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1. INTRODUCTION

It is well known that
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In estimating the convergence velocity, Sewell [1, p. 358] showed that

1 = 1 3
(n+ 1)1 =7 Z“E<(n+1)!’

n=0

n=12,.... (11

347

0022-247X /98 $25.00

Copyright © 1998 by Academic Press
All rights of reproduction in any form reserved.


https://core.ac.uk/display/82803974?utm_source=pdf&utm_medium=banner&utm_campaign=pdf-decoration-v1

348 NOTE

Kloosterman (see [4, Chapter 3.8.26]) proved the following inequality:
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e
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In this paper, we consider some inequalities involving the constant ¢ and
give an improvement of (1.2). As an application, we prove a strengthened
Carleman’s inequality.

2. LEMMAS AND A THEOREM

LEmMMA 2.1. Foreveryxin 0 <x < % we have

e 1le ,  2le | L 1/x e ”1
——x+ —x?— —x*<(1+ <e— — +—
€= Sx+ —ox TR (1+x) €= 5% x?, (2.1)

Proof. We define a function g by g(x)=(1/x)In(1 +x) for x
(—1,00 U (0,1), and g(0) = 1.

It is convenient to calculate its derivatives explicitly term by term as
follows:

- n—1
gu>=—§¥—n4—;lw2,
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gV(x) = X (-1
n=>5
Whether from this or in the usual way, we find that

g,(o) = _%1 g"(O) = %7 and g//(O) _ _%
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If f(x) =explg(x)] for —1 <x < 1, then f(x) = (1 +x)**, and we ob-
tain that

1
f'(x) =exp[g(x)]-g'(x),  f(0)=exp[g(0)] g'(0) = - e
(x) = explg(x)] - [g%(x) +¢"(x)],
1le
1"(0) = exp[g(0)] - [g7(0) +¢"(0)] = .

F(x) = exp[g(x)] - [g°(x) +3g'(x)g"(x) +g"(x)],
21
f1(0) = = e
FV(x) = exp[g(x)] - [g*(x) + 68 (x)g"(x)
+4g'(x)g" (x) + 38" (x) +g*(x)].
We now write the Maclaurin expansion of f(x) in the form

e 1le 1
f(x) =e— =x + —x% + —x3f"(x6,), xe(—-1,1),0<0, <1

2" 24 6
(2.2)

and

e 1le , 2le , 1 , .,
f(x)=e—5x+ﬂx ~ % +ﬂxf (6,,x),

for —1<x<land0< 6, <1 (2.3)

For x € (0, ], we have

n—1 n
( )an > ( )xnfl, n> 2’
n n+1

(n—1)(n - 2)x”‘3 N n(n — 1)x"_2

n >3,
n n+1
(n—=1)(n—-2)(n—-23) i n(n—1)(n - 2) s
n * n+1 oo
n =>4,
(n—1)(n—2)(n—-3)(n—4) s s n(n —1)(n —2)(n —3) o

n>>5.
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Thus, g'(x) <0, g"(x) > 0, g"(x) <0, and g'"V(x) > 0. Hence f"(x) <0
and f'V(x) > 0. Then

3f"(x6,) <0 and x*fV(x6,) >0 for0<x<t.

In view of (2.2) and (2.3), we find that, for 0 < x < £,

e 1le
<e— —x+ —
f(x) <e ¥t 5%

2

and

e 1le ) 2le s
>e— —x + —x2 — —x5.
J(x) > e=gx ot = ggx

Thus inequalities (2.1) follow.

LeEMMA 2.2, The following inequalities are true:

1 1 2 1 - »
— - + < , > 5, .
2n  24n? 480 ~2n+3 " (24)

1 11 1

> y
2n 24n®> T 2(n +1)

Proof. When n = 5,

1 11 21 5 1/(1 1 105
| B e ) AL

2n  24nm® | 48n

This proves (2.4).
For n > 11,

1 11 1/1 11
— = s12n+2)=1+—|—-—|=>1
2n 24n n\12 12n

This shows that (2.5) is true.

THEOREM 2.1.  For every positive integer n,

1 1 1\" 1
m<l—z'(l+;) <m. (26)
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Later on, it will be convenient to use these inequalities in the form

1 .2

1}1
<1+ —| <e
n

Proof. We substitute x = 1/n in (2.1) so that, for n > 5,

C2(n+ 1)

e 11e 21e 1\" e 11e
e——+ -5 <|1+—-] <e—-—+—.
2n  24n 48n n 2n  24n
These inequalities are equivalent to
1 11 1 1\" 1 11 21
— - s <1l—-—|1+—| <-—— >+ —=. (2.8)
2n 24n e n 2n 24n 48n

Using (2.4)—(2.5) and (2.8), it turns out that

1 1(1 l)" ! f 5 2.9
-1+ - < 77—, ornm > 9, .
e n 2(n +3) " (29)
and
1 1 1\"
—<1——(1+—), for n > 11. (2.10)
2(n +1) e n

Inequality (2.9) is equivalent to

6n +5 1
2.7182818 =¢ < ( )(

+ -, > 5. 211
6n + 2 n) " ( )

It is easy to check that (2.11) is valid for n = 1,2, 3,4. Hence (2.9) is true
for every positive integer n.
Finally, inequality (2.10) is equivalent to

2 1\"
2.7182818 = e > ( )(1 + —) , forn > 11. (2.12)
2n+1 n

It is also easy to check that (2.12) is valid for n =1,2,...,10. Thus
inequalities (2.6) are true, and so are inequalities (2.7). This completes the
proof.
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3. A STRENGTHENED CARLEMAN’S INEQUALITY

It is well known that the following Karlson inequality (see [4, p. 7]),
4

(Zan < Zaﬁ)(anai), 0< Y n%a® <=, (3.1)
n=1 n=1 n=1 n=1
may be strengthened as
(Zan <2 zag)(z(n——) ag). (3.2)
n=1 n=1 n=1 2

It is well known [2, Chapter 9.12] that the constant e is the best possible
in the Carleman inequality

Y (aa; )" <e
n=1

r ) (33)
n=1

where g, > 0and 0 < X7 _,a, < o,

Analogous to the strengthening of Karlson’s inequality, (3.3) may be
strengthened as a consequence of inequalities (2.7). Hence we prove the
following.

THEOREM 3.1. Leta,>0,n=1,2,..., and 0 < X _,a, < ». Then

Y (aa, - an)l/n <ey, [1
n=1 n=1

- m a,. (34)

Proof. Assume that c,>0 for n=12,.... By the arithmetic—
geometric average inequality, we have

1 =
1
(clal TCaly 'cnan) /" == Z Cnlp- (35)
n m=1

Then we find that

Z (aay - an)l/n = Z
n=1

oo
-1 1
= Z (c165 =+ ¢,) " (c1ay - cpa, -+ c,a,) /"

n=1
o —i/m 1 oo
< Z (C1C2 Cn) ; Z Cmam (by (35))
n=1 m=1
© © 1 —1/n
= Zcmam Z ;(6162 o Cn) ' (36)
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Setc, =(m+1D"/m™ Y m=12,....Then

Cch cn = (n + 1)”,
and, hence,
* 1 » 1 1
i —i/n _ - _ =
n=2m " (cicp o cy) )y n(n+1) m

n=m

Hence, the inequality (3.6) implies that

© L o 1 © 1 m
Z (“1“2 an) < Z _(Cmam) = Z 1+ — Ay
n=1 m 1 m

m=1 m=
By inequality (2.7), we obtain

1

- m a,, . (37)

2 (aya, - “n)l/n <e . [1
n=1 m=1

Thus, inequality (3.4) is proved.
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