Some Inequalities Involving the Constant *e*, and an Application to Carleman's Inequality

. D. 1

metadata, citation and similar papers at core.ac.uk

Guangdong, 510303, P.R. China

and

Lokenath Debnath

Department of Mathematics, University of Central Florida, Orlando, Florida 32816

Submitted by William F. Ames

Received April 17, 1997

Some inequalities involving the constant *e* are considered. A strengthened Carleman's inequality is proved. © 1998 Academic Press

Key Words: Maclaurin's expansion; Carleman's inequality.

1. INTRODUCTION

It is well known that

$$\lim_{n\to\infty} \left(1+\frac{1}{n}\right)^n = e \quad \text{and} \quad \sum_{n=0}^{\infty} \frac{1}{n!} = e.$$

In estimating the convergence velocity, Sewell [1, p. 358] showed that

$$\frac{1}{(n+1)!} \le e - \sum_{n=0}^{\infty} \frac{1}{n!} < \frac{3}{(n+1)!}, \qquad n = 1, 2, \dots$$
 (1.1)

Kloosterman (see [4, Chapter 3.8.26]) proved the following inequality:

$$\left| e - \left(1 + \frac{1}{n} \right)^n \right| < \frac{e}{2n}, \qquad n = 1, 2, 3, \dots$$
 (1.2)

In this paper, we consider some inequalities involving the constant e and give an improvement of (1.2). As an application, we prove a strengthened Carleman's inequality.

2. LEMMAS AND A THEOREM

LEMMA 2.1. For every x in $0 < x \le \frac{1}{5}$, we have

$$e - \frac{e}{2}x + \frac{11e}{24}x^2 - \frac{21e}{48}x^3 < (1+x)^{1/x} < e - \frac{e}{2}x + \frac{11e}{24}x^2,$$
 (2.1)

Proof. We define a function g by $g(x) = (1/x)\ln(1+x)$ for $x \in (-1,0) \cup (0,1)$, and g(0) = 1.

It is convenient to calculate its derivatives explicitly term by term as follows:

$$g'(x) = -\sum_{n=2}^{\infty} (-1)^n \frac{(n-1)}{n} x^{n-2},$$

$$g''(x) = \sum_{n=3}^{\infty} (-1)^n \frac{(n-1)(n-2)}{n} x^{n-3},$$

$$g'''(x) = -\sum_{n=4}^{\infty} (-1)^n \frac{(n-1)(n-2)(n-3)}{n} x^{n-4},$$

$$g^{IV}(x) = \sum_{n=4}^{\infty} (-1)^{n-1} \frac{(n-1)(n-2)(n-3)(n-4)}{n} x^{n-5}.$$

Whether from this or in the usual way, we find that

$$g'(0) = -\frac{1}{2}$$
, $g''(0) = \frac{2}{3}$, and $g''(0) = -\frac{3}{2}$.

If $f(x) = \exp[g(x)]$ for -1 < x < 1, then $f(x) = (1 + x)^{1/x}$, and we obtain that

$$f'(x) = \exp[g(x)] \cdot g'(x), \qquad f'(0) = \exp[g(0)] \cdot g'(0) = -\frac{1}{2}e,$$

$$f''(x) = \exp[g(x)] \cdot \left[g'^{2}(x) + g''(x)\right],$$

$$f''(0) = \exp[g(0)] \cdot \left[g'^{2}(0) + g''(0)\right] = \frac{11e}{12},$$

$$f'''(x) = \exp[g(x)] \cdot \left[g'^{3}(x) + 3g'(x)g''(x) + g'''(x)\right],$$

$$f'''(0) = -\frac{21}{8}e,$$

$$f^{IV}(x) = \exp[g(x)] \cdot \left[g'^{4}(x) + 6g'^{2}(x)g''(x) + g^{4}(x)\right].$$

We now write the Maclaurin expansion of f(x) in the form

$$f(x) = e - \frac{e}{2}x + \frac{11e}{24}x^2 + \frac{1}{6}x^3f'''(x\theta_1), \qquad x \in (-1,1), 0 < \theta_1 < 1.$$
(2.2)

and

$$f(x) = e - \frac{e}{2}x + \frac{11e}{24}x^2 - \frac{21e}{48}x^3 + \frac{1}{24}x^4 f^{\text{IV}}(\theta_2, x),$$
 for $-1 < x < 1$ and $0 < \theta_2 < 1$. (2.3)

For $x \in (0, \frac{1}{5}]$, we have

$$\left(\frac{n-1}{n}\right)x^{n-2} > \left(\frac{n}{n+1}\right)x^{n-1}, \quad n \ge 2,$$

$$\frac{(n-1)(n-2)}{n}x^{n-3} > \frac{n(n-1)}{n+1}x^{n-2}, \quad n \ge 3,$$

$$\frac{(n-1)(n-2)(n-3)}{n}x^{n-4} > \frac{n(n-1)(n-2)}{n+1}x^{n-3},$$

$$\frac{(n-1)(n-2)(n-3)(n-4)}{n}x^{n-5} > \frac{n(n-1)(n-2)(n-3)}{n}x^{n-4},$$

$$n \ge 5.$$

Thus, g'(x) < 0, g''(x) > 0, g'''(x) < 0, and $g^{IV}(x) > 0$. Hence $f'''(x) \le 0$ and $f^{IV}(x) > 0$. Then

$$x^3 f'''(x\theta_1) < 0$$
 and $x^4 f^{IV}(x\theta_2) > 0$ for $0 < x \le \frac{1}{5}$.

In view of (2.2) and (2.3), we find that, for $0 < x \le \frac{1}{5}$,

$$f(x) < e - \frac{e}{2}x + \frac{11e}{24}x^2$$

and

$$f(x) > e - \frac{e}{2}x + \frac{11e}{24}x^2 - \frac{21e}{48}x^3.$$

Thus inequalities (2.1) follow.

LEMMA 2.2. The following inequalities are true:

$$\frac{1}{2n} - \frac{11}{24n^2} + \frac{21}{48n^3} < \frac{1}{2n + \frac{5}{3}}, \qquad n \ge 5,$$
 (2.4)

$$\frac{1}{2n} - \frac{11}{24n^2} \ge \frac{1}{2(n+1)}, \qquad n \ge 11. \tag{2.5}$$

Proof. When $n \geq 5$,

$$\left(\frac{1}{2n} - \frac{11}{24n^2} + \frac{21}{48n^3}\right)\left(2n + \frac{5}{3}\right) = 1 - \frac{1}{n}\left(\frac{1}{12} - \frac{1}{9n} - \frac{105}{144n^2}\right) < 1.$$

This proves (2.4).

For $n \ge 11$,

$$\left(\frac{1}{2n}-\frac{11}{24n^2}\right)(2n+2)=1+\frac{1}{n}\left(\frac{1}{12}-\frac{11}{12n}\right)\geq 1.$$

This shows that (2.5) is true.

Theorem 2.1. For every positive integer n,

$$\frac{1}{2(n+1)} < 1 - \frac{1}{e} \cdot \left(1 + \frac{1}{n}\right)^n < \frac{1}{2(n + \frac{5}{6})}.$$
 (2.6)

Later on, it will be convenient to use these inequalities in the form

$$e\left[1 - \frac{1}{2(n + \frac{5}{6})}\right] < \left(1 + \frac{1}{n}\right)^n < e\left[1 - \frac{1}{2(n+1)}\right].$$
 (2.7)

Proof. We substitute x = 1/n in (2.1) so that, for $n \ge 5$,

$$e - \frac{e}{2n} + \frac{11e}{24n^2} - \frac{21e}{48n^3} < \left(1 + \frac{1}{n}\right)^n < e - \frac{e}{2n} + \frac{11e}{24n^2}.$$

These inequalities are equivalent to

$$\frac{1}{2n} - \frac{11}{24n^2} < 1 - \frac{1}{e} \left(1 + \frac{1}{n} \right)^n < \frac{1}{2n} - \frac{11}{24n^2} + \frac{21}{48n^3}.$$
 (2.8)

Using (2.4)–(2.5) and (2.8), it turns out that

$$1 - \frac{1}{e} \left(1 + \frac{1}{n} \right)^n < \frac{1}{2(n + \frac{5}{6})}, \quad \text{for } n \ge 5,$$
 (2.9)

and

$$\frac{1}{2(n+1)} < 1 - \frac{1}{e} \left(1 + \frac{1}{n} \right)^n, \quad \text{for } n \ge 11.$$
 (2.10)

Inequality (2.9) is equivalent to

$$2.7182818^{+} = e < \left(\frac{6n+5}{6n+2}\right) \left(1+\frac{1}{n}\right)^{n}, \qquad n \ge 5.$$
 (2.11)

It is easy to check that (2.11) is valid for n = 1, 2, 3, 4. Hence (2.9) is true for every positive integer n.

Finally, inequality (2.10) is equivalent to

$$2.7182818^{+} = e > \left(\frac{2}{2n+1}\right)\left(1+\frac{1}{n}\right)^{n}, \quad \text{for } n \ge 11. \quad (2.12)$$

It is also easy to check that (2.12) is valid for n = 1, 2, ..., 10. Thus inequalities (2.6) are true, and so are inequalities (2.7). This completes the proof.

3. A STRENGTHENED CARLEMAN'S INEQUALITY

It is well known that the following Karlson inequality (see [4, p. 7]),

$$\left(\sum_{n=1}^{\infty} a_n\right)^4 < \pi^2 \left(\sum_{n=1}^{\infty} a_n^2\right) \left(\sum_{n=1}^{\infty} n^2 a_n^2\right), \qquad 0 < \sum_{n=1}^{\infty} n^2 a_n^2 < \infty, \quad (3.1)$$

may be strengthened as

$$\left(\sum_{n=1}^{\infty} a_n\right)^4 < \pi^2 \left(\sum_{n=1}^{\infty} a_n^2\right) \left(\sum_{n=1}^{\infty} \left(n - \frac{1}{2}\right)^2 a_n^2\right). \tag{3.2}$$

It is well known [2, Chapter 9.12] that the constant e is the best possible in the Carleman inequality

$$\sum_{n=1}^{\infty} \left(a_1 a_2 \cdots a_n \right)^{1/n} < e \left(\sum_{n=1}^{\infty} a_n \right)$$
 (3.3)

where $a_n \geq 0$ and $0 < \sum_{n=1}^{\infty} a_n < \infty$.

Analogous to the strengthening of Karlson's inequality, (3.3) may be strengthened as a consequence of inequalities (2.7). Hence we prove the following.

THEOREM 3.1. Let $a_n \ge 0$, n = 1, 2, ..., and $0 < \sum_{n=1}^{\infty} a_n < \infty$. Then

$$\sum_{n=1}^{\infty} \left(a_1 a_2 \cdots a_n \right)^{1/n} < e \sum_{n=1}^{\infty} \left[1 - \frac{1}{2(n+1)} \right] a_n.$$
 (3.4)

Proof. Assume that $c_n > 0$ for n = 1, 2, ... By the arithmetic–geometric average inequality, we have

$$(c_1 a_1 \cdot c_2 a_2 \cdot \dots \cdot c_n a_n)^{1/n} \le \frac{1}{n} \sum_{m=1}^{\infty} c_m a_m.$$
 (3.5)

Then we find that

$$\sum_{n=1}^{\infty} (a_{1}a_{2} \cdots a_{n})^{1/n} = \sum_{n=1}^{\infty} \left(\frac{c_{1}a_{1} \cdot c_{2}a_{2} \cdots c_{n}a_{n}}{c_{1}c_{2} \cdots c_{n}} \right)^{1/n}$$

$$= \sum_{n=1}^{\infty} (c_{1}c_{2} \cdots c_{n})^{-1/n} \cdot (c_{1}a_{1} \cdot c_{2}a_{2} \cdots c_{n}a_{n})^{1/n}$$

$$\leq \sum_{n=1}^{\infty} (c_{1}c_{2} \cdots c_{n})^{-1/n} \cdot \frac{1}{n} \sum_{m=1}^{\infty} c_{m}a_{m} \qquad \text{(by (3.5))}$$

$$= \sum_{m=1}^{\infty} c_{m}a_{m} \sum_{n=m}^{\infty} \frac{1}{n} (c_{1}c_{2} \cdots c_{n})^{-1/n}. \qquad (3.6)$$

Set $c_m = (m+1)^m / m^{m-1}$, m = 1, 2, Then

$$c_1c_2\cdots c_n=(n+1)^n,$$

and, hence,

$$\sum_{n=m}^{\infty} \frac{1}{n} (c_1 c_2 \cdots c_n)^{-1/n} = \sum_{n=m}^{\infty} \frac{1}{n(n+1)} = \frac{1}{m}.$$

Hence, the inequality (3.6) implies that

$$\sum_{n=1}^{\infty} \left(a_1 a_2 \cdots a_n \right)^{1/n} \le \sum_{m=1}^{\infty} \frac{1}{m} \left(c_m a_m \right) = \sum_{m=1}^{\infty} \left(1 + \frac{1}{m} \right)^m a_m.$$

By inequality (2.7), we obtain

$$\sum_{n=1}^{\infty} \left(a_1 a_2 \cdots a_n \right)^{1/n} \le e \sum_{m=1}^{\infty} \left[1 - \frac{1}{2(m+1)} \right] a_m. \tag{3.7}$$

Thus, inequality (3.4) is proved.

REFERENCES

- 1. K. J. Chang, "Applied Inequalities," Hunan Education Press, Changsha, 1993.
- G. H. Hardy, J. E. Littlewood, and G. Polya, "Inequalities," Cambridge Univ. Press, London, 1952.
- 3. S. G. Mikhlin, "Constants in Some Inequalities of Analysis," Wiley, New York, 1986.
- 4. D. S. Mitrinovic, "Analysis Inequalities," Springer-Verlag, New York, 1970.