  is a quasi-norm on *Y*, there exists a *p*-additive quasi-norm  $\|\|\cdot\|_Y$  equivalent to  $\|\cdot\|_Y$ , i.e.  $\alpha_1 \|\|y\|_Y \leq \|y\|_Y \leq \beta_1 \|\|y\|_Y$  for all  $y \in Y$  and some constants  $\alpha_1, \beta_1 > 0$ . Similarly, there exists a *q*-additive quasi-norm  $\|\|\cdot\|_{\mathcal{B}(X,Y)}$  equivalent to the quasi-norm  $\|\cdot\|_{\mathcal{B}(X,Y)}$ , i.e.  $\alpha_2 \|\|T\|\|_{\mathcal{B}(X,Y)} \leq \|T\|_{\mathcal{B}(X,Y)} \leq \beta_2 \|\|T\|\|_{\mathcal{B}(X,Y)}$  for all  $T \in \mathcal{B}(X,Y)$  and some  $\alpha_2, \beta_2 > 0, 0 < p, q \leq 1$ .

Let  $\{T_n\}_{n=1}^{\infty}$  be a Cauchy sequence in  $(\mathcal{B}(X, Y), d)$ , where  $d(T, S) = |||T - S|||_{\mathcal{B}(X,Y)}^q$ ,  $T, S \in \mathcal{B}(X, Y)$ . Fix  $\varepsilon > 0$  and select a positive integer  $n(\varepsilon)$  such that  $|||T_n - T_m||_{\mathcal{B}(X,Y)}^q < \varepsilon^q$  for all  $n, m \ge n(\varepsilon)$ . For every  $x \in X$  we have

$$\||T_n x - T_m x||_Y^p \leq \frac{1}{\alpha_1^p} ||T_n x - T_m x||_Y^p \leq \frac{1}{\alpha_1^p} ||T_n - T_m||_{\mathcal{B}(X,Y)}^p ||x||_X^p$$
$$\leq \left(\frac{\beta_2}{\alpha_1}\right)^p ||T_n - T_m||_{\mathcal{B}(X,Y)}^p ||x||_X^p < \left(\frac{\beta_2}{\alpha_1}\right)^p ||x||_X^p \varepsilon^p \quad \text{for } n, m \geq n(\varepsilon)$$

Thus,  $\{T_n x\}_{n=1}^{\infty}$  is a Cauchy sequence in  $(Y, d_Y)$ , where  $d_Y(x, y) = |||x - y|||_Y^p$ . Since the metric space  $(Y, d_Y)$  is complete, there exists  $T(x) \in Y$  such that  $|||T_n(x) - T(x)||_Y^p \to 0$  for  $n \to \infty$ . The verification that  $T \in \mathcal{B}(X, Y)$  and  $|||T_n - T||_{\mathcal{B}(X,Y)}^q \to 0$  for  $n \to \infty$  is routine and is therefore omitted.  $\Box$ 

Let  $\mathfrak{l}$  be a nonzero two-sided ideal in  $\mathfrak{B}(H)$ .

A quasi-norm  $\|\cdot\|_{\mathfrak{l}}: \mathfrak{l} \to \mathbb{R}$  is called symmetric quasi-norm if

(1)  $\|axb\|_{\mathfrak{l}} \leq \|a\|_{\mathfrak{B}(H)} \|x\|_{\mathfrak{l}} \|b\|_{\mathfrak{B}(H)}$  for all  $x \in \mathfrak{l}, a, b \in \mathfrak{B}(H)$ ;

(2)  $||p||_{\mathfrak{l}} = 1$  for any one-dimensional projection  $p \in \mathfrak{l}$ .

**Proposition 2.6** (Compare [15, Chapter III, Section 2]). Let  $\|\cdot\|_{\mathcal{L}}$  be a symmetric quasi-norm on a two-sided ideal  $\mathcal{L}$ . Then

- (a)  $||x||_{\mathfrak{l}} = ||x^*||_{\mathfrak{l}} = ||x|||_{\mathfrak{l}}$  for all  $x \in \mathfrak{l}$ ;
- (b) If  $x \in \mathcal{I} \subset \mathcal{K}(H)$ ,  $y \in \mathcal{K}(H)$ ,  $s_n(y) \leq s_n(x)$ ,  $n = 1, 2, ..., then y \in \mathcal{I} and ||y||_{\mathcal{I}} \leq ||x||_{\mathcal{I}}$ ;
- (c) If  $\mathcal{I} \subset \mathcal{K}(H)$ , then  $||x||_{\mathcal{B}(H)} \leq ||x||_{\mathcal{I}}$  for all  $x \in \mathcal{I}$ .

**Proof.** (a) Let x = u|x| be the polar decomposition of the operator x. Then  $||x||_1 = ||u|x||_1 \leq ||x||_1$ . Since  $u^*x = |x|$ , the inequality  $||x||_1 \leq ||x||_1$  holds and so  $|||x||_1 = ||x||_1$ . Using the equalities  $x^* = |x|u^*, x^*u = |x|$  in the same manner, we obtain that  $||x||_1 = ||x^*||_1$ .

(b) Since x, y are compact operators and  $s_n(y) \leq s_n(x)$  we have  $s_n(y) = \alpha_n s_n(x)$ , where  $0 \leq \alpha_n \leq 1, n \in \mathbb{N}$ . By the Hilbert–Schmidt theorem, there exists an orthogonal system of eigenvectors  $\{\varphi_n\}_{n=1}^{\infty}$  for the operator |y| such that  $|y|(\varphi) = \sum_{n=1}^{\infty} s_n(y)c_n\varphi_n$ , where  $c_n = (\varphi, \varphi_n), \varphi \in H$ . Since  $s_n(y) = \alpha_n s_n(x)$ , it follows that  $\operatorname{card}\{\varphi_n\} \leq \operatorname{card}\{\psi_n\}$ , where  $\{\psi_n\}_{n=1}^{\infty}$  is an orthogonal system of eigenvectors for the operator |x|. Thus, there exists a unitary operator  $u \in \mathcal{B}(H)$  such that  $u(\psi_n) = \varphi_n$ , in addition,  $u|x|u^{-1} \geq |y|$ .

By Proposition 2.1, there exists an operator  $a \in \mathcal{B}(H)$  with  $||a||_{\mathcal{B}(H)} \leq 1$  such that  $|y| = a^* u |x| u^{-1} a$ . Consequently,  $|y| \in \mathcal{I}$  and  $||y||_{\ell} \leq ||x||_{\ell}$ , thus  $y \in \mathcal{I}$  and  $||y||_{\ell} \leq ||x||_{\ell}$ .

(c) Let  $y(\cdot) = s_1(x)(\cdot, \varphi)\varphi$ , where  $\varphi$  is an arbitrary vector in H with  $\|\varphi\|_H = 1$ . Whereas  $s_n(y) \leq s_n(x)$ , we have  $\|x\|_{\mathcal{B}(H)} = s_1(x) = \|y\|_{\mathcal{B}(H)} = \|y\|_{\mathcal{I}} \leq \|x\|_{\mathcal{I}}$  (see (b)).  $\Box$ 

A two-sided ideal  $\mathfrak{I}$  of compact operators from  $\mathfrak{B}(H)$  is called a symmetric guasi-Banach (respectively, Banach) ideal, if I is equipped with a complete symmetric guasi-norm (respectively, norm).

Let  $\mathfrak{l}, \mathfrak{F}$  be two-sided ideals of compact operators from  $\mathfrak{B}(H)$ . A linear mapping  $\delta : \mathfrak{l} \to \mathfrak{F}$  is called a derivation, if  $\delta(xy) = \delta(x)y + x\delta(y)$  for all  $x, y \in I$ . If, in addition,  $\delta(x^*) = (\delta(x))^*$  for all  $x \in I$ , then  $\delta$  is called a \*-derivation. Denote by  $Der(\mathcal{I}, \mathcal{J})$  the linear space of all derivations from  $\mathcal{I}$  into  $\mathcal{J}$ .

For each derivation  $\delta : \mathfrak{l} \to \mathfrak{J}$  define the mappings  $\delta_{\text{Re}}(x) := \frac{\delta(x) + \delta(x^*)^*}{2}$  and  $\delta_{\text{Im}}(x) := \frac{\delta(x) - \delta(x^*)^*}{2i}$ ,  $x \in \mathfrak{l}$ . It is easy to see that  $\delta_{\text{Re}}$  and  $\delta_{\text{Im}}$  are \*-derivations from  $\mathfrak{l}$  into  $\mathfrak{J}$ , moreover  $\delta = \delta_{\text{Re}} + i\delta_{\text{Im}}$ . If  $a \in \mathcal{B}(H)$ , then the mapping  $\delta_a : \mathcal{B}(H) \to \mathcal{B}(H)$  given by  $\delta_a(x) := [a, x] = ax - xa, x \in \mathcal{B}(H)$ , is a derivation.

Derivations of this type are called inner. When  $\mathfrak{X}$  is a two-sided ideal in  $\mathcal{B}(H)$ , then  $\delta_a(\mathfrak{X}) \subset \mathfrak{X}$  for all  $a \in \mathcal{B}(H)$ . If  $\mathfrak{X}$  is also a two-sided ideal in  $\mathcal{B}(H)$  and  $a \in \mathcal{J}$ , then  $\delta_a(\mathfrak{l}) \subset \mathfrak{l} \cap \mathcal{J}$ .

#### **3.** The set $Der(\mathcal{I}, \mathcal{J})$ for symmetric quasi-Banach ideals $\mathcal{I}$ and $\mathcal{J}$

The following theorem gives a positive answer to Question 1.3.

**Theorem 3.1.** Let I,  $\mathcal{J}$  be symmetric quasi-Banach ideals of compact operators from  $\mathcal{B}(H)$  and  $\delta$  is a derivation from I into  $\mathcal{J}$ . Then  $\delta$  is a continuous mapping from  $\mathfrak{l}$  into  $\mathfrak{J}$ , i.e.  $\delta \in \mathfrak{B}(\mathfrak{l}, \mathfrak{J})$ .

**Proof.** Without loss of generality we may assume that  $\delta$  is a \*-derivation. The spaces  $(I, \|\cdot\|_I), (\mathcal{J}, \|\cdot\|_{\mathcal{J}})$  are *F*-spaces, and therefore it is sufficient to prove that the graph of  $\delta$  is closed. Suppose a contrary, that is there exists a sequence  $\{x_n\}_{n=1}^{\infty} \subset I$ such that  $\|\cdot\|_{\mathfrak{l}} - \lim_{n \to \infty} x_n = 0$  and  $\|\cdot\|_{\mathfrak{f}} - \lim_{n \to \infty} \delta(x_n) = x \neq 0$ . Since  $x_n = \operatorname{Rex}_n + i\operatorname{Imx}_n$  for all  $n \in \mathbb{N}$ , where  $\operatorname{Rex}_n = \frac{x_n + x_n^*}{2}$ ,  $\operatorname{Imx}_n = \frac{x_n - x_n^*}{2}$ , and  $\|x_n\|_{\mathfrak{l}} \to 0$ ,  $\|x_n^*\|_{\mathfrak{l}} = \|x_n\|_{\mathfrak{l}} \to 0$ , we have

$$\|\operatorname{Rex}_n\|_{\mathfrak{l}} = \left\|\frac{x_n + x_n^*}{2}\right\|_{\mathfrak{l}} \leq \frac{C(\|x_n\|_{\mathfrak{l}} + \|x_n^*\|_{\mathfrak{l}})}{2} \to 0$$

and

$$\|\operatorname{Im} x_n\|_{\mathfrak{l}} = \left\|\frac{x_n - x_n^*}{2}\right\|_{\mathfrak{l}} \leq \frac{C(\|x_n\|_{\mathfrak{l}} + \|x_n^*\|_{\mathfrak{l}})}{2} \to 0,$$

where *C* is the modulus of concavity of the quasi-norm  $\|\cdot\|_{J}$ . Consequently, we may assume that  $x_n^* = x_n$  for all  $n \in \mathbb{N}$ . In this case, from the relationships

$$x \stackrel{\|\cdot\|_{\mathscr{J}}}{\longleftarrow} \delta(x_n) = \delta(x_n^*) = \delta(x_n)^* \stackrel{\|\cdot\|_{\mathscr{J}}}{\longrightarrow} x^*,$$

we obtain  $x = x^*$ .

Writing  $x = x_+ - x_-$ , where  $x_+, x_- \ge 0$  and  $x_+x_- = 0$ , we may assume that  $x_+ \ne 0$ , otherwise we consider the sequence  $\{-x_n\}_{n=1}^{\infty}$ . Since  $x_+$  is a nonzero positive compact operator,  $\lambda = \|x_+\|_{\mathcal{B}(H)}$  is an eigenvalue of  $x_+$  corresponding to a finite-dimensional eigensubspace. Let q be a projection onto this subspace.

Fix an arbitrary non-zero vector  $\varphi \in q(H)$  and consider the projection p onto the one-dimensional subspace spanned by  $\varphi$ . Combining the inequality  $p \leq q$  with the equality  $qx_+q = \lambda q$ , we obtain  $pxp = pqxqp = \lambda pqp = \lambda p$ . Replacing, if necessary, the sequence  $\{x_n\}_{n=1}^{\infty}$  with the sequence  $\{\frac{x_n}{\lambda}\}_{n=1}^{\infty}$ , we may assume

$$pxp = p$$
.

(1)

Since p is one-dimensional, it follows that  $pap = \alpha p, \alpha \in \mathbb{C}$  for any operator  $a \in \mathcal{B}(H)$ , in particular,  $px_n p = \alpha_n p$ , therefore  $|\alpha_n| = \|px_np\|_{\mathcal{X}} \to 0$  for  $n \to \infty$ . Writing

$$\|\delta(p)x_np\|_{\mathscr{J}} \leq \|\delta(p)\|_{\mathscr{J}} \|x_np\|_{\mathscr{B}(H)} \leq \|\delta(p)\|_{\mathscr{J}} \|x_n\|_{\mathscr{B}(H)} \leq \|\delta(p)\|_{\mathscr{J}} \|x_n\|_{\mathscr{I}},$$

we infer  $\|\delta(p)x_np\|_{\mathscr{J}} \to 0$  and  $\|px_n\delta(p)\|_{\mathscr{J}} = \|(\delta(p)x_np)^*\|_{\mathscr{J}} \to 0$ .

Since  $pxp \stackrel{(1)}{=} p \in \mathcal{J}$ , we have

$$\begin{split} \|\delta(px_np) - pxp\|_{\mathscr{J}} &= \|\delta(p)x_np + p\delta(x_n)p + px_n\delta(p) - pxp\|_{\mathscr{J}} \\ &\leq C_1 \|\delta(p)x_np + px_n\delta(p)\|_{\mathscr{J}} + C_1 \|p\delta(x_n)p - pxp\|_{\mathscr{J}} \\ &\leq C_1^2 \|\delta(p)x_np\|_{\mathscr{J}} + C_1^2 \|px_n\delta(p)\|_{\mathscr{J}} + C_1 \|p\delta(x_n)p - pxp\|_{\mathscr{J}} \to 0, \end{split}$$

where  $C_1$  is the modulus of concavity of the quasi-norm  $\|\cdot\|_{\mathscr{J}}$ , i.e.  $\delta(px_np) \xrightarrow{\|\cdot\|_{\mathscr{J}}} pxp$ . Hence

$$p \stackrel{(1)}{=} pxp = \|\cdot\|_{\mathscr{J}} - \lim_{n \to \infty} \delta(px_n p) = \|\cdot\|_{\mathscr{J}} - \lim_{n \to \infty} \delta(\alpha_n p) = \|\cdot\|_{\mathscr{J}} - \lim_{n \to \infty} \alpha_n \delta(p) = 0,$$

which is a contradiction, since  $p \neq 0$ .

Consequently,  $\delta$  is a continuous mapping from  $(\mathfrak{I}, \|\cdot\|_{\mathfrak{I}})$  into  $(\mathfrak{J}, \|\cdot\|_{\mathfrak{I}})$ .  $\Box$ 

Note, that in [7, Theorem 8] a version of Theorem 3.1 is obtained for the case of an arbitrary symmetric Banach ideal  $l = \mathcal{R}$  of  $\tau$ -compact operators in a von Neumann algebra  $\mathcal{M}$  equipped with a semi-finite normal faithful trace  $\tau$ .

The following theorem gives a positive answer to Question 1.1.

**Theorem 3.2.** If  $\mathfrak{1}, \mathfrak{J}$  are symmetric quasi-Banach ideals of compact operators from  $\mathfrak{B}(H)$ , then for every derivation  $\delta : \mathfrak{1} \to \mathfrak{J}$  there exists an operator  $a \in \mathfrak{B}(H)$  such that  $\delta(\cdot) = \delta_a(\cdot) = [a, \cdot]$ , in addition,  $||a||_{\mathfrak{B}(H)} \leq ||\delta||_{\mathfrak{B}(\mathfrak{1},\mathfrak{J})}$ .

**Proof.** Fix an arbitrary vector  $\varphi_0 \in H$  with  $\|\varphi_0\|_H = 1$  and consider projection  $p_0(\cdot) := (\cdot, \varphi_0)\varphi_0$  onto one-dimensional subspace spanned by  $\varphi_0$ . Obviously,  $p_0 \in \mathcal{I} \cap \mathcal{J}$ .

Let  $x \in \mathcal{I}$ ,  $x(\varphi_0) = 0$  and  $\varphi \in H$ . Since

$$xp_0(\varphi) = x(p_0(\varphi)) = x((\varphi, \varphi_0)\varphi_0) = (\varphi, \varphi_0)x(\varphi_0) = 0,$$

it follows that  $xp_0 = 0$ , and so  $\delta(xp_0)(\varphi_0) = 0$ . Consequently, the linear operator  $a(z(\varphi_0)) = \delta(zp_0)(\varphi_0)$  is correctly defined on the linear subspace  $L := \{z(\varphi_0) : z \in I\} \subset H$ . If  $\varphi \in H, z(\cdot) = (\cdot, \varphi_0)\varphi$ , then  $z \in I$  and  $z(\varphi_0) = \varphi$ , which implies L = H. For arbitrary  $z \in \mathcal{B}(H), \varphi \in H$ , we have

$$\begin{aligned} |zp_0|^2(\varphi) &= (p_0 z^* z p_0)(\varphi) = (p_0 z^* z)((\varphi, \varphi_0) \varphi_0) = (\varphi, \varphi_0) p_0(z^* z(\varphi_0)) \\ &= (z\varphi_0, z\varphi_0)(\varphi, \varphi_0)\varphi_0 = (z\varphi_0, z\varphi_0) p_0(\varphi) = \|z(\varphi_0)\|_H^2 p_0(\varphi), \end{aligned}$$

in particular,  $||zp_0||_{\mathcal{B}(H)} = ||zp_0||_{\mathcal{B}(H)} = ||z(\varphi_0)||_H p_0||_{\mathcal{B}(H)} = ||z(\varphi_0)||_H$ . Applying this observation together with Theorem 3.1 guaranteeing  $||\delta(x)||_{\mathcal{J}} \leq ||\delta||_{\mathcal{B}(\mathfrak{I},\mathcal{J})} ||x||_{\mathfrak{I}}$  for all  $x \in \mathfrak{I}$ , we have

$$\begin{aligned} \|a(x(\varphi_0))\|_{H} &= \|\delta(xp_0)(\varphi_0)\|_{H} = \|\delta(xp_0)p_0\|_{\mathcal{B}(H)} \leq \|\delta(xp_0)\|_{\mathcal{B}(H)} \|p_0\|_{\mathcal{B}(H)} \\ &\leq \|\delta(xp_0)\|_{\mathcal{J}} \leq \|\delta\|_{\mathcal{B}(I,\mathcal{J})} \|xp_0\|_{\mathcal{I}} \\ &\leq \|\delta\|_{\mathcal{B}(I,\mathcal{J})} \|p_0\|_{\mathcal{I}} \|xp_0\|_{\mathcal{B}(H)} = \|\delta\|_{\mathcal{B}(I,\mathcal{J})} \|x(\varphi_0)\|_{H}. \end{aligned}$$

This shows that *a* is a bounded operator on *H* and  $||a||_{\mathcal{B}(H)} \leq ||\delta||_{\mathcal{B}(1,\mathcal{J})}$ .

Finally, for all  $x, z \in \mathcal{X}$  we have

$$\begin{aligned} [a, x](z(\varphi_0)) &= ax(z(\varphi_0)) - xa(z(\varphi_0)) = a(xz(\varphi_0)) - xa(z(\varphi_0)) \\ &= \delta(xzp_0)(\varphi_0) - x\delta(zp_0)(\varphi_0) = \delta(x)zp_0(\varphi_0) = \delta(x)z(\varphi_0) \end{aligned}$$

and since L = H, it follows  $\delta(\cdot) = [a, \cdot] = \delta_a(\cdot)$ .  $\Box$ 

Let  $\mathcal{I}, \mathcal{J}$  be arbitrary two-sided ideals in  $\mathcal{B}(H)$ . The set

$$D(\mathfrak{I},\mathfrak{J}) = \{a \in \mathfrak{B}(H) : ax - xa \in \mathfrak{J}, \forall x \in \mathfrak{I}\}$$

is called the *J*-essential commutant of *I*, and the set

 $\mathcal{J}: \mathcal{I} = \{ a \in \mathcal{B}(H) : ax \in \mathcal{J}, \forall x \in \mathcal{I} \}$ 

is called the  $\mathcal{J}$ -dual space of  $\mathcal{I}$ . It is clear that  $\mathcal{J} : \mathcal{I}$  is a two-sided ideal in  $\mathcal{B}(H)$ . Hence  $\mathcal{J} : \mathcal{I}$  is a \*-ideal, and therefore  $xa \in \mathcal{J}$  for all  $x \in \mathcal{I}, a \in \mathcal{J} : \mathcal{I}$ . If  $\mathcal{I} \not\subseteq \mathcal{J}$ , then  $\mathbb{1} \notin \mathcal{J} : \mathcal{I}$ , i.e.  $\mathcal{J} : \mathcal{I} \neq \mathcal{B}(H)$ , and so  $\mathcal{J} : \mathcal{I}$  is a proper ideal in  $\mathcal{B}(H)$ . However, in case when  $\mathcal{I} \subseteq \mathcal{J}$  we have  $\mathcal{J} : \mathcal{I} = \mathcal{B}(H)$ , in particular,  $C_r : C_p = \mathcal{B}(H)$  for all  $0 , where <math>C_p = \{x \in \mathcal{K}(H) : ||x||_p = (tr(|x|^p))^{\frac{1}{p}} < \infty\}$  is the Schatten ideal of compact operators from  $\mathcal{B}(H), 0 , <math>tr$  is the standard trace on  $\mathcal{B}_+(H)$ .

**Proposition 3.3.** If l,  $\mathcal{J}$  are proper two-sided ideals of compact operators in  $\mathcal{B}(H)$  and  $l \not\subseteq \mathcal{J}$ , then  $\mathcal{J} : l \subset \mathcal{K}(H)$ .

**Proof.** Since  $1 \not\subseteq \mathcal{J}, \mathcal{J} : 1$  is a proper two-sided ideal in  $\mathcal{B}(H)$ . If *H* is a separable Hilbert space, then  $\mathcal{J} : 1 \subset \mathcal{K}(H)$ [4, Theorem 1.4]. Suppose that *H* is not separable and  $\mathcal{J} : 1 \not\subseteq \mathcal{K}(H)$ . By Proposition 2.3, the proper two-sided ideal  $\mathcal{D} = \{x \in \mathcal{B}(H) : x(H) \text{ is separable } \} \subset \mathcal{J} : 1$ . Since  $1 \not\subseteq \mathcal{J}$  there exists a positive compact operator  $a \in 1 \setminus \mathcal{J}$ . Since  $a \in \mathcal{D}$ , we have that  $L := \overline{a(H)}$  is separable. Let  $p \in \mathcal{P}(H)$  be the orthogonal projection onto *L*. Since  $a \notin \mathcal{J}$ , it follows that *L* is infinite-dimensional subspace. Indeed, if it were not the case, then *a* would be a finite rank operator and automatically belonging to  $a \in \mathcal{J}$ . Therefore  $p \in \mathcal{D} \setminus \mathcal{K}(H) \subset \mathcal{J} : 1$ , in addition,  $0 \neq a = pap \in (p1p) \setminus (ppp)$ , i.e.  $p1p \not\subseteq ppp$ . Since *L* is a separable Hilbert space, we have  $(ppp) : (p1p) \subset \mathcal{K}(L)$ .

Let  $y \in p \& p$ , i.e. y = py'p for some  $y' \in \&$ . Since  $p \in \mathcal{D} \subset \& \mathcal{J} : \& \mathcal{J}$  we have  $py' \in \& \mathcal{J}$ , hence,  $p(py')p \in p \& p$ . Consequently,  $p \in (p \& p) : (p \& p)$ , i.e. p is a compact operator in L, which is a contradiction. Thus,  $\& \& \mathcal{J} : \& \mathcal{L} \subset \& \mathcal{K}(H)$ .  $\Box$ 

For arbitrary two-sided ideals  $\mathfrak{l}, \mathfrak{J}$  in  $\mathfrak{B}(H)$  we denote by  $d(\mathfrak{l}, \mathfrak{J})$  the set of all derivations  $\delta$  from  $\mathfrak{B}(H)$  into  $\mathfrak{B}(H)$  such that  $\delta(\mathfrak{l}) \subset \mathfrak{J}$ . To characterize the set  $d(\mathfrak{l}, \mathfrak{J})$  we need the following theorem.

**Theorem 3.4** ([1, Theorem 1.1]). D(I, J) = J : I + C1.

It should be noted that Theorem 3.4 holds for arbitrary von Neumann algebras, i.e. for any two-sided ideals  $\mathfrak{I}, \mathfrak{J}$  in von Neumann algebra  $\mathfrak{M}$  we have  $D(\mathfrak{I}, \mathfrak{J}) = \mathfrak{J} : \mathfrak{I} + Z(\mathfrak{M})$ , where  $Z(\mathfrak{M})$  is the center of  $\mathfrak{M}$  [5, Corollary 5].

**Proposition 3.5.**  $d(\mathfrak{l}, \mathfrak{J}) = \{\delta_a : a \in D(\mathfrak{l}, \mathfrak{J})\} = \{\delta_a : a \in \mathfrak{J} : \mathfrak{l}\}.$ 

**Proof.** Let  $\delta \in d(\mathfrak{I}, \mathfrak{J})$ . Since  $\delta$  is a derivation from  $\mathfrak{B}(H)$  into  $\mathfrak{B}(H)$  there exists an operator  $a \in \mathfrak{B}(H)$  such that  $\delta = \delta_a$ . If  $x \in \mathfrak{I}$ , then  $[a, x] = \delta(x) \in \mathfrak{J}$ , i.e.  $a \in D(\mathfrak{I}, \mathfrak{J})$ . Using Theorem 3.4, we have that  $a = b + \alpha \mathbb{1}$ , where  $b \in \mathfrak{J} : \mathfrak{I}, \alpha \in \mathbb{C}$ , and therefore  $\delta = \delta_a = \delta_b$ .

Further, let  $\delta_a(\cdot) = [a, \cdot]$  be the inner derivation on  $\mathcal{B}(H)$  generated by an operator  $a \in \mathcal{J}$ : *1*. For all  $x \in \mathcal{I}$  we have  $\delta_a(x) = [a, x] = ax - xa \in \mathcal{J}$ . Consequently,  $\delta_a \in d(\mathcal{I}, \mathcal{J})$ .  $\Box$ 

Now, let  $\mathfrak{l}, \mathfrak{J}$  be arbitrary symmetric quasi-Banach ideals of compact operators from  $\mathfrak{B}(H)$ . According to Theorem 3.2, for each derivation  $\delta \in \text{Der}(\mathfrak{l}, \mathfrak{J})$  there exists an operator  $a \in \mathfrak{B}(H)$  such that  $\delta(x) = \delta_a(x) = [a, x]$  for all  $x \in \mathfrak{l}$ . Since  $\delta(\mathfrak{l}) \subset \mathfrak{J}$  we have  $[a, x] \in \mathfrak{J}$  for all  $x \in \mathfrak{l}$ , i.e.  $a \in D(\mathfrak{l}, \mathfrak{J})$ . Hence,  $\delta_a \in d(\mathfrak{l}, \mathfrak{J})$  (see Proposition 3.5). On the other hand, if  $a \in \mathfrak{J} : \mathfrak{l}$ , then  $\delta_a \in d(\mathfrak{l}, \mathfrak{J})$  (see Proposition 3.5), in particular,  $\delta_a(\mathfrak{l}) \subset \mathfrak{J}$ .

Hence, in view of Proposition 3.5 and Theorem 3.2, the following theorem holds.

**Theorem 3.6.** For arbitrary symmetric quasi-Banach ideals  $\mathfrak{l}, \mathfrak{g}$  of compact operators in  $\mathcal{B}(H)$  each derivation  $\delta : \mathfrak{l} \to \mathfrak{g}$  has a form  $\delta = \delta_a$  for some  $a \in \mathfrak{g} : \mathfrak{l}$ , in addition  $||a + \alpha \mathbb{1}||_{\mathcal{B}(H)} \leq ||\delta_a||_{\mathcal{B}(\mathfrak{l},\mathfrak{g})}$  for some  $\alpha \in \mathbb{C}$ . Conversely, if  $a \in \mathfrak{g} : \mathfrak{l}$  then the restriction of the derivation  $\delta_a$  on  $\mathfrak{l}$  is a derivation from  $\mathfrak{l}$  into  $\mathfrak{g}$ .

If  $0 < r < p < \infty$ , then we have  $C_r : C_p = C_q$ , where  $\frac{1}{q} = \frac{1}{r} - \frac{1}{p}$  [1, Proposition 5.6]. Therefore, the following corollary follows immediately from Theorem 3.6.

**Corollary 3.7.** If  $0 , then the mapping <math>\delta : C_p \to C_r$  is a derivation if and only if  $\delta = \delta_a$  for some  $a \in \mathcal{B}(H)$ . If  $0 < r < p < \infty$ , then the mapping  $\delta : C_p \to C_r$  is a derivation if and only if  $\delta = \delta_a$  for some  $a \in C_q$ , where  $\frac{1}{a} = \frac{1}{r} - \frac{1}{p}$ .

#### 4. The $\mathcal{J}$ -dual space of $\mathcal{J}$ for symmetric quasi-Banach ideals $\mathcal{J}$ and $\mathcal{J}$

In this section we show that any symmetric quasi-Banach ideal  $(\mathfrak{I}, \|\cdot\|_{\mathfrak{I}})$  of compact operators from  $\mathscr{B}(H)$  has a form of  $\mathfrak{I} = C_{E_{\mathfrak{I}}}$  with the quasi-norm  $\|\cdot\|_{\mathfrak{I}} = \|\cdot\|_{C_{E_{\mathfrak{I}}}}$  for a special symmetric quasi-Banach sequence space  $(E_{\mathfrak{I}}, \|\cdot\|_{E_{\mathfrak{I}}})$  in  $c_0$ constructed by  $\mathfrak{I}$  with the help of Calkin correspondence. The equality  $\mathfrak{J} : \mathfrak{I} = C_{E_{\mathfrak{I}}:E_{\mathfrak{I}}}$  established in this section provides a full description of all derivations  $\delta \in \text{Der}(\mathfrak{I}, \mathfrak{J})$  in terms of  $E_{\mathfrak{J}}$ -dual space  $E_{\mathfrak{I}} : E_{\mathfrak{I}}$  of  $E_{\mathfrak{I}}$  of symmetric quasi-Banach sequence spaces  $E_{\mathfrak{I}}$  and  $E_{\mathfrak{I}}$  in  $c_0$ .

A quasi-Banach lattice *E* is a vector lattice with a complete quasi-norm  $\|\cdot\|_E$ , such that  $\|a\|_E \leq \|b\|_E$  whenever  $a, b \in E$ and  $|a| \leq |b|$ . In this case,  $\||a|\|_E = \|a\|_E$  for all  $a \in E$  and the lattice operations  $a \lor b$  and  $a \land b$  are continuous in the topology  $\tau_d$ , generated by the metric  $d(a, b) = \|\|a - b\|_E^p$ , where  $\|\|\cdot\|_E$  is a *p*-additive quasi-norm equivalent to the quasi-norm  $\|\cdot\|_E$ . Consequently, the set  $E_+ = \{a \in E : a \geq 0\}$  is closed in  $(E, \tau_d)$ . Thus, for any increasing sequence  $\{a_k\}_{k=1}^{\infty} \subset E$  converging in the topology  $\tau_d$  to some  $a \in E$ , we have  $a = \sup_{k>1} a_k$  [17, Chapter V, Section 4].

A sequence  $\{a_n\}_{n=1}^{\infty}$  from a vector lattice *E* is said to be (*r*)-convergent to  $a \in E$  (notation:  $a_n \xrightarrow{(r)} a$ ) with the regulator  $b \in E_+$ , if and only if there exists a sequence of positive numbers  $\varepsilon_n \downarrow 0$  such that  $|a_n - a| \leq \varepsilon_n b$  for all  $n \in \mathbb{N}$  (see e.g. [18, Chapter III, Section 11].

Observe, that in any quasi-Banach lattice  $(E, \|\cdot\|_E)$  it follows from  $a_n \xrightarrow{(r)} a, a_n, a \in E$  that  $\|a_n - a\|_E \to 0$ .

The following proposition is a quasi-Banach version of the well-known criterion of sequential convergence in Banach lattices.

**Proposition 4.1** (Compare [18, Chapter VII, Theorem VII.2.1]). Let  $(E, \|\cdot\|_E)$  be a quasi-Banach lattice,  $a, a_n \in E$ . The following conditions are equivalent:

(i)  $||a_n - a||_E \rightarrow 0$  for  $n \rightarrow \infty$ ;

(ii) for any subsequence  $a_{n_k}$  there exists a subsequence  $a_{n_{k_c}}$  such that  $a_{n_{k_c}} \xrightarrow{(r)} a$ .

**Proof.** Without loss of generality we may assume that a = 0.

(i)  $\Rightarrow$  (ii) For an equivalent *p*-additive quasi-norm  $\|\| \cdot \|\|_E$  we have  $\|\||a_n|\|\|_E \rightarrow 0$  for  $n \rightarrow \infty$ . Hence, we may choose an increasing sequence of positive integers  $n_1 < n_2 < \cdots < n_k < \cdots$  such that  $\|\||a_{n_k}\|\|^p \leq \frac{1}{k^3}$ . The estimate

$$\sum_{k=1}^{\infty} |||k^{\frac{1}{p}}|a_{n_k}||||^p = \sum_{k=1}^{\infty} k||||a_{n_k}||||^p \leqslant \sum_{k=1}^{\infty} \frac{1}{k^2} < \infty,$$

shows that the series  $\sum_{k=1}^{\infty} k^{\frac{1}{p}} |a_{n_k}|$  converges in  $(E, \|\cdot\|_E)$  to some  $b \in E_+$  (see Proposition 2.4) and therefore there exists  $b = \sup_{n \ge 1} \sum_{k=1}^{n} k^{\frac{1}{p}} |a_{n_k}|$  such that we also have  $k^{\frac{1}{p}} |a_{n_k}| \le b$  for all  $k \in \mathbb{N}$ . In particular,  $|a_{n_k}| \le k^{-\frac{1}{p}}b$ , which immediately implies  $a_{n_k} \xrightarrow{(r)} 0$ . The same reasoning may be repeated for any subsequence  $\{a_{n_k}\}_{k=1}^{\infty}$ .

The proof of the implication (ii)  $\Rightarrow$  (i) is the verbatim repetition of the analogous result for Banach lattices [18, Chapter VII, Theorem VII.2.1].  $\Box$ 

Let *m* be the Lebesgue measure on the semi-axis  $(0, \infty)$ , let  $L_1(0, \infty)$  be the Banach space of all integrable functions on  $(0, \infty)$  with the norm  $||f||_1 := \int_0^\infty |f| dm$  and let  $L_\infty(0, \infty)$  be the Banach space of all essentially bounded measurable functions on  $(0, \infty)$  with the norm  $||f||_\infty := \text{essup}\{|f(t)| : 0 < t < \infty\}$ ). For each  $f \in L_1(0, \infty) + L_\infty(0, \infty)$  we define the decreasing rearrangement  $f^*$  of f by setting

$$f^*(t) := \inf \{ s > 0 : m(\{|f| > s\}) \leq t \}, t > 0.$$

The function  $f^*(t)$  is equimeasurable with |f|, in particular,  $f^* \in L_1(0, \infty) + L_{\infty}(0, \infty)$  and  $f^*(t)$  is non-increasing and right-continuous.

We need the following properties of decreasing rearrangements (see e.g. [19, Chapter II, Section 2]).

**Proposition 4.2.** Let  $f, g \in L_1(0, \infty) + L_{\infty}(0, \infty)$ . We have

- (i) if  $|f| \leq |g|$ , then  $f^* \leq g^*$ ;
- (ii)  $(\alpha f)^* = |\alpha| f^*$  for all  $\alpha \in \mathbb{R}$ ;
- (iii) if  $f \in L_{\infty}(0, \infty)$ , then  $(fg)^* \leq ||f||_{\infty}g^*$ ;
- (iv)  $(f + g)^*(t + s) \leq f^*(t) + g^*(s)$ ;
- (v) if  $fg \in L_1(0, \infty) + L_{\infty}(0, \infty)$ , then  $(fg)^*(t+s) \leq f^*(t)g^*(s)$ .

Let  $l_{\infty}$  be the Banach lattice of all bounded real-valued sequences  $\xi := \{\xi_n\}_{n=1}^{\infty}$  equipped with the norm  $\|\xi\|_{\infty} = \sup_{n \ge 1} |\xi_n|$ . For each  $\xi = \{\xi_n\}_{n=1}^{\infty} \in l_{\infty}$  the function  $f_{\xi}(t) := \sum_{n=1}^{\infty} \xi_n \chi_{[n-1,n)}(t), t > 0$  is contained in  $L_{\infty}(0, \infty)$ . For the decreasing rearrangement  $f_{\xi}^*$ , we obviously have  $f_{\xi}^*(t) = \sum_{n=1}^{\infty} \xi_n^* \chi_{[n-1,n)}(t), t > 0$ , where  $\xi^* := \{\xi_n^*\}_{n=1}^{\infty}$  is a decreasing sequence of nonnegative numbers with  $|\xi_1^*| = \sup_{n \ge 1} |\xi_n|$ , which, in case when  $\xi \in c_0$ , coincides with the decreasing rearrangement of the sequence  $\{|\xi_n|\}_{n=1}^{\infty}$ . By Proposition 4.2(i), (ii) we have  $\xi^* \le \eta^*$  for  $\xi, \eta \in l_{\infty}$  with  $|\xi| \le |\eta|$ , and  $(\alpha\xi)^* = |\alpha|\xi^*, \alpha \in \mathbb{R}$ .

A linear subspace  $\{0\} \neq E \subset l_{\infty}$  is said to be solid rearrangement-invariant, if for every  $\eta \in E$  and every  $\xi \in l_{\infty}$  the assumption  $\xi^* \leq \eta^*$  implies that  $\xi \in E$ . Every solid rearrangement-invariant space E contains the space  $c_{00}$  of all finitely supported sequences from  $c_0$ . If E contains an element  $\{\xi_n\}_{n=1}^{\infty} \notin c_0$ , then  $E = l_{\infty}$ . Thus, for any solid rearrangement-invariant space  $E \neq l_{\infty}$  the embeddings  $c_{00} \subset E \subset c_0$  hold.

A solid rearrangement-invariant space *E* equipped with a complete quasi-norm (norm)  $\|\cdot\|_E$  is called symmetric quasi-Banach (Banach) sequence space, if

(1)  $\|\xi\|_E \leq \|\eta\|_E$ , provided  $\xi^* \leq \eta^*, \xi, \eta \in E$ ;

(2) 
$$\|\{1, 0, 0, \ldots\}\|_E = 1.$$

The inequality  $||a\xi||_E \leq ||a||_{\infty} ||\xi||_E$  for all  $a \in l_{\infty}, \xi \in E$  immediately follows from Proposition 4.2(iii). In particular, if  $E = l_{\infty}$ , then the norm  $||\cdot||_E$  is equivalent to  $||\cdot||_{\infty}$ ; for example, this is the case for any Lorentz space  $(l_{\psi}, ||\cdot||_{\psi})$ , where  $\psi : [0, \infty) \to \mathbb{R}$  is an arbitrary nonnegative increasing concave function with the properties  $\psi(0) = 0, \psi(+0) \neq 0$ ,  $\lim_{t\to\infty} \psi(t) < \infty$  (see details in [19, Chapter II, Section 5]).

The spaces  $(c_0, \|\cdot\|_{\infty}), (l_p, \|\cdot\|_p), 1 \leq p < \infty$  (respectively,  $(l_p, \|\cdot\|_p)$  for 0 ), where

$$l_p = \left\{ \{\xi_n\}_{n=1}^{\infty} \in c_0 : \|\{\xi_n\}\|_p = \left(\sum_{n=1}^{\infty} |\xi_n|^p\right)^{\frac{1}{p}} < \infty \right\}$$

are examples of the classical symmetric Banach (respectively, quasi-Banach) sequence spaces in c<sub>0</sub>.

Let  $(E, \|\cdot\|_E)$  be a symmetric quasi-Banach sequence space. For every  $\xi = \{\xi_n\}_{n=1}^{\infty} \in E, m \in \mathbb{N}$ , we set

$$\sigma_{m}(\xi) = (\underbrace{\xi_{1}, \ldots, \xi_{1}}_{m \text{ times}}, \underbrace{\xi_{2}, \ldots, \xi_{2}}_{m \text{ times}}, \ldots),$$

$$\eta^{(1)} = (\xi_{1}, \underbrace{0, \ldots, 0}_{m-1 \text{ times}}, \xi_{2}, \underbrace{0, \ldots, 0}_{m-1 \text{ times}}, \ldots),$$

$$\eta^{(2)} = (0, \xi_{1}, \underbrace{0, \ldots, 0}_{m-2 \text{ times}}, 0, \xi_{2}, \underbrace{0, \ldots, 0}_{m-2 \text{ times}}, \ldots),$$

$$\cdots,$$

$$\eta^{(m)} = (\underbrace{0, \ldots, 0}_{m-1 \text{ times}}, \xi_{1}, \underbrace{0, \ldots, 0}_{m-1 \text{ times}}, \xi_{2}, \ldots).$$

Since  $(\eta^{(1)})^* = (\eta^{(2)})^* = \cdots = (\eta^{(m)})^* = \xi^* \in E$ , it follows  $\eta^{(1)}, \ldots, \eta^{(m)} \in E$ . Consequently,  $\sigma_m(\xi) = \eta^{(1)} + \eta^{(2)} + \cdots + \eta^{(m)} \in E$ , i.e.  $\sigma_m$  is a linear operator from *E* into *E*. In addition, we have

$$\begin{aligned} \sigma_m(\xi)\|_E &= \|\eta^{(1)} + \eta^{(2)} + \dots + \eta^{(m)}\|_E \leqslant C(\|\eta^{(1)}\|_E + \|\eta^{(2)} + \eta^{(3)} + \dots + \eta^{(m)}\|_E) \\ &\leqslant C(\|\eta^{(1)}\|_E + C(\|\eta^{(2)}\|_E + \|\eta^{(3)} + \dots + \eta^{(m)}\|_E)) \leqslant (C + C^2 + \dots + C^{m-1} + C^{m-1})\|\xi\|_E, \end{aligned}$$

where *C* is the modulus of concavity of the quasi-norm  $\|\cdot\|_{F_1}$  in particular  $\|\sigma_m\|_{\mathcal{B}(E,E)} \leq C + C^2 + \cdots + C^{m-2} + 2C^{m-1}$  for all  $m \in \mathbb{N}$ .

#### **Proposition 4.3.** The inequalities

 $(\xi + \eta)^* \leq \sigma_2(\xi^* + \eta^*), \ (\xi\eta)^* \leq \sigma_2(\xi^*\eta^*)$ 

hold for all  $\xi = \{\xi_n\}_{n=1}^{\infty}, \eta = \{\eta_n\}_{n=1}^{\infty} \in I_{\infty}$ .

**Proof.** Since  $f_{\xi+\eta}(t) = \sum_{n=1}^{\infty} (\xi_n + \eta_n) \chi_{[n-1,n]}(t) = f_{\xi}(t) + f_{\eta}(t), t > 0$ , we have by Proposition 4.2 (iv) that

$$\sum_{n=1}^{\infty} (\xi_n + \eta_n)^* \chi_{[n-1,n)}(2t) = f_{\xi+\eta}^*(2t) = (f_{\xi} + f_{\eta})^*(2t)$$
$$\leq f_{\xi}^*(t) + f_{\eta}^*(t) = \sum_{n=1}^{\infty} (\xi_n^* + \eta_n^*) \chi_{[n-1,n)}(t) = \sum_{n=1}^{\infty} (\sigma_2(\xi^* + \eta^*))_n \chi_{[n-1,n)}(2t)$$

for all t > 0, where  $\{(\sigma_2(\xi^* + \eta^*))_n\}_{n=1}^{\infty} = \sigma_2(\xi^* + \eta^*)$ . In other words,  $(\xi + \eta)^* \leq \sigma_2(\xi^* + \eta^*)$ . The proof of the inequality  $(\xi\eta)^* \leq \sigma_2(\xi^*\eta^*)$  is very similar (one needs to use Proposition 4.2(v)) and is therefore omitted.

For a symmetric quasi-Banach sequence space  $(E, \|\cdot\|_E)$ , we set

 $C_E := \{x \in \mathcal{K}(H) : \{s_n(x)\}_{n=1}^{\infty} \in E\}, \quad \|x\|_{C_F} := \|s_n(x)\|_E, x \in C_E.$ 

If  $E = l_p$  (respectively,  $E = c_0$ ) then  $C_{l_p} = C_p$ ,  $\|\cdot\|_{C_{l_p}} = \|\cdot\|_{C_p}$ ,  $0 (respectively, <math>C_{c_0} = \mathcal{K}(H)$ ,  $\|\cdot\|_{C_{c_0}} = \|\cdot\|_{\mathcal{B}(H)}$ ). A quasi-Banach vector sublattice  $(E, \|\cdot\|_E)$  in  $l_\infty$  is said to be *p*-convex, 0 , if there is a constant*M*, so that

$$\left\|\left(\sum_{i=1}^{n}|x_{i}|^{p}\right)^{\frac{1}{p}}\right\|_{E} \leq M\left(\sum_{i=1}^{n}\|x_{i}\|_{E}^{p}\right)^{\frac{1}{p}}$$
(2)

for every finite collection  $\{x_i\}_{i=1}^n \subset E, n \in \mathbb{N}$ .

If the estimate (2) holds for elements from a symmetric quasi-Banach ideal  $(\mathfrak{I}, \|\cdot\|_{\mathfrak{I}})$  of compact operators from  $\mathcal{B}(H)$ , then the ideal  $(1, \|\cdot\|_{1})$  is said to be *p*-convex. As already stated in Theorem 1.5, for every symmetric Banach (respectively, symmetric *p*-convex quasi-Banach, 0 ) sequence space*E* $in <math>c_0$  the couple  $(C_E, \|\cdot\|_{C_F})$  is a symmetric Banach (respectively, *p*-convex symmetric quasi-Banach) ideal of compact operators in  $\mathcal{B}(H)$ .

Thus, for every symmetric Banach (*p*-convex quasi-Banach) sequence space  $(E, \|\cdot\|_E)$  the corresponding symmetric Banach (*p*-convex quasi-Banach) ideal ( $C_E$ ,  $\|\cdot\|_{C_F}$ ) of compact operators from  $\mathcal{B}(H)$  is naturally constructed. This extends the classical Calkin correspondence [4].

Conversely, if  $(\mathfrak{I}, \|\cdot\|_{\mathfrak{I}})$  is a symmetric quasi-Banach ideal  $(\mathfrak{I}, \|\cdot\|_{\mathfrak{I}})$  of compact operators from  $\mathcal{B}(H)$ , then it is of the form  $C_{E_1}$  with  $\|\cdot\|_1 = \|\cdot\|_{C_{E_1}}$  for the corresponding symmetric quasi-Banach sequence space  $(E_1, \|\xi\|_{E_1})$ . The definition of the latter space is given below.

Denote by  $E_1$  the set of all  $\xi \in c_0$ , for which there exists some  $x \in I$ , such that  $\xi^* = \{s_n(x)\}_{n=1}^{\infty}$ . For  $\xi \in E_1$  with

 $\xi^* = \{s_n(x)\}_{n=1}^{\infty}, x \in I \text{ set } \|\xi\|_{E_I} = \|x\|_I.$ Fix an orthonormal set  $\{e_n\}_{n=1}^{\infty}$  in *H* and for every  $\xi = \{\xi_n\}_{n=1}^{\infty} \in c_0$  consider the diagonal operator  $x_{\xi} \in \mathcal{K}(H)$  defined as follows

$$x_{\xi}(\varphi) = \sum_{n=1}^{\infty} \xi_n c_n(\varphi) e_n,$$

where  $c_n(\varphi) = (\varphi, e_n), \varphi \in H$ . If  $\xi \in E_I$ , then  $\xi^* = \{s_n(x)\}_{n=1}^{\infty}$  for some  $x \in I$ , and due to equalities  $\{s_n(x_{\xi^*})\}_{n=1}^{\infty} = \{\xi_n\}_{n=1}^{\infty} = \{s_n(x)\}_{n=1}^{\infty}$  we have  $x_{\xi^*} \in I$  and  $\|x_{\xi^*}\|_I = \|x\|_I = \|\xi\|_{E_I}$  (see Proposition 2.6(b)). Moreover, since  $\{s_n(x_{\xi})\}_{n=1}^{\infty} = \{s_n(x_{\xi^*})\}_{n=1}^{\infty} = \{s_$  $\|\eta\|_{E_{I}} \leq \|\xi\|_{E_{I}}.$ 

**Theorem 4.4.** For any symmetric quasi-Banach ideal  $\mathfrak{I}$  of compact operators from  $\mathfrak{B}(H)$  the couple  $(E_{\mathfrak{I}}, \|\cdot\|_{E_{\mathfrak{I}}})$  is a symmetric quasi-Banach sequence space in c<sub>0</sub> with the modulus of concavity which does not exceed the modulus of concavity of the quasinorm  $\|\cdot\|_{\mathfrak{I}}$ , in addition,  $C_{E_{\mathfrak{I}}} = \mathfrak{I}$  and  $\|\cdot\|_{C_{E_{\mathfrak{I}}}} = \|\cdot\|_{\mathfrak{I}}$ .

**Proof.** If  $\xi$ ,  $\eta \in E_{\mathfrak{l}}$ , then  $x_{\xi}, x_{\eta} \in \mathfrak{l}$ , hence  $x_{\xi} + x_{\eta} \in \mathfrak{l}$ . Since

$$(x_{\xi}+x_{\eta})(\varphi)=\sum_{n=1}^{\infty}\xi_{n}c_{n}(\varphi)e_{n}+\sum_{n=1}^{\infty}\eta_{n}c_{n}(\varphi)e_{n}=\sum_{n=1}^{\infty}(\xi_{n}+\eta_{n})c_{n}(\varphi)e_{n}=x_{\xi+\eta}(\varphi), \quad \varphi\in H,$$

we have  $x_{\xi+\eta} \in \mathcal{I}$ . Consequently,  $\xi + \eta \in E_{\mathcal{I}}$ , moreover,

$$\|\xi + \eta\|_{E_{I}} = \|x_{\xi+\eta}\|_{I} = \|x_{\xi} + x_{\eta}\|_{I} \leq C(\|x_{\xi}\|_{I} + \|x_{\eta}\|_{I}) = C(\|\xi\|_{E_{I}} + \|\eta\|_{E_{I}}),$$

where *C* is the modulus of concavity of the quasi-norm  $\|\cdot\|_{1}$ .

Now, let  $\xi \in E_{1}$ ,  $\alpha \in \mathbb{R}$ . Since

$$x_{\alpha\xi}(\varphi) = \sum_{n=1}^{\infty} \alpha \xi_n c_n(\varphi) e_n = \alpha x_{\xi}(\varphi), \quad \varphi \in H$$

we have  $\alpha \xi \in E_I$  and  $\|\alpha \xi\|_{E_I} = \|x_{\alpha \xi}\|_I = \|\alpha x_{\xi}\|_I = |\alpha| \|x_{\xi}\|_I = |\alpha| \|\xi\|_{E_I}$ . It is easy to see that  $\|\xi\|_{E_I} \ge 0$  and  $\|\xi\|_{E_I} = 0 \Leftrightarrow \xi = 0$ .

Hence,  $E_1$  is a solid rearrangement-invariant subspace in  $c_0$  and  $\|\cdot\|_{E_1}$  is a quasi-norm on  $E_1$ .

Let us show that  $(E_{1}, \|\cdot\|_{E_{1}})$  is a quasi-Banach space. Let  $\|\cdot\|_{1}$  (respectively,  $\|\cdot\|_{E_{1}}$ ) be a *p*-additive (respectively, *q*-additive) quasi-norm equivalent to the quasi-norm  $\|\cdot\|_{1}$  (respectively,  $\|\cdot\|_{E_{1}}$ ),  $0 < p, q \leq 1$ .

Let  $\xi^{(k)} = {\xi_n^{(k)}}_{n=1}^{\infty} \in E_I$  and  $|||\xi^{(k)} - \xi^{(m)}|||_{E_I} \to 0$  for  $k, m \to \infty$ . Then  $||x_{\xi^{(k)}} - x_{\xi^{(m)}}||_I \to 0$  and  $|||x_{\xi^{(k)}} - x_{\xi^{(m)}}||_I^p \to 0$  for  $k, m \to \infty$ , i.e.  $x_{\xi^{(k)}}$  is a Cauchy sequence in  $(I, d_I)$ , where  $d_I(x, y) = |||x - y||_I^p$ . Since  $(I, d_I)$  is a complete metric space, there exists an operator  $x \in I$  such that  $|||x_{\xi^{(k)}} - x||_I^p \to 0$  for  $k \to \infty$ . If  $p_n$  is the one-dimensional projection onto subspace spanned by  $e_n$ , then

$$\begin{split} \xi^{(k)} p_n &= p_n x_{\xi_n^{(k)}} p_n \xrightarrow{\|\cdot\|_{\mathcal{I}}} p_n x p_n \coloneqq \lambda_n p_n, \\ 0 &= p_n x_{\xi_n^{(k)}} p_m \to p_n x p_m, \quad n \neq m. \end{split}$$

Hence, *x* is also a diagonal operator, i.e.  $x = x_{\xi}$ , where  $\xi = \{\lambda_n\}_{n=1}^{\infty}$ . Since  $x \in I$  we have  $\xi \in E_I$ , moreover,  $\|\xi^{(k)} - \xi\|_{E_I} = \|x_{\xi^{(k)}} - x_{\xi}\|_{I} \to 0$  for  $k \to \infty$ .

Consequently,  $(E_I, \|\cdot\|_{E_I})$  is a symmetric quasi-Banach sequence space in  $c_0$ .

Now, let us show that  $C_{E_I} = I$  and  $||x||_{C_{E_I}} = ||x||_I$  for all  $x \in I$ . Let  $x \in C_{E_I}$ , i.e.  $\{s_n(x)\}_{n=1}^{\infty} \in E_I$ . Hence, there exists an operator  $y \in I$ , such that  $s_n(x) = s_n(y)$ ,  $n \in \mathbb{N}$ . Consequently,  $x \in I$ , moreover,  $||x||_I = ||\{s_n(x)\}_{n=1}^{\infty}||_{E_I} = ||x||_{C_{E_I}}$ . Conversely, if  $x \in I$ , then  $\{s_n(x)\}_{n=1}^{\infty} \in E_I$  and therefore  $x \in C_{E_I}$ .  $\Box$ 

The definition of symmetric Banach (*p*-convex quasi-Banach) ideal ( $C_E$ ,  $\|\cdot\|_{C_E}$ ) of compact operators from  $\mathcal{B}(H)$  jointly with Theorem 4.4 implies the following corollary:

**Corollary 4.5.** Let  $(E, \|\cdot\|_E)$  be a symmetric Banach (p-convex quasi-Banach) sequence space from  $c_0$ . Then  $E_{C_E} = E$  and  $\|\cdot\|_{E_{C_E}} = \|\cdot\|_E$ .

**Proof.** If  $\xi \in E$ , then  $x_{\xi^*} \in C_E$ , and due to the equality  $\{s_n(x_{\xi^*})\}_{n=1}^{\infty} = \xi^*$ , we have  $\xi \in E_{C_E}$  and  $\|\xi\|_{E_{C_E}} = \|x_{\xi^*}\|_{C_E} = \|\xi^*\|_E = \|\xi^*\|_E = \|\xi\|_E$ . The converse inclusion  $E_{C_F} \subset E$  may be proven similarly.  $\Box$ 

Let *G*, *F* be solid rearrangement-invariant spaces in  $c_0$ . It is easy to see that *G* and *F* are ideals in the algebra  $l_{\infty}$ , in particular, it follows from the assumptions  $|\xi| \leq |\eta|, \xi \in l_{\infty}, \eta \in G$  that  $\xi \in G$ , i.e. *G* and *F* are solid linear subspaces in  $l_{\infty}$ . We define *F*-dual space *F* : *G* of *G* by setting

$$F: G = \{ \xi \in I_{\infty} : \xi \eta \in F, \forall \eta \in G \}.$$

It is clear that F : G is an ideal in  $l_{\infty}$  containing  $c_{00}$ . If  $G \subset F$ , then  $F : G = l_{\infty}$ , in particular,  $l_{\infty} : G = l_{\infty}$  for any solid rearrangement-invariant space G. However, if  $G \not\subseteq F$ , then  $F : G \neq l_{\infty}$ .

#### **Proposition 4.6.** If $F : G \neq l_{\infty}$ , then $F : G \subset c_0$ .

**Proof.** Suppose that there exists  $\xi = \{\xi_n\}_{n=1}^{\infty} \in (F : G), \xi \notin c_0$ . Let  $\alpha_n = \operatorname{sign}\xi_n, n \in \mathbb{N}, \eta = \{\eta_n\}_{n=1}^{\infty} \in G$ . Obviously,  $\{\alpha_n\eta_n\}_{n=1}^{\infty} \in G$  and hence,  $|\xi|\eta = \{\xi_n\alpha_n\eta_n\}_{n=1}^{\infty} \in F$  for all  $\eta \in G$ , that is  $|\xi| \in (F : G)$ , and, in addition,  $|\xi| \notin c_0$ . This implies that there exists a subsequence  $0 \neq |\xi_{n_k}| \rightarrow \alpha > 0$  for  $k \rightarrow \infty$ . Consider a sequence  $\zeta = \{\zeta_k\}_{k=1}^{\infty}$  from  $l_{\infty} \setminus c_0$  such that  $\zeta_k = |\xi_{n_k}|$  and show that  $\zeta \in F : G$ .

For every  $\eta = {\eta_n}_{n=1}^{\infty} \in G$  define the sequence  $a_\eta = {a_n}_{n=1}^{\infty}$  such that  $a_{n_k} = \eta_k$  and  $a_n = 0$ , if  $n \neq n_k$ ,  $k \in \mathbb{N}$ . Since  $a_\eta^* = \eta^*$ , we have  $a_\eta \in G$ , and therefore  $\zeta \eta = {|\xi_{n_k}|\eta_k|_{k=1}^{\infty}} = {|\xi_n|a_n}_{n=1}^{\infty} = |\xi|a_\eta \in F$  for all  $\eta \in G$ . Consequently,  $\zeta = {\zeta_n}_{n=1}^{\infty} \in F : G$ , moreover,  $\zeta_n \ge \beta$  for some  $\beta > 0$  and all  $n \in \mathbb{N}$ . Since F : G is an ideal in  $l_\infty$ , it follows that F : G is a solid linear subspace in  $l_\infty$ , containing the sequence  ${\zeta_n}_{n=1}^{\infty}$  with  $\zeta_n \ge \beta > 0$ ,  $n \in \mathbb{N}$ , that implies  $F : G = l_\infty$ .  $\Box$ 

**Proposition 4.7.** If  $F : G \neq l_{\infty}$ , then  $F : G = \{\xi \in c_0 : \xi^* \eta^* \in F, \forall \eta \in G\}$ .

**Proof.** By Proposition 4.6, we have that  $F : G \subset c_0$ . Let  $\xi = \{\xi_n\}_{n=1}^{\infty} \in c_0$  and  $\xi^* \eta^* \in F$  for all  $\eta \in G$ . Due to Proposition 4.3, we have  $(\xi\eta)^* \leq \sigma_2(\xi^*\eta^*) \in F$ , i.e.  $(\xi\eta)^* \in F$ . Since *F* is a symmetric sequence space, it follows that  $\xi\eta \in F$  for all  $\eta \in G$ , i.e.  $\xi \in F : G$ .

Conversely, suppose that  $\xi = \{\xi_n\}_{n=1}^{\infty} \in F : G$ . Let  $\alpha_n = \operatorname{sign}\xi_n, \eta = \{\eta_n\}_{n=1}^{\infty} \in G$ . Then  $\{\alpha_n\eta_n\}_{n=1}^{\infty} \in G$ , and therefore  $|\xi|\eta = \{\xi_n\alpha_n\eta_n\}_{n=1}^{\infty} \in F$  for all  $\eta \in G$ , i.e.  $|\xi| \in F : G \subset c_0$ . Since  $|\xi| = \{|\xi_n|\}_{n=1}^{\infty} \in c_0$ , there exists a bijection of the set  $\mathbb{N}$  of natural numbers, such that  $\xi^* = |\xi_{\pi(n)}|$ . For linear bijective mapping  $U_{\pi} : l_{\infty} \to l_{\infty}$  defined by  $U_{\pi}(\{\eta_n\}_{n=1}^{\infty}) = \{\eta_{\pi(n)}\}_{n=1}^{\infty}$  we have  $U_{\pi}(\eta\zeta) = U_{\pi}(\eta)U_{\pi}(\zeta), (U_{\pi}(\zeta))^* = \zeta^*, (U_{\pi}^{-1}(\zeta))^* = \zeta^*$  for all  $\zeta \in l_{\infty}$ , in particular,  $U_{\pi}(E) = E$  for any solid rearrangement-invariant space  $E \subset l_{\infty}$ . Consequently, for all  $\eta \in G$  we have  $\xi^*\eta^* = U_{\pi}(|\xi|)U_{\pi}(U_{\pi}^{-1}(\eta^*)) = U_{\pi}(|\xi|U_{\pi}^{-1}(\eta^*)) \in F$ .  $\Box$ 

Propositions 4.6 and 4.7 imply the following corollary.

**Corollary 4.8.** F : G is a solid rearrangement-invariant space, moreover, if  $F : G \neq l_{\infty}$ , then  $c_{00} \subset F : G \subset c_0$ .

**Proof.** The definition of F : G immediately implies that F : G is an ideal in  $l_{\infty}$  and  $c_{00} \subset F : G$ . If  $F : G \neq l_{\infty}$ , then, due to Proposition 4.6, we have  $F : G \subset c_0$ .

In the case when  $F : G \neq l_{\infty}$ , we have for any  $\xi \in c_0, \eta \in F : G, \xi^* \leq \eta^*, \zeta \in G$  that  $\xi^* \zeta^* \leq \eta^* \zeta^* \in F$  (see Proposition 4.7). Consequently,  $\xi^* \zeta^* \in F$  for any  $\zeta \in G$ , which implies the inclusion  $\xi \in F : G$ .  $\Box$ 

We need some complementary properties of singular values of compact operators. For every operator  $x \in \mathcal{B}(H)$  define the decreasing rearrangement  $\mu(x, t)$  of x by setting

$$\mu(x, t) = \inf\{s > 0 : tr(|x| > s) \le t\}, \quad t > 0$$

(see e.g. [20]). If  $x \in \mathcal{K}(H)$ , then

$$\mu(x,t) = \sum_{n=1}^{\infty} s_n(x) \chi_{[n-1,n]}(t) = f^*_{\{s_n(x)\}_{n=1}^{\infty}}(t).$$

In [20, Lemma 2.5 (v),(vii)] it is established that for every  $x, y \in \mathcal{B}(H)$  the inequalities

$$\mu(x+y,t+s) \leqslant \mu(x,t) + \mu(y,s),$$
  
$$\mu(xy,t+s) \leqslant \mu(x,t)\mu(y,s)$$

hold, in particular, if  $x, y \in \mathcal{K}(H)$ , then

$$\{s_n(x+y)\}_{n=1}^{\infty} \leq \sigma_2(\{s_n(x) + s_n(y)\}_{n=1}^{\infty}),\tag{3}$$

(4)

$$\{s_n(xy)\}_{n=1}^{\infty} \leq \sigma_2(\{s_n(x)s_n(y)\}_{n=1}^{\infty}).$$

Let  $\mathfrak{I}, \mathfrak{J}$  be symmetric quasi-Banach ideals of compact operators from  $\mathfrak{B}(H)$  and  $\mathfrak{I} \not\subseteq \mathfrak{J}$ . In this case,  $\mathfrak{J} : \mathfrak{I} \subset \mathcal{K}(H)$  (see Proposition 3.3) and  $E_{\mathfrak{I}} \not\subseteq E_{\mathfrak{J}}$  (see Theorem 4.4), therefore  $E_{\mathfrak{J}} : E_{\mathfrak{I}} \subset c_0$  (see Proposition 4.6). The following proposition establishes that the set of operators belonging to the  $\mathfrak{J}$ -dual space  $\mathfrak{J} : \mathfrak{I}$  of  $\mathfrak{I}$  coincides with the set

$$C_{E_{\mathscr{I}}:E_{\mathscr{I}}} = \{ x \in \mathscr{K}(H) : \{ s_n(x) \}_{n=1}^{\infty} \in E_{\mathscr{I}} : E_{\mathscr{I}} \}.$$

**Proposition 4.9.**  $\mathcal{J} : \mathcal{I} = C_{E_{\mathcal{I}}:E_{\mathcal{I}}}$ .

**Proof.** Let  $a \in \mathcal{J}$ : *J*. We claim that  $a \in C_{E_{\mathcal{J}}:E_{J}}$ , i.e.  $\xi = \{s_{n}(a)\}_{n=1}^{\infty} \in E_{\mathcal{J}}$ . For any sequence  $\eta \in E_{J}$  consider operators  $x_{\xi}$  and  $x_{\eta^{*}}$ . Since  $x_{\xi} \in \mathcal{J}$ : *J*,  $x_{\eta^{*}} \in J$ , we have  $x_{\xi}x_{\eta^{*}} \in \mathcal{J}$ . On the other hand,  $x_{\xi}x_{\eta^{*}}(\varphi) = \|\cdot\|_{H} - \lim_{n\to\infty} \left(\sum_{k=1}^{n} s_{k}(a)c_{k}(x_{\eta^{*}}(\varphi))e_{k}\right) = \sum_{n=1}^{\infty} s_{n}(a)\eta_{n}^{*}c_{n}(\varphi)e_{n} = x_{\xi\eta^{*}}(\varphi)$  for all  $\varphi \in H$ . Thus  $x_{\xi\eta^{*}} \in \mathcal{J}$ , i.e.  $\xi\eta^{*} \in E_{\mathcal{J}}$ . Consequently,  $\{s_{n}(a)\}_{n=1}^{\infty} \in E_{\mathcal{J}}$ : *E*<sub>L</sub> (see Proposition 4.7) yielding our claim.

Conversely, let  $a \in C_{E_{\mathfrak{g}}:E_{\mathfrak{g}}}$ , i.e.  $\{s_n(a)\}_{n=1}^{\infty} \in E_{\mathfrak{g}}: E_{\mathfrak{g}}$ . Due to (4), for all  $x \in \mathfrak{I}$  we have  $\{s_n(ax)\}_{n=1}^{\infty} \leq \sigma_2(\{s_n(a)s_n(x)\}_{n=1}^{\infty})$ . Since  $\{s_n(a)s_n(x)\}_{n=1}^{\infty} \in E_{\mathfrak{g}}$ , it follows that  $\sigma_2(\{s_n(a)s_n(x)\}_{n=1}^{\infty}) \in E_{\mathfrak{g}}$ , and therefore  $\{s_n(ax)\}_{n=1}^{\infty} \in E_{\mathfrak{g}}$ , i.e.  $ax \in \mathfrak{I}$ . Consequently,  $a \in \mathfrak{I}: \mathfrak{I}$ .  $\Box$ 

Let  $\mathfrak{l}, \mathfrak{J}$  be symmetric quasi-Banach ideals of compact operators from  $\mathfrak{B}(H), \mathfrak{l} \subseteq \mathfrak{J}$  and  $\mathfrak{J} : \mathfrak{l}$  be the  $\mathfrak{J}$ -dual space of  $\mathfrak{l}$ . For any  $a \in \mathfrak{J} : \mathfrak{l}$  define a linear mapping  $T_a : \mathfrak{l} \to \mathfrak{J}$  by setting  $T_a(x) = ax, x \in \mathfrak{l}$ .

**Proposition 4.10.**  $T_a$  is a continuous linear mapping from I into J for every  $a \in J : I$ .

**Proof.** Let  $a \in \mathcal{J}$ :  $I, \xi = \{s_n(a)\}_{n=1}^{\infty}, x_k \in I$  and  $||x_k||_I \to 0$  for  $k \to \infty$ . Then  $\xi^{(k)} = \{s_n(x_k)\}_{n=1}^{\infty} \in E_I$  and  $||\xi^{(k)}||_{E_I} \to 0$ . By Proposition 4.1, for every subsequence  $\{\xi^{(k_l)}\}_{l=1}^{\infty}$  there exists a subsequence  $\{\xi^{(k_{l_s})}\}_{s=1}^{\infty}$  such that  $\xi^{(k_{l_s})} \xrightarrow{(r)} 0$  for  $s \to \infty$ , i.e. there exist  $0 \leq \eta \in E_I$  and a sequence  $\{\varepsilon_s\}_{s=1}^{\infty}$  of positive numbers decreasing to zero such that  $|\xi^{(k_{l_s})}| \leq \varepsilon_s \eta$ . Since  $a \in \mathcal{J} : I$ , we have  $\xi \in E_{\mathcal{J}}$  (see Proposition 4.9), and therefore  $\zeta = \xi \eta \in E_{\mathcal{J}}$ , in addition,  $\zeta \ge 0$ . Since  $|\xi\xi^{(k_{l_s})}| \leq \varepsilon_s \zeta$ , it follows that  $\xi\xi^{(k_{l_s})} \xrightarrow{(r)} 0$ . By Proposition 4.1, we have  $||\xi\xi^{(k)}||_{E_{\mathcal{J}}} \to 0$ . Consequently,

$$\|ax_k\|_{\mathscr{A}} = \|\{s_n(ax_k)\}\|_{E_{\mathscr{A}}} \leq \|\sigma_2(\xi\xi^{(k)})\|_{E_{\mathscr{A}}} \leq 2C\|\xi\xi^{(k)}\|_{E_{\mathscr{A}}} \to 0 \quad \text{for } k \to \infty. \quad \Box$$

By Proposition 4.10,  $T_a$  is a bounded linear operator from  $\mathfrak{l}$  into  $\mathfrak{J}$ , therefore  $||T_a||_{\mathfrak{B}(\mathfrak{l},\mathfrak{J})} = \sup\{||T_a(x)||_{\mathfrak{J}} : ||x||_{\mathfrak{l}} \leq 1\} = \sup\{||ax||_{\mathfrak{I}} : ||x||_{\mathfrak{l}} \leq 1\} < \infty$ , i.e. for all  $a \in \mathfrak{J} : \mathfrak{l}$  the quantity

$$||a||_{\mathcal{A}:\mathcal{I}} := \sup\{||ax||_{\mathcal{A}} : x \in \mathcal{I}, ||x||_{\mathcal{I}} \leq 1\}$$

is well-defined.

**Theorem 4.11.** Let  $\mathfrak{I}, \mathfrak{F}$  be symmetric quasi-Banach ideals of compact operators in  $\mathfrak{B}(H)$  such that  $\mathfrak{I} \not\subseteq \mathfrak{F}$ . Then  $(\mathfrak{F} : \mathfrak{I}, \|\cdot\|_{\mathfrak{F}:\mathfrak{I}})$  is a symmetric quasi-Banach ideal of compact operators whose modulus of concavity does not exceed the modulus of concavity of the quasi-norm  $\|\cdot\|_{\mathfrak{F}}$ , in addition,  $\|ax\|_{\mathfrak{F}} \leq \|a\|_{\mathfrak{F}:\mathfrak{I}} \|x\|_{\mathfrak{I}}$  for all  $a \in \mathfrak{F}: \mathfrak{I}, x \in \mathfrak{I}$ .

**Proof.** Since  $\|\cdot\|_{\mathscr{B}(\mathfrak{l},\mathfrak{f})}$  is a quasi-norm with the modulus of concavity which does not exceed the modulus of concavity of the quasi-norm  $\|\cdot\|_{\mathfrak{f}}$ , we see that  $\|\cdot\|_{\mathfrak{f}:\mathfrak{l}}$  is a quasi-norm on  $\mathfrak{f}:\mathfrak{l}$  with the modulus of concavity which does not exceed the modulus of concavity of the quasi-norm  $\|\cdot\|_{\mathfrak{f}}$ .

If  $y \in \mathcal{B}(H)$ ,  $a \in \mathcal{J} : \mathcal{I}$ , then

$$\begin{aligned} \|ya\|_{\mathcal{J}:I} &= \sup\{\|(ya)x\|_{\mathcal{J}} : x \in J, \|x\|_{I} \leq 1\} \\ &\leq \sup\{\|y\|_{\mathcal{B}(H)} \|ax\|_{\mathcal{J}} : x \in J, \|x\|_{I} \leq 1\} = \|y\|_{\mathcal{B}(H)} \|a\|_{\mathcal{J}:I}.\end{aligned}$$

Since  $yx \in I$  for all  $x \in I$  and  $||yx||_I \leq ||y||_{\mathscr{B}(H)} ||x||_I$  then for  $y \neq 0$  and  $||x||_I \leq 1$  we have  $\|\frac{yx}{\|y\|_{\mathscr{B}(H)}}\|_I \leq 1$ . Hence,

$$\begin{aligned} \|ay\|_{\mathcal{J}:\mathcal{I}} &= \sup\{\|a(yx)\|_{\mathcal{J}} : x \in \mathcal{I}, \|x\|_{\mathcal{I}} \leq 1\} \\ &= \|y\|_{\mathcal{B}(H)} \sup\left\{ \left\| a\left(\frac{yx}{\|y\|_{\mathcal{B}(H)}}\right) \right\|_{\mathcal{J}} : x \in \mathcal{I}, \|x\|_{\mathcal{I}} \leq 1 \right\} \\ &\leq \|y\|_{\mathcal{B}(H)} \sup\{\|ax\|_{\mathcal{J}} : x \in \mathcal{I}, \|x\|_{\mathcal{I}} \leq 1\} = \|y\|_{\mathcal{B}(H)} \|a\|_{\mathcal{I}:\mathcal{J}}. \end{aligned}$$

If *p* is a one-dimensional projection from  $\mathcal{B}(H)$ , then  $p \in \mathcal{I}$ ,  $||p||_{\mathcal{I}} = 1$ , and so

 $\|p\|_{\mathcal{J}:\mathcal{I}} = \sup\{\|px\|_{\mathcal{J}}: x \in \mathcal{I}, \|x\|_{\mathcal{I}} \leq 1\} \ge \|p\|_{\mathcal{J}} = 1.$ 

On the other hand, for  $x \in I$  with  $||x||_I \leq 1$  we have  $||x||_{\mathcal{B}(H)} \leq 1$  (see Proposition 2.6(c)), and therefore

$$\|px\|_{\mathcal{J}} = \|p(px)\|_{\mathcal{J}} \leq \|px\|_{\mathcal{B}(H)} \|p\|_{\mathcal{J}} \leq 1.$$

Consequently,  $||p||_{\mathcal{A}:\mathcal{A}} = 1$ .

Thus,  $\|\cdot\|_{\mathcal{J}:I}$  is a symmetric quasi-norm on the two-sided ideal  $\mathcal{J}: \mathcal{J}$ . The inequality  $\|ax\|_{\mathcal{J}} \leq \|a\|_{\mathcal{J}:I} \|x\|_{I}$  immediately follows from the definition of  $\|\cdot\|_{\mathcal{J}:I}$ .

Let us show that  $(\mathcal{J} : \mathcal{I}, \| \cdot \|_{\mathcal{J}:\mathcal{I}})$  is a quasi-Banach space.

Denote by  $\|\|\cdot\|\|_{\mathcal{J}}$  (respectively  $\|\|\cdot\|\|_{\mathcal{J}:1}$ ) a *p*-additive (respectively, *q*-additive) quasi-norm on  $\mathcal{J}$  (respectively, on  $\mathcal{J}: \mathcal{I}$ ) which is equivalent to the quasi-norm  $\|\cdot\|_{\mathcal{J}}$  (respectively,  $\|\cdot\|_{\mathcal{J}:\mathcal{I}}$ ), where  $0 < p, q \leq 1$ . In particular, we have  $\alpha_1 \|\|x\|\|_{\mathcal{J}} \leq \|x\|\|_{\mathcal{J}} \leq \beta_1 \|\|x\|\|_{\mathcal{J}}$  and  $\alpha_2 \|\|a\|\|_{\mathcal{J}:\mathcal{I}} \leq \|a\|\|_{\mathcal{J}:\mathcal{I}} \leq \beta_2 \|\|a\|\|_{\mathcal{J}:\mathcal{I}}$  for all  $x \in \mathcal{J}$ ,  $a \in \mathcal{J}: \mathcal{I}$  and some constants  $\alpha_1, \alpha_2, \beta_1, \beta_2 > 0$ . Let  $d_{\mathcal{J}}(x, y) = \|\|x - y\|\|_{\mathcal{J}}^p$ ,  $d_{\mathcal{J}:\mathcal{I}}(a, b) = \|\|a - b\|\|_{\mathcal{J}:\mathcal{I}}^q$  be metrics on  $\mathcal{J}$  and  $\mathcal{J}: \mathcal{I}$  respectively.

Let  $\{a_n\}_{n=1}^{\infty}$  be a Cauchy sequence in  $(\mathcal{J}: \mathcal{I}, d_{\mathcal{J}:\mathcal{I}})$ , i.e.  $||a_n - a_m||_{\mathcal{J}:\mathcal{I}}^q \leq \varepsilon^q$  for all  $n, m \geq n(\varepsilon), \varepsilon > 0$ , thus

$$\|a_n x - a_m x\|_{\mathscr{J}} \leq \frac{1}{\alpha_1} \|a_n x - a_m x\|_{\mathscr{J}} \leq \frac{1}{\alpha_1} \|a_n - a_m\|_{\mathscr{J}:\mathscr{I}} \|x\|_{\mathscr{I}}$$

$$\leq \frac{\beta_2}{\alpha_1} \|a_n - a_n\|_{\mathscr{J}:\mathscr{I}} \|x\|_{\mathscr{I}} \leq \frac{\beta_2}{\alpha_1} \varepsilon \|x\|_{\mathscr{I}}$$
(5)

for all  $x \in I$ ,  $n, m \ge n(\varepsilon)$ . Consequently, the sequence  $\{a_n x\}_{n=1}^{\infty}$  is a Cauchy sequence in  $(\mathcal{J}, d_{\mathcal{J}}), x \in I$ . Since the metric space  $(\mathcal{J}, d_{\mathcal{J}})$  is complete, there exists an operator  $z(x) \in \mathcal{J}$  such that  $||a_n x - z(x)||_{\mathcal{J}}^p \to 0$  for  $n \to \infty$ . Since

$$\|a_n x - z(x)\|_{\mathcal{B}(H)} \leq \|a_n x - z(x)\|_{\mathcal{J}} \leq \beta_1 \|\|a_n x - z(x)\|_{\mathcal{J}},$$

it follows that  $||a_n x - z(x)||_{\mathcal{B}(H)} \to 0$ .

Since

$$\|a_n - a_m\|_{\mathcal{B}(H)} \leq \|a_n - a_m\|_{\mathcal{J}:\mathcal{I}} \leq \beta_2 \|a_n - a_m\|_{\mathcal{J}:\mathcal{I}} \to 0$$

for  $n, m \to \infty$ , there exists  $a \in \mathcal{B}(H)$  such that  $||a_n - a||_{\mathcal{B}(H)} \to 0$  for  $n \to \infty$ . For an arbitrary  $x \in I$ , we have  $||a_n x - ax||_{\mathcal{B}(H)} \leq ||a_n - a||_{\mathcal{B}(H)} ||x||_I \to 0$  for  $n \to \infty$ .

Thus, ax = z(x) for all  $x \in I$ . Since  $z(x) \in \mathcal{J}$  for all  $x \in I$ , it follows that  $a \in \mathcal{J} : I$ , moreover, due to (5),  $\|a_n x - ax\|_{\mathcal{J}} \leq \frac{\beta_1 \beta_2}{\alpha_1} \varepsilon \|x\|_I$  for  $n \geq n(\varepsilon)$  and for all  $x \in I$ . Consequently,

$$|||a_n - a|||_{\mathcal{J}:I} \leq \frac{1}{\alpha_2} ||a_n - a||_{\mathcal{J}:I} = \frac{1}{\alpha_2} \sup \{ ||a_n x - ax||_{\mathcal{J}} : x \in I, ||x||_I \leq 1 \} \leq \frac{\beta_1 \beta_2}{\alpha_1 \alpha_2} \varepsilon$$

for  $n \ge n(\varepsilon)$ , i.e.  $|||a_n - a|||_{\mathfrak{g}:\mathfrak{l}} \to 0$ . Thus, the metric space  $(\mathfrak{g}:\mathfrak{l}, d_{\mathfrak{l}:\mathfrak{g}})$  is complete, i.e.  $(\mathfrak{g}:\mathfrak{l}, ||\cdot||_{\mathfrak{g}:\mathfrak{l}})$  is a quasi-Banach space.  $\Box$ 

**Remark 4.12.** Since the quasi-norms  $\|\cdot\|_{\mathscr{J}}$  and  $\|\cdot\|_{\mathscr{J}:1}$  are symmetric, for all  $a \in \mathscr{J}: \mathscr{J}$  the relations

$$\begin{aligned} \|a\|_{\mathcal{J}:I} &= \|a^*\|_{\mathcal{J}:I} = \sup\{\|a^*x\|_{\mathcal{J}} : x \in \mathcal{I}, \|x\|_{\mathcal{I}} \leq 1\} \\ &= \sup\{\|x^*a\|_{\mathcal{J}} : x \in \mathcal{I}, \|x\|_{\mathcal{I}} \leq 1\} = \sup\{\|xa\|_{\mathcal{J}} : x \in \mathcal{I}, \|x\|_{\mathcal{I}} \leq 1\} \end{aligned}$$

hold, i.e. for any  $a \in \mathcal{J} : \mathcal{I}$  we have

 $||a||_{\mathcal{A}:\mathcal{I}} = \sup\{||xa||_{\mathcal{A}} : x \in \mathcal{I}, ||x||_{\mathcal{I}} \leq 1\}.$ 

When  $\mathfrak{l} \subseteq \mathfrak{J}$  we have  $\mathfrak{J} : \mathfrak{l} = \mathfrak{B}(H)$  and for any  $a \in \mathfrak{J} : \mathfrak{l}$  the mapping  $T_a(x) = ax$  is a bounded linear operator from  $\mathfrak{l}$  into  $\mathfrak{J}$ . As in the proof of Theorem 4.11 we may establish that  $||a||_{\mathfrak{f}:\mathfrak{l}} = \sup\{||ax||_{\mathfrak{f}} : x \in \mathfrak{l}, ||x||_{\mathfrak{l}} \leq 1\}$  is a complete symmetric quasi-norm on  $\mathfrak{f}:\mathfrak{l}$ . In addition, in case  $\mathfrak{l} = \mathfrak{f}$  we have

$$\begin{aligned} \|a\|_{I:I} &= \sup\{\|ax\|_{I} : x \in I, \|x\|_{I} \leq 1\} \\ &\leq \sup\{\|a\|_{\mathcal{B}(H)} \|x\|_{I} : x \in I, \|x\|_{I} \leq 1\} \leq \|a\|_{\mathcal{B}(H)}, \end{aligned}$$

i.e.

 $||a||_{\mathcal{I}:\mathcal{I}} \leq ||a||_{\mathcal{B}(H)}$  for all  $a \in \mathcal{I}:\mathcal{I}$ .

Thus, the norm  $\|\cdot\|_{\mathcal{B}(H)}$  and the quasi-norm  $\|\cdot\|_{\mathfrak{1:1}}$  are equivalent.

Now, let *G* and *F* be arbitrary symmetric quasi-Banach sequence spaces in  $l_{\infty}$ . For every  $\xi \in F : G$  set

 $\|\xi\|_{F:G} = \sup\{\|\xi\eta\|_F : \eta \in G, \|\eta\|_G \leq 1\}.$ 

The following theorem is a "commutative" version of Theorem 4.11.

**Theorem 4.13.** If  $G \not\subseteq F$ , then  $(F : G, \|\cdot\|_{F:G})$  is a symmetric quasi-Banach sequence space in  $c_0$  with the modulus of concavity, which does not exceed the modulus of concavity of the quasi-norm  $\|\cdot\|_F$ , in addition,  $\|\xi\eta\|_F \leq \|\xi\|_{F:G} \|\eta\|_G$  for all  $\xi \in F : G, \eta \in G$ .

**Proof.** Since  $G \not\subseteq F$ , it follows that  $F \neq l_{\infty}, F : G \neq l_{\infty}$ , and therefore, according to Corollary 4.8, F : G is a solid rearrangement invariant space and  $F : G \subset c_0$ .

As in the proof of Theorem 4.11 it is established that  $\|\cdot\|_{F:G}$  is a complete quasi-norm on F: G with the modulus of concavity which does not exceed the modulus of concavity of the quasi-norm  $\|\cdot\|_{F}$ .

If  $\xi$ ,  $\eta \in F$ : G and  $\xi^* \leq \eta^*$ , then  $\xi^* = a\eta^*$  for some  $a \in l_\infty$  with  $||a||_\infty \leq 1$ . Hence,

$$\begin{split} \|\xi^*\|_{F:G} &= \|a\eta^*\|_{F:G} = \sup\{\|a\eta^*\zeta\|_F : \zeta \in G, \|\zeta\|_G \leq 1\} \\ &\leq \|a\|_{\infty} \sup\{\|\eta^*\zeta\|_F : \zeta \in G, \|\zeta\|_G \leq 1\} \leq \|\eta^*\|_{F:G}. \end{split}$$

Let us show that  $\|\xi\|_{F:G} = \|\xi^*\|_{F:G}$  for all  $\xi = \{\xi_n\}_{n=1}^{\infty} \in F : G$ . Since  $\xi \in c_0$  there exists a bijection  $\pi : \mathbb{N} \to \mathbb{N}$  such that  $U_{\pi}(\xi) := \{\xi_{\pi(n)}\}_{n=1}^{\infty} = \{\xi_n^*\}_{n=1}^{\infty} = \xi^*$ . It is clear that the mapping  $U_{\pi} : l_{\infty} \to l_{\infty}$  defined by the equality  $U_{\pi}(\eta) = U_{\pi}(\{\eta_n\}_{n=1}^{\infty}) = \{\eta_{\pi(n)}\}_{n=1}^{\infty}, \eta = \{\eta_n\}_{n=1}^{\infty} \in l_{\infty}$ , is a linear bijective mapping, such that  $U_{\pi}(\eta\zeta) = U_{\pi}(\eta)U_{\pi}(\zeta), \eta, \zeta \in l_{\infty}$ . In addition,  $U_{\pi}(G) = G, U_{\pi}(F) = F$ , and  $\|U_{\pi}(\eta)\|_{G} = \|\eta\|_{G}, \|U_{\pi}(\zeta)\|_{F} = \|\zeta\|_{F}$  for all  $\eta \in G, \zeta \in F$ . Since  $U_{\pi}(\xi) = \xi^*$ , we have

$$\begin{aligned} \|\xi^*\|_{F:G} &= \sup\{\|U_{\pi}(\xi)\eta\|_F : \eta \in G, \|\eta\|_G \leq 1\} = \sup\{\|U_{\pi}(\xi U_{\pi}^{-1}(\eta))\|_F : \eta \in G, \|\eta\|_G \leq 1\} \\ &= \sup\{\|\xi U_{\pi}^{-1}(\eta)\|_F : \eta \in G, \|\eta\|_G \leq 1\} = \sup\{\|\xi\zeta\|_F : U_{\pi}(\zeta) \in G, \|U_{\pi}(\zeta)\|_G \leq 1\} \\ &= \sup\{\|\xi\zeta\|_F : \zeta \in G, \|\zeta\|_G \leq 1\} = \|\xi\|_{F:G}. \end{aligned}$$

Thus, from  $\xi, \eta \in F : G, \xi^* \leq \eta^*$  it follows that

 $\|\xi\|_{F:G} = \|\xi^*\|_{F:G} \leq \|\eta^*\|_{F:G} = \|\eta\|_{F:G}.$ 

640

(7)

(6)

The equality  $\|\xi\|_{F:G} = 1$  is established similarly to the equality  $\|p\|_{\mathcal{J}:t} = 1$ , where *p* is a one-dimensional projection from  $\mathcal{B}(H)$  (see the proof of Theorem 4.11).

Consequently,  $(F : G, \|\cdot\|_{F:G})$  is a symmetric quasi-Banach sequence space in  $c_0$ . The inequality  $\|\xi\eta\|_F \leq \|\xi\|_{F:G} \|\eta\|_G$  immediately follows from the definition of  $\|\cdot\|_{F:G}$ .  $\Box$ 

Let  $\mathfrak{l}, \mathfrak{J}$  be symmetric quasi-Banach ideals of compact operators from  $\mathfrak{B}(H), \mathfrak{l} \subseteq \mathfrak{J}$ . By Proposition 4.9,  $\mathfrak{J} : \mathfrak{l} = C_{E_{\mathfrak{g}}:E_{\mathfrak{l}}}$ , i.e.  $C_{E_{\mathfrak{g}}:E_{\mathfrak{l}}}$  is a two-sided ideal of compact operators from  $\mathfrak{B}(H)$ . For every  $a \in C_{E_{\mathfrak{g}}:E_{\mathfrak{l}}}$  we set

$$||a||_{C_{E_{\mathcal{A}}:E_{\mathcal{I}}}} := ||\{s_n(a)\}||_{E_{\mathcal{I}}:E_{\mathcal{J}}}.$$

**Proposition 4.14.**  $\|\cdot\|_{C_{E_q:E_q}}$  is a symmetric quasi-norm on  $C_{E_q:E_q}$ .

**Proof.** Obviously,  $||a||_{C_{E_d:E_d}} \ge 0$  for all  $a \in C_{E_q:E_d}$  and  $||a||_{C_{E_d:E_d}} = 0 \Leftrightarrow a = 0$ . If  $a, b \in C_{E_q:E_d}$ ,  $\lambda \in \mathbb{C}$ , then

$$\|\lambda a\|_{C_{E_{q}:E_{J}}} = \|\{s_{n}(\lambda a)\}_{n=1}^{\infty}\|_{E_{q}:E_{J}} = |\lambda|\|a\|_{C_{E_{q}:E_{J}}}$$

and

$$\begin{aligned} \|a+b\|_{C_{E_{g}:E_{I}}} &= \|\{s_{n}(a+b)\}\|_{E_{g}:E_{I}} \stackrel{(3)}{\leq} \|\sigma_{2}(\{s_{n}(a)+s_{n}(b)\})\|_{E_{g}:E_{I}} \\ &\leqslant 2C\|\{s_{n}(a)\}+\{s_{n}(b)\}\|_{E_{g}:E_{I}} \\ &\leqslant 2C^{2}(\|\{s_{n}(a)\}\|_{E_{g}:E_{I}}+\|\{s_{n}(b)\}\|_{E_{g}:E_{I}}) \\ &= 2C^{2}(\|a\|_{C_{E_{g}:E_{I}}}+\|b\|_{C_{E_{g}:E_{I}}}). \end{aligned}$$

Hence,  $\|\cdot\|_{C_{E_g:E_I}}$  is a quasi-norm on  $C_{E_g:E_I}$  and the modulus of concavity of  $\|\cdot\|_{C_{E_g:E_I}}$  does not exceed  $2C^2$ , where C is the modulus of concavity of the quasi-norm  $\|\cdot\|_{E_q}$ .

Since  $s_n(xay) \leq ||x||_{\mathcal{B}(H)} ||y||_{\mathcal{B}(H)} s_n(a)$  for all  $a \in \mathcal{K}(H), x, y \in \mathcal{B}(H), n \in \mathbb{N}$  (see Proposition 2.2), it follows

$$\|xay\|_{C_{E_{4}:E_{4}}} = \|\{s_{n}(xay)\}\|_{E_{4}:E_{4}} \leq \|x\|_{\mathcal{B}(H)} \|y\|_{\mathcal{B}(H)} \|a\|_{C_{E_{4}:E_{4}}}.$$

It is clear that  $\|p\|_{C_{E_q:E_l}} = 1$  for every one-dimensional projection p. Thus,  $\|\cdot\|_{C_{E_q:E_l}}$  is a symmetric quasi-norm on  $C_{E_q:E_l}$ .  $\Box$ 

**Remark 4.15.** (i) If  $\mathfrak{1}, \mathfrak{J}$  are symmetric Banach ideals of compact operators in  $\mathfrak{B}(H)$  and  $\mathfrak{1} \not\subseteq \mathfrak{J}$ , then  $(\mathfrak{J} : \mathfrak{1}, \| \cdot \|_{\mathfrak{f};\mathfrak{1}})$  is a symmetric Banach ideal of compact operators (Theorem 4.11), and therefore  $(E_{\mathfrak{f};\mathfrak{1}}, \| \cdot \|_{E_{\mathfrak{f};\mathfrak{1}}})$  is a symmetric Banach sequence space in  $c_0$  (Theorem 4.4).

(ii) If *G*, *F* are symmetric Banach sequence spaces in  $c_0$  and  $G \not\subseteq F$ , then  $(F : G, \|\cdot\|_{F:G})$  is a symmetric Banach sequence space in  $c_0$  (Theorem 4.13), and therefore  $(C_{F:G}, \|\cdot\|_{C_{F:G}})$  is a symmetric Banach ideal of compact operators from  $\mathcal{B}(H)$  (Theorem 1.5).

**Theorem 4.16.** Let I,  $\mathcal{J}$  be symmetric quasi-Banach ideals of compact operators from  $\mathcal{B}(H)$  and  $I \not\subseteq \mathcal{J}$ . Then

(i)  $E_{\mathcal{J}:\mathcal{I}} = E_{\mathcal{J}} : E_{\mathcal{I}} \text{ and } \| \cdot \|_{E_{\mathcal{J}}:E_{\mathcal{I}}} \leq \| \cdot \|_{E_{\mathcal{J}:\mathcal{I}}} \leq 2C \| \cdot \|_{E_{\mathcal{J}}:E_{\mathcal{I}}}, \text{ where } C \text{ is the modulus of concavity of the quasi-norm } \| \cdot \|_{\mathcal{J}};$ (ii)  $\mathcal{J}: \mathcal{I} = C_{E_{\mathcal{J}}:E_{\mathcal{I}}} \text{ and } \| \cdot \|_{C_{E_{\mathcal{J}}:E_{\mathcal{I}}}} \leq \| \cdot \|_{\mathcal{J}:\mathcal{I}} \leq 2C \| \cdot \|_{C_{E_{\mathcal{J}}:E_{\mathcal{I}}}}, \text{ where } C \text{ is the modulus of concavity of the quasi-norm } \| \cdot \|_{E_{\mathcal{J}}}.$ 

**Proof.** If  $\xi = \xi^* \in E_{g,I}$ , then  $x_{\xi} \in \mathcal{J} : \mathcal{I}$  (see Theorem 4.4). Hence, for every  $\eta = \eta^* \in E_I$  we have  $x_{\eta} \in \mathcal{I}$  and  $x_{\xi\eta} = x_{\xi}x_{\eta} \in \mathcal{J}$ , i.e.  $\xi\eta \in E_g$ . Therefore, due to Proposition 4.7,  $\xi \in E_g : E_I$ , in addition,

$$\begin{split} \|\xi\|_{E_{g;I}} &= \|x_{\xi}\|_{\mathcal{J};I} = \sup\{\|x_{\xi}y\|_{\mathcal{J}} : y \in \mathcal{I}, \|y\|_{\mathcal{I}} \leq 1\} \\ &\geq \sup\{\|x_{\xi}x_{\eta}\|_{\mathcal{J}} : \eta \in E_{\mathcal{I}}, \|\eta\|_{E_{\mathcal{I}}} \leq 1\} \\ &= \sup\{\|x_{\xi\eta}\|_{\mathcal{J}} : \eta \in E_{\mathcal{I}}, \|\eta\|_{E_{\mathcal{I}}} \leq 1\} \\ &= \sup\{\|\xi\eta\|_{E_{\mathcal{I}}} : \eta \in E_{\mathcal{I}}, \|\eta\|_{E_{\mathcal{I}}} \leq 1\} = \|\xi\|_{E_{\mathcal{I}};E_{\mathcal{I}}}. \end{split}$$

Conversely, if  $\xi = \xi^* \in E_{\mathfrak{f}} : E_{\mathfrak{I}}$ , then  $x_{\xi} \in C_{E_{\mathfrak{f}}:E_{\mathfrak{I}}} = \mathfrak{f} : \mathfrak{I}$  (see Proposition 4.9), and so  $\xi \in E_{\mathfrak{f}:\mathfrak{I}}$ . Moreover,

$$\begin{split} \|\xi\|_{E_{g;I}} &= \|x_{\xi}\|_{g;I} = \sup\{\|x_{\xi}y\|_{g} : y \in \mathcal{I}, \|y\|_{I} \leq 1\} \\ &= \sup\{\|x_{\{s_{n(x_{\xi}y)}\}}\}\|_{g} : y \in \mathcal{I}, \|y\|_{I} \leq 1\} \\ \stackrel{(4)}{\leq} \sup\{\|x_{\sigma_{2}(\{\xi s_{n(y)}\})}\|_{g} : y \in \mathcal{I}, \|y\|_{I} \leq 1\} \\ &\leq 2C \sup\{\|\xi\{s_{n}(y)\}\|_{E_{g}} : y \in \mathcal{I}, \|y\|_{I} \leq 1\} \\ &\leq 2C \sup\{\|\xi\eta\|_{E_{g}} : \eta \in E_{I}, \|\eta\|_{E_{I}} \leq 1\} = 2C\|\xi\|_{E_{g};E_{I}}. \end{split}$$

Thus,  $E_{\mathfrak{g}:\mathfrak{l}} = E_{\mathfrak{g}} : E_{\mathfrak{l}}$  and  $\|\xi\|_{E_{\mathfrak{g}:\mathfrak{L}_{\mathfrak{l}}}} \leq \|\xi\|_{E_{\mathfrak{g}:\mathfrak{l}}} \leq 2C \|\xi\|_{E_{\mathfrak{g}:\mathfrak{L}_{\mathfrak{l}}}}$  for all  $\xi \in E_{\mathfrak{g}:\mathfrak{l}}$ . (ii) The equality  $\mathfrak{g} : \mathfrak{l} = C_{E_{\mathfrak{g}:\mathfrak{L}_{\mathfrak{l}}}}$  is proven in Proposition 4.9. For an arbitrary  $a \in \mathfrak{g} : \mathfrak{l}$  we have

$$\begin{aligned} \|a\|_{C_{E_{\mathcal{J}}:E_{\mathcal{I}}}} &= \|\{s_n(a)\}\|_{E_{\mathcal{I}}:E_{\mathcal{J}}} \\ &= \sup\{\|\{s_n(a)\}\eta\|_{E_{\mathcal{J}}} : \eta \in E_{\mathcal{I}}, \|\eta\|_{E_{\mathcal{I}}} \leq 1\} \\ &= \sup\{\|x_{\{s_n(a)\}}x_{\eta}\|_{\mathcal{J}} : x_{\eta} \in \mathcal{I}, \|x_{\eta}\|_{\mathcal{I}} \leq 1\} \\ &\leq \sup\{\|x_{\{s_n(a)\}}y\|_{\mathcal{J}} : y \in \mathcal{I}, \|y\|_{\mathcal{I}} \leq 1\} \\ &= \|x_{\{s_n(a)\}}\|_{\mathcal{J}:\mathcal{I}} = \|a\|_{\mathcal{J}:\mathcal{I}}. \end{aligned}$$

On the other hand,

 $\begin{aligned} \|a\|_{\mathcal{J}:I} &= \sup\{\|ay\|_{\mathcal{J}} : y \in \mathcal{I}, \|y\|_{\mathcal{I}} \leq 1\} \\ &= \sup\{\|\{s_n(ay)\}_{n=1}^{\infty}\|_{E_{\mathcal{J}}} : y \in \mathcal{I}, \|y\|_{\mathcal{I}} \leq 1\} \\ &\stackrel{(4)}{\leq} \sup\{\|\sigma_2(\{s_n(a)s_n(y)\}_{n=1}^{\infty})\|_{E_{\mathcal{J}}} : y \in \mathcal{I}, \|y\|_{\mathcal{I}} \leq 1\} \\ &= 2C \sup\{\|\{s_n(a)s_n(y)\}\|_{E_{\mathcal{J}}} : y \in \mathcal{I}, \|y\|_{\mathcal{I}} \leq 1\} \\ &= 2C \|\{s_n(a)\}\|_{E_{\mathcal{J}}:E_{\mathcal{I}}} = 2C \|a\|_{C_{E_{\mathcal{J}}:E_{\mathcal{I}}}}. \quad \Box \end{aligned}$ 

Since  $(\mathcal{J} : \mathcal{I}, \| \cdot \|_{\mathcal{J}:\mathcal{I}})$  is a quasi-Banach space (see Theorem 4.11) and quasi-norms  $\| \cdot \|_{\mathcal{J}:\mathcal{I}}$  and  $\| \cdot \|_{\mathcal{C}_{E_{\mathcal{J}}:E_{\mathcal{I}}}}$  are equivalent (see Theorem 4.16(ii)), we have the following corollary.

**Corollary 4.17.** For any symmetric quasi-Banach ideals  $\mathfrak{I}, \mathfrak{J}$  of compact operators from  $\mathcal{B}(H), \mathfrak{I} \not\subseteq \mathfrak{J}$ , the couple  $(C_{E_{\mathfrak{g}:E_{\mathfrak{I}}}}, \| \cdot \|_{C_{E_{\mathfrak{g}:E_{\mathfrak{I}}}}})$  is a symmetric quasi-Banach ideal of compact operators from  $\mathcal{B}(H)$ .

The following theorem gives the full description of the set  $\text{Der}(\mathcal{I}, \mathcal{J})$ .

**Theorem 4.18.** (i) Let  $\mathfrak{l}$  and  $\mathfrak{f}$  be symmetric quasi-Banach ideals of compact operators from  $\mathfrak{B}(H)$ ,  $\mathfrak{l} \not\subseteq \mathfrak{f}$ . Then any derivation  $\delta$  from  $\mathfrak{l}$  into  $\mathfrak{f}$  has a form  $\delta = \delta_a$  for some  $a \in C_{E_{\mathfrak{f}}:E_{\mathfrak{l}}}$  and  $||a + \alpha \mathbb{1}||_{\mathfrak{B}(H)} \leq ||\delta_a||_{\mathfrak{B}(\mathfrak{l},\mathfrak{f})}$  for some  $\alpha \in \mathbb{C}$ . Conversely, if  $a \in C_{E_{\mathfrak{f}}:E_{\mathfrak{l}}}$  then the restriction of  $\delta_a$  on  $\mathfrak{l}$  is a derivation from  $\mathfrak{l}$  into  $\mathfrak{f}$ . In addition,  $||\delta_a||_{\mathfrak{B}(\mathfrak{l},\mathfrak{f})} \leq 2C ||a||_{\mathfrak{f}:\mathfrak{l}}$ , where C is the modulus of concavity of the quasi-norm  $|| \cdot ||_{\mathfrak{f}}$ ;

(ii) Let *G* and *F* be symmetric Banach (respectively, *F* is a *p*-convex, *G* is a *q*-convex quasi-Banach with  $0 < p, q < \infty$ ) sequence spaces in  $c_0$  and  $G \not\subseteq F$ . Then any derivation  $\delta : C_G \to C_F$  has a form  $\delta = \delta_a$  for some  $a \in C_{F:G}$  and  $||a + \alpha \mathbb{1}||_{\mathcal{B}(H)} \leq ||\delta_a||_{\mathcal{B}(C_G,C_F)}$ for some  $\alpha \in \mathbb{C}$ . Conversely, if  $a \in C_{F:G}$ , then the restriction of  $\delta_a$  on  $C_G$  is a derivation from  $C_G$  into  $C_F$ . In addition,  $||\delta_a||_{\mathcal{B}(C_G,C_F)} \leq 2C||a||_{C_F:C_G}$ , where *C* is the modulus of concavity of the quasi-norm  $||\cdot||_{C_F}$ .

**Proof.** (i) By Theorem 3.6, any derivation  $\delta : \mathfrak{l} \to \mathfrak{J}$  has a form  $\delta = \delta_a$  for some  $a \in \mathfrak{J} : \mathfrak{l}$ , in addition  $||a + \alpha \mathbb{1}||_{\mathfrak{B}(H)} \leq ||\delta_a||_{\mathfrak{B}(\mathfrak{l},\mathfrak{J})}$  for some  $\alpha \in \mathbb{C}$ . Since  $\mathfrak{J} : \mathfrak{l} = C_{E_{\mathfrak{J}}:E_{\mathfrak{l}}}$  (see Theorem 4.16), we have  $a \in C_{E_{\mathfrak{J}}:E_{\mathfrak{l}}}$ .

Conversely, if  $a \in C_{E_g:E_g}$ , then  $a \in \mathcal{J} : \mathcal{I}$ , and, according to Theorem 3.6,  $\delta_a(\mathcal{I}) \subset \mathcal{J}$ . Moreover,

$$\begin{split} \|\delta_{a}\|_{\mathscr{B}(\mathfrak{I},\mathfrak{J})} &= \sup\{\|\delta_{a}(x)\|_{\mathfrak{J}} : x \in \mathfrak{I}, \|x\|_{\mathfrak{I}} \leq 1\} \\ &= \sup\{\|ax - xa\|_{\mathfrak{J}} : x \in \mathfrak{I}, \|x\|_{\mathfrak{I}} \leq 1\} \\ &\leq \sup\{C(\|ax\|_{\mathfrak{J}} + \|xa\|_{\mathfrak{J}}) : x \in \mathfrak{I}, \|x\|_{\mathfrak{I}} \leq 1\} \\ &\stackrel{(6)}{=} 2C \sup\{\|ax\|_{\mathfrak{J}} : x \in \mathfrak{I}, \|x\|_{\mathfrak{I}} \leq 1\} = 2C\|a\|_{\mathfrak{J}:\mathfrak{I}}. \end{split}$$
(8)

Item (ii) follows from (i) and Theorems 1.5 and 4.16. The inequality  $\|\delta_a\|_{\mathscr{B}(C_F,C_G)} \leq 2C \|a\|_{C_G:C_F}$  is proven in the same manner.  $\Box$ 

We illustrate Theorem 4.18 with an example drawn from the theory of Lorentz and Marcinkiewicz sequence spaces. Let  $\omega = \{\omega_n\}_{n=1}^{\infty}$  be a decreasing weight sequence of positive numbers. Letting  $W(j) = \sum_{n=1}^{j} w_n, j \in \mathbb{N}$ , we shall assume that  $W(\infty) = \sum_{n=1}^{\infty} w_n = \infty$ .

The Lorentz sequence space  $l_{\omega}^p$ ,  $1 \le p < \infty$ , consists of all sequences  $\xi = {\xi_n}_{n=1}^{\infty} \in c_0$  such that

$$\|\xi\|_{l^p_{\omega}} = \left(\sum_{n=1}^{\infty} (\xi_n^*)^p w_n\right)^{\frac{1}{p}} < \infty.$$

The Lorentz (Marcinkiewicz) sequence space  $m_W^p$ ,  $1 \le p < \infty$ , is the space of all sequences  $\xi = \{\xi_n\}_{n=1}^{\infty} \in c_0$  satisfying

$$\|\xi\|_{m_W^p} = \sup_{k \ge 1} \left( \frac{\sum\limits_{n=1}^k (\xi_n^*)^p}{W_k} \right)^{\frac{1}{p}} < \infty.$$

It is well known (see e.g. [21] and [22, Proposition 1]) that  $(l_{\omega}^{p}, \|\cdot\|_{l_{\omega}^{p}})$  and  $(m_{W}^{p}, \|\cdot\|_{m_{\omega}^{p}})$  are symmetric Banach sequence spaces in  $c_0$ .

Hence,  $(C_{l_{\omega}^{p}}, \|\cdot\|_{C_{l_{\omega}^{p}}})$  and  $(C_{m_{W}^{p}}, \|\cdot\|_{C_{m_{W}^{p}}})$  are symmetric Banach ideals of compact operators (Theorem 1.5). Since  $l_1: l_{\omega} = m_W^1$  (see e.g. [21]) it follows that  $l_p: l_{\omega}^p = m_W^p$  for every  $1 \le p < \infty$  [22, Section 2]. By Theorem 4.16,  $C_p: C_{l_{\omega}^p} = C_{m_{\omega}^p}$ and  $\|a\|_{C_p:C_{p}} \leq 2\|a\|_{C_{m^p}}$  for all  $a \in C_p: C_{l^p_\omega}$ . From Theorem 4.18 (ii), we obtain the following example significantly extending similar results from [1]

**Corollary 4.19.** A linear mapping  $\delta : C_{l_{\omega}^p} \to C_p$ ,  $1 \leq p < \infty$  is a derivation if and only if  $\delta = \delta_a$  for some  $a \in C_{m_{\omega}^p}$ , in addition,  $\|\delta\|_{\mathscr{B}(C_{p}^{p},C_{p})} \leq 2\|a\|_{C_{p}:C_{p}} \leq 4\|a\|_{C_{m}^{p}}.$ 

In conclusion, note that, by Theorem 3.2, (8), any derivation  $\delta$  from a symmetric quasi-Banach ideal I into a symmetric quasi-Banach ideal  $\mathcal{J}$ , such that  $\mathcal{I} \subseteq \mathcal{J}$ , has a form  $\delta = \delta_a$  for some  $a \in \mathcal{B}(H)$  and, in addition,  $||a||_{\mathcal{B}(H)} \leq ||\delta_a||_{\mathcal{B}(\mathcal{I},\mathcal{J})} \leq ||\delta_a||_$  $2C\|a\|_{\mathcal{J};I}$ , where *C* is the modulus of concavity of the quasi-norm  $\|\cdot\|_{\mathcal{J}}$ . Moreover, for the case when  $\mathcal{I} = \mathcal{J}$  we have  $\|a\|_{\mathcal{B}(H)} \leq \|\delta_a\|_{\mathcal{B}(I,I)} \leq 2C\|a\|_{\mathcal{B}(H)}$ , where *C* is the modulus of concavity of the quasi-norm  $\|\cdot\|_{\mathcal{I}}$  (see (7)). This complements results from [7].

### References

- [1] M.J. Hoffman, Essential commutants and multiplier ideals, Indiana Univ. Math. J. 30 (1981) 859-869.
- [2] S. Sakai, C\*-Algebras and W\*-Algebras, Springer-Verlag, New York, Heidelberg, Berlin, 1971.
- [3] E. Kissin, V.S. Shulman, Differential Schatten \*-algebras. Approximation property and approximate identities, J. Oper. Theory 45 (2001) 303–334.
- [4] J.W. Calkin, Two-sided ideals and congruences in the ring of bounded operators in Hilbert space, Ann. of Math. 42 (1941) 839-873.
- [5] A.F. Ber, F.A. Sukochev, Commutator estimates in W\*-algebras, J. Funct. Anal. 262 (2012) 537-568.
   [6] A.F. Ber, F.A. Sukochev, Commutator estimates in W\*-factors, Trans. Amer. Math. Soc. 364 (10) (2012) 5571-5587.
- [7] A.F. Ber, F.A. Sukochev, Derivations in the Banach ideals of  $\tau$ -compact operators, 18 April, 2012, p. 12. arXiv:1204.4052v1.
- [8] B. Simon, Trace Ideals and their Applications, second ed., in: Mathematical Surveys and Monographs, vol. 120, American Mathematical Society, Providence, RI, 2005.
- [9] N.J. Kalton, F.A. Sukochev, Symmetric norms and spaces of operators, J. Reine Angew. Math. 621 (2008) 81-121.
- [10] D.J.H. Garling, On ideals of operators in Hilbert space, Proc. Lond. Math. Soc. (3) 17 (1967) 115-138.
- [11] P.G. Dodds, T.K. Dodds, B. de Pagter, Non-commutative Köthe duality, Trans. Amer. Math. Soc. 339 (1993) 717–750.
- [12] R.Y. Kadison, J.R. Ringrose, Fundamentals of the Theory of Operator Algebras I, II, Academic Press, Orlando, 1983.
- [13] M. Reed, B. Simon, Methods of Modern Mathematical Physics. Vol. 1: Functional Analysis, Academic Press, 1980.
- [14] M.A. Muratov, V.I. Chilin, Algebras of measurable and locally measurable operators, Proc. Inst. Math. of Nat. Acad. Sci. of Ukraine, Kiev 69 (2007) (Russian).
- [15] I. Gohberg, M. Krein, Introduction to the Theory of Linear Nonselfadjoint Operators, in: Trans. Math. Monog., vol. 18, American Mathematical Society, Providence, RI, 1969.
- [16] N.J. Kalton, Quasi-Banach spaces, in: Handbook of the Geometry of Banach Spaces. Vol. 2, Elsevier, 2003, pp. 1099–1130.
- [17] H.H. Schaefer, Topological Vector Spaces, The Machmillan Company, Collier-Machmillan Limited, New York, London, 1966.
- [18] B.Z. Vulich, Introduction to the Theory of Partially Ordered Spaces, Wolters-Noordhoff, Groningen, 1967.
- [19] S.G. Krein, Y.I. Petunin, E.M. Semenov, Interpolation of Linear Operators, in: Trans. Math. Monogr., vol. 54, American Mathematical Society, Providence, RI. 1982.
- [20] T. Fack, H. Kosaki, Generalised s-numbers of τ-measurable operators, Pacific J. Math. 123 (1986) 265–300.
- [21] A. Kamińska, A.M. Parrish, Convexity and concavity constants in Lorentz and Marcinkiewicz spaces, J. Math. Anal. Appl. 343 (2008) 337–351.
- [22] L. Maligranda, L.E. Persson, Generalized duality of some Banach function spaces, Indag. Math. 51 (1989) 323–338.