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We have studied modulated inflation that generates curvature perturbation from light-field fluctuation. As
discussed in previous works, even if the fluctuation of the inflaton itself does not generate the curvature
perturbation, fluctuation of a light field may induce fluctuation for the end-line of inflation and this may
lead to generation of cosmological perturbation “at the end of the inflation”. Our scenario is different
from this kind of modulated scenario, as clearly explained in this Letter by using δN formalism. We also
explain the crucial difference from the standard multi-field inflation model. We show concrete examples
of the modulated inflation scenario in which large non-gaussianity can be generated. We also discuss the
running of the non-gaussianity parameter.

© 2008 Elsevier B.V. Open access under CC BY license.
1. Introduction

During inflation the vacuum fluctuations of all light scalar fields
Mi are unstable and appear as classical random Gaussian in-
homogeneities with an almost scale-free spectrum of amplitude
δMi � H I/2π , where H I is the Hubble parameter during inflation.
Inflation significantly stretches the wavelength of the fluctuations
over the Hubble horizon after inflation. Thus one can relate δMi
in many different ways to the cosmological curvature perturbation
observed in the present Universe. The standard form for the num-
ber of e-foldings elapsed during inflation is given by

N = 1

M2
p

φN∫
φe

V

Vφ

dφ, (1.1)

where φN and φe are the values of inflaton field φ, corresponding
to N e-foldings and the end of inflation, respectively. In fact, if
there is fluctuation of a common spectrum δφN = H I/2π , we can
calculate the spectrum of the density perturbation by using δN-
formalism:

δ2
H = 4

25
(δN)2 = 4

25

(
V

M2
p Vφ

H I

2π

)2

, (1.2)

which reproduces the standard result; the density perturbation
generated during single-field inflation.1 More generically, one may
however expect several scalar fields playing similar roles during in-
flation. Assuming φe depends on such a light field, one encounters
an alternative mechanism for generating curvature perturbation.

E-mail address: matsuda@sit.ac.jp.
1 In this Letter we follow the notations given in the textbook [1].
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This possibility has been discussed by Bernardeau et al. [2] for
modulated couplings in hybrid inflation,2 and by Lyth [4] for a
multi-field model of hybrid inflation, and more recently, by us [5]
for trapping inflation combined with inhomogeneous preheating.
The multi-field model [4] has been applied to brane inflation in a
throat as a solution to the serious η-problem in string theory [6].
In fact, finding a light inflaton field whose mass is protected by
symmetry is rather hard in string theory models, especially when
masses are determined by calculable mechanism of moduli stabi-
lization. It is therefore very important to find a light field other
than the inflaton, which can contribute to the curvature pertur-
bation. Moreover, it is obvious that the standard single-field in-
flationary scenario cannot explain large non-gaussianity [7]. The
clear difference from the standard multi-field inflation is explained
in Appendix B. There are many “alternatives” in which such light
fields play crucial roles in generating the cosmological perturba-
tion, such as cosmological perturbation generated (1) long after
inflation (curvatons) [8,9], (2) during preheating (inhomogeneous
preheating) [10], or (3) during reheating (inhomogeneous reheat-
ing) [11]. Moreover, by combining these ideas it is possible to
generate the initial perturbation of the curvaton from inhomoge-
neous preheating [12].3

In summary, the standard inflationary scenario uses genuine
inflaton fluctuation δφN to generate the curvature perturbation
during inflation, while in recent works [2,4] where perturbation
is generated “at the end of inflation”, curvature perturbation is

2 The word “modulated fluctuations” was introduced by Kofman in Ref. [3].
3 Large non-gaussianity can be generated during inhomogeneous preheating.

Even if significant non-gaussianity is not generated at preheating, small ratio r ≡
ρχ /ρtotal � 1 at the decay can lead to large non-gaussianity, as has been discussed
in Ref. [13] for curvatons. Here ρχ is the energy density of the preheat field. Note
that fnl in these inhomogeneous preheating scenarios can take either sign.
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generated from δφe that is indirectly generated by fluctuation of
another light field.4 Looking at the original equation (1.1), one may
however find that fluctuations induced by other components (i.e.,
M−2

p or V /Vφ ) may generate curvature perturbation if these com-
ponents are modulated during inflation due to their dependence
on a light field (moduli). Based on this simple idea, in this Letter
we consider an alternative mechanism for generating the curva-
ture perturbation that relies neither on δφN nor δφe . This is the
crucial difference from the previous scenarios of modulated fluctu-
ations [2].

In Section 2, we first consider hybrid inflation with a moduli-
dependent inflaton mass m2(M) ≡ m2

0(1 + β log(M/M∗)), which
induces fluctuation related to (V /Vφ). Then in Section 3, we ex-
amine the possibility of generating the curvature perturbation in
the brane inflation model with a modulated coupling. Note that
our examples are based on typical moduli-dependences in conven-
tional models, although we will not specify the model because of
the generality of our argument. In Section 4, we consider the gen-
eration of the cosmological perturbation from modulated fluctua-
tion of the effective Planck scale. The possibility discussed in Sec-
tion 4 is in a sense very natural, because the Planck scale always
appears in the equation. In some specific examples light fields can
be identified with volume of extra dimensions that evolves slowly
during inflation. In Appendix A, we consider MSSM inflation that
has been advocated by Allahverdi et al. [14]. In this appendix, we
consider a rather peculiar source for the moduli-dependence, the
fluctuation of φ0 that denotes the point where the secondary mini-
mum appears. Our argument for MSSM inflation is that if couplings
depend on moduli, the modulation can be mediated to φ0 that de-
termines the number of e-foldings.

We calculate explicit forms of the non-gaussianity parameter
fnl and show how large non-gaussianity can be generated. We
show that the running of the non-gaussianity parameter does not
vanish in these models. Conclusions and discussions are presented
in Section 5.

2. Modulated hybrid inflation

Let us start with the original hybrid inflation model. Hybrid in-
flation has the effective potential for the two fields (φ,σ ),

V (φ,σ ) = λ
(
σ 2 − v2)2 + 1

2
g2φ2σ 2 + V (φ), (2.1)

where φ is the inflaton and σ is the trigger field. In this section we
consider a specific example of the model, whose inflaton potential
is given by V (φ) = m2φ2/2. Here the end of inflation expansion
occurs at

φe =
√

λv

g
. (2.2)

The number of e-foldings is given by

N = λv4

M2
pm2

log
φN

φe
= 1

ηφ

log
φN

φe
, (2.3)

where the definition of the slow-roll parameter is ηφ ≡ m2/3H2
I =

m2M2
p/(λv4). Modulated fluctuations of couplings λ(M) or g(M)

are discussed in Ref. [2], which may (or may not) lead to the fluc-
tuation δφe , and therefore to indirect generation of δN at the end
of inflation.

On the other hand, since modulated fluctuation of m2 does not
lead to δφe , δN is not generated from modulated m at least at

4 Note that in other scenarios [8–12] dynamics “after” inflation is used to gen-
erate curvature perturbation. In this Letter, we however focus our attention on
scenarios that can work “during” inflation.
the end of inflation. Alternatively, it leads to another kind of the
fluctuation

δNM = λv4 log(φN/φe)

M2
p

×
(

−2
∂m/∂M

m3

)
δM

= −2N

(
m′

m

)
δM, (2.4)

where m′ is the derivative of m with respect to M.
Let us we consider a concrete example of the moduli-dependent

mass

m2(M) ≡ m2
0

[
1 + β log(M/M∗)

]
, (2.5)

where β and M∗ are model-dependent parameters.5 This leads to

δNM � −βN

(
δM
M

)
. (2.6)

The inflaton fluctuation may be negligible if inflation is fast-
roll [15] and where inflaton mass is as large as m ∼ H . In this
specific case, the perturbation generated by the modulated mass
can always dominate the curvature perturbation. However, in other
cases, inflaton fluctuation may be significant. The modulated per-
turbation can thus dominate when the condition(M

φN

)
< βηφ N (2.7)

is satisfied.6 Moreover, the mass of M (i.e., mM) must be less
than H I during inflation, which leads to an another condition given
by

m2
M � βm2

0

(
φN

M

)2

< H2
I . (2.8)

Combining these equations and assuming that the amplitudes for
fluctuations are comparable (δM= δφN ), we obtain

√
βηφ >

1

N
. (2.9)

Since the right-hand side of Eq. (2.9) is by definition much smaller
than unity, the required condition is rather trivial in this model.7

It is very important to calculate a non-gaussianity parameter
of our modulated inflation scenario, since the non-gaussianity pa-
rameter is expected to distinguish the curvature perturbation gen-
erated by alternative mechanisms from the one that is generated
by conventional inflaton fluctuation. Here we consider the defini-
tion of non-gaussianity parameter fnl through curvature perturba-
tion [1]. By using the δN-formalism, we can write

ζ = N ′δM+ 1

2
N ′′(δM)2, (2.10)

where higher terms are dropped because they are not important
here. The explicit form of the non-gaussianity parameter is then
given by

−3

5
fnl ≡ 1

2

N ′′

(N ′)2
, (2.11)

where the prime denotes the derivative with respect to the mod-
uli. Applying the explicit form of m2(M) to Eq. (2.11), we find for
|Nβ| � 1,

fnl = −5

6

N ′′

(N ′)2
∼ 1

Nβ
, (2.12)

5 Here for simplicity we neglect loop corrections related to φ. Of course this does
not destroy the above argument as far as the original hybrid inflation scenario is
successful.

6 See Appendix C for the case with p ≡ Ṁ/φ̇ 	 1.
7 See also Refs. [16,17] for natural values of η-parameter.
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which can be large if the inflaton fluctuation is not significant.
Here fnl may take either sign. Moreover, since fnl in our modu-
lated inflation scenario depends explicitly on N−1, a running of
non-gaussianity may hopefully be used to distinguish modulated
inflation from other models of large non-gaussianity. The explicit
form of the running of the non-gaussianity is [1]

d ln fnl

d ln k
� −M2

p
V ′

V

d ln N−1

dφ
� N−1. (2.13)

3. Modulated brane inflation

Brane inflation is one of the specific accomplishments of the in-
flationary universe within the brane world framework in the string
theory. Inflation potential during brane inflation is typically given
by

V (φ) = 1

2
γ H2

I φ
2 + V 0

(
1 − λ

Mn

φn

)
, (3.1)

where γ , λ and M are model-dependent parameters. For simplicity
we consider the case in which only λ depends on the light moduli.
Here |γ | � 1 is required to make enough e-foldings during infla-
tion. The inflaton field φ measures the brane distance, and the end
of inflation is induced by brane collision that occurs when two
branes come closer than the string scale. Note that the situation in
this inflationary model is identical to the conventional hybrid in-
flation model in so far as the first term (mass term) dominates the
evolution of the inflaton field. Therefore, modulated inflation may
occur in the same way as the conventional hybrid inflation if the
mass term dominates the inflaton evolution. On the other hand, if
the second term (Coulomb-like potential) dominates the inflaton
potential, modulation will appear through the dimensionless cou-
pling constant λ and the situation of modulated inflation will be
different. Again, inflaton fluctuation leads to

δNφ = N(n + 2) × δφN

φN
, (3.2)

while modulation related to moduli-dependent coupling λ(M)

leads to

δNM = −N × λ′

λ
δM, (3.3)

where λ′ is the derivative with respect to M. For a specific con-
crete example let us consider λ(M) ≡ λ0e−cM/M∗ during inflation,
where c is a dimensionless constant and M∗ is a scale parameter.
Values of these parameters are model dependent. Then we obtain

δNM = cN × δM
M∗

. (3.4)

To take into account the condition where the modulated pertur-
bation exceeds the conventional cosmological perturbation origi-
nating from inflaton fluctuation, we consider the condition δNφ �
δNM that leads to

φN

M∗
	 n + 2

c
. (3.5)

Another condition is needed to ensure that moduli field M is light
during inflation. The effective mass induced by the inflaton poten-
tial is

m2
M � λV 0

Mn

φn
N

(
c

M∗

)2

, (3.6)

which must be less than the Hubble parameters during inflation,
H I ≡ V 0

3M2
p

. Thus, we find a condition

φN 	 M ×
(√

λcM p

M

)2/n

. (3.7)

∗

Now we may conclude that our modulated inflation scenario works
with typical brane inflation potential provided that there is the
light field and Eqs. (3.5) and (3.7) are satisfied.

Again, a non-gaussianity parameter is important in distin-
guishing curvature perturbations. Applying a more generic form
λ(M) ≡ λ0eα(M) to Eq. (2.11), and assuming that the dominant
component during inflation is α(M) � αnMn/Mn∗ , we find for
|Nαn| � 1:

fnl = −5

6

N ′′

(N ′)2
� 1

Nαn

Mn∗
Mn

, (3.8)

which can be large and may take either sign.

4. Inflation with modulated Planck scale

The radial mode Me of extra compact space may satisfy the
slow-roll condition if the effective potential during inflation satis-
fies the slow-roll condition. In this case, there can be δN perturba-
tion generated by the modulated Planck scale during inflation,

δN = −2N ×
(

M ′
p

M p

)
δMe, (4.1)

where M ′
p denotes the derivative of M p with respect to Me .8

A specific example of the slow-roll condition for the radion is dis-
cussed in Ref. [19]. The condition given in Ref. [19] is apparent in
the original frame, but in the Einstein frame the rescaling of the in-
flaton potential is crucial. For example, in Brans–Dicke theory, the
exponential factor induced by the metric rescaling can be canceled
by the scalar-field rescaling if the potential is quartic. This cancella-
tion may happen if the inflaton potential is given by V (φ) = λφ4/4
for chaotic inflation. Note that the rescaling of the inflation po-
tential is highly model-dependent and also may be shifted by the
quantum effect. In this respect, one cannot simply assume that the
“constant” vacuum energy during inflation is not affected by the
rescaling, especially when the scale is generated dynamically. In
any case, it is however possible to assume slow-roll evolution of
the radial mode Me during inflation that rapidly settles to the
minimum after inflation [19].

Note that our mechanism for modulated Planck scale works in
that the Planck scale determines the number of e-foldings. The re-
quired condition for generating the curvature perturbation is the
slow-roll condition for the corresponding moduli field, which is
highly model-dependent.

5. Conclusions and discussions

We have studied a new class of modulated fluctuations that
generates curvature perturbation from light-field fluctuation. Ac-
cording to Refs. [2] and [4], fluctuation of a light field may induce
fluctuation of the end-point of inflation expansion (δφe 
= 0), which
may lead to generation of cosmological perturbation at the end of
the inflation. Contrary to these previous scenarios of modulated
fluctuations, the origin of the cosmological perturbation in our sce-
nario is not δφe . As far as we know, this is the first realization of a
modulated scenario without δφe . Moreover, we showed a concrete
example of modulated inflaton in which large non-gaussianity can
be generated. The possibility of large non-gaussianity has been
suggested in Ref. [2], but there was no specific example.9 As we

8 A non-trivial kinetic term may cause deviation from the standard Gaussian per-
turbation, which leads to another kind of non-gaussianity [18]. However, the result
will be highly model-dependent. For simplicity, the kinetic term is assumed to be
minimal.

9 Large non-gaussianity in the multi-field model of hybrid inflation has been dis-
cussed in Ref. [4] as a specific example.



T. Matsuda / Physics Letters B 665 (2008) 338–343 341
have discussed in Ref. [16] for curvatons, it is rather easy to gen-
erate the required value of spectral index in these alternative sce-
narios, since in these models the form of the light-field potential is
not constrained by the kinematic requirements of the inflation ex-
pansion. In fact, in hilltop scenarios [20] of these alternatives [16],
the spectral index may be related to the negative η-parameter of a
light field during inflation, which can be justified in conventional
supergravity models [16,17,20].

An obvious deficit of modulated scenarios is the famous moduli
problem, as these scenarios always require moduli fields displaced
from their true minimum at least at the time when the pertur-
bation is generated. Late-time entropy production such as thermal
inflation [1] may solve this problem, but thermal inflation may not
work if the energy scale of the primordial inflation is very low. Of
course it is extremely hard to build an inflationary model at low
scales [21]10, but low-scale inflation may become very important
if the gravitational effect is observed in the Large Hadron Collider
(LHC). Moreover, many inflationary models that are based on sin-
gle δφN -fluctuation may be excluded if large non-gaussianity is
confirmed by the observation [7]. Note that the moduli problem
does not appear in multi-field models such as Refs. [4,6] or inho-
mogeneous preheating scenarios [10], in which a non-gaussianity
parameter can be large and at the same time, low-scale inflation is
possible.11
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Appendix A. Modulated MSSM inflation

In this appendix, we show another possibility of introducing
moduli dependence to the cosmological perturbation theory. We
start with the Minimal Supersymmetric Standard Model (MSSM),
which is a well motivated extension of the Standard Model (SM).12

Considering a flat direction φ with non-renormalizable superpo-
tential

W = λn

n

Φn

Mn−3
p

, (A.1)

where Φ denotes the superfield related to φ. We find the scalar
potential

V = 1

2
m2φ2 + A cos(nθ + θA)

λnφn

nMn−3
p

+ λ2
nφ2(n−1)

M2(n−3)
p

, (A.2)

where m and θA come from the soft supersymmetry (SUSY) break-
ing mass and the A-term, respectively. Here φ and θ denote the
radial and angular coordinates of the scalar component of the su-
perfield Φ . The potential has a secondary minimum at

φ0 ∼
(

mMn−3
p

λn

)1/(n−2)

, (A.3)

but the potential barrier, however, disappears if the coefficient of
the A-term (A) satisfies the condition

10 See also Ref. [9] for the condition for the inflation energy scale in the curvaton
scenario.
11 See also Ref. [23].
12 MSSM inflation [14] is an attractive idea, but it may be excluded if large non-

gaussianity is confirmed by the observation [7]. One way to solve this problem is to
generate cosmological perturbation by using modulated inflation.
A2 = 8(n − 1)m2. (A.4)

Around this secondary minimum with the coefficient A2 � 8(n −
1)m2, the field only feels the third derivative of the potential. Then
inflation may start near φ0, which leads to the number of e-folds

N � φ3
0

2n(n − 1)M2
p(φ0 − φ)

. (A.5)

As we are interested in fluctuation related to φ0(M), we calculate
the derivative of N with respect to M:

NM � 3N
φ′

0

φ0
− N

φ′
0

φ0 − φ
� −N

φ′
0

φ0 − φ
. (A.6)

Here |φ0 − φ| � |φ0| is considered. See Ref. [14] for more details.
The amplitude of the perturbation is therefore given by13

δNM � N2 mM p

φ2
0

φ′
0, (A.7)

where the amplitude is assumed to be

δM� H I/2π � V (φ0)
1/2

2π M p
� (n − 2)

2π
√

2n(n − 1)M p
mφ0. (A.8)

Comparing our result (A.7) with the standard result, which has
been obtained from the fluctuation of the inflaton field [14], we
obtain the required condition

φ′
0 ∝ φ0

λ′
n

λn
	 1, (A.9)

which is needed for δNM to dominate the cosmological perturba-
tion. The slow-roll condition for the light field M may put a severe
restriction (lower bound) on the inflation energy scale. Note that
MSSM inflation requires cancellation of the second derivative of
the inflaton field, which makes it possible to construct a low-scale
inflation model. On the other hand, the naive estimation of the
moduli mass is O (m), if the mass is not protected. In fact, intro-
ducing explicit moduli-dependence to MSSM action is not easy at
this moment, especially when we need to introduce a moduli field
whose mass can be much smaller than the SUSY-breaking mass
during inflation.14

Appendix B. Source term for the curvature perturbation

The simplest way to see the source term for the curvature per-
turbation in modulated inflation is to consider the evolution of the
curvature perturbation

Ṙ= −H
δP

ρ + P
, (B.1)

where δP is the pressure perturbation. The key idea in the modu-
lated inflation scenario is the explicit M-dependence in the “slow-
roll velocity”; φ̇ = Vφ/3H I . Here we consider hybrid inflation that
leads to φ̇ = m(M)2φ/3H I . The modulated perturbation thus leads
to

δφ̇ � 2φ̇
m′

m
δM, (B.2)

which leads to the pressure perturbation

13 Numerical factors are neglected for simplicity.
14 λn may be generated from instantons in intersecting brane model. In this case,

the moduli may be related to the area bounded by branes, which may be light
during inflation [22].
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δP � φ̇δφ̇ � 2φ̇2 m′

m
δM. (B.3)

From the integral of Ṙ, we find the correction from the modulated
inflation;

�R� −2N
m′

m
δM, (B.4)

where Ṁ� 0 is assumed during inflation.
On the other hand, there is no such term in the standard equa-

tion for the multi-field inflation [24], in which the source term
is proportional to the bent parameter θ̇ . Obviously, “bent” in the
inflation trajectory is not important in modulated inflation. For ex-
ample, considering flat potential that leads to Ṁ = 0, we find the
curvature perturbation (B.4), while there is no “bent” in the infla-
tion trajectory.

The key is the explicit M-dependence of the inflaton velocity
φ̇(M), which has been disregarded in the standard calculation of
multi-field inflation.

The source term that is proportional to θ̇ does not generate a
significant correction to the curvature perturbation if there is no
significant bend in the trajectory.

Appendix C. Modulated inflaton for p ≡ Ṁ/φ̇ � 1

In Appendix B, we considered only the limiting case for p � 1.
Note that Ṁ � 0 represents the ideal situation for the modulated
inflation and is very useful to explain the origin of the curvature
perturbation in modulated inflation. However, to attain Ṁ= 0 we
have to consider a fine-tuning (i.e. careful cancellation with an ad-
ditional potential for M). Moreover, considering a more general
situation the energy landscape during inflation can be changed by
the motion of M, and therefore can participate in the inflaton
trajectory. In this respect, the significance of modulated inflation
should be considered for arbitrary p. In this appendix, we discuss
what happens for p 	 1.

Let us consider the slow-roll velocity of the fields at horizon
crossing:

Ṁ� VM
3H I

� βm2
0φ

2

6H IM
, (C.1)

φ̇ � Vφ

3H I
� m2φ

3H I
, (C.2)

which leads to the ratio

p ≡ Ṁ
φ̇

� β
φ

2M . (C.3)

The curvature perturbation generated at the horizon crossing is
given by [24]

R= H I

(
φ̇Q φ + ṀQM

φ̇2 + Ṁ2

)
� 1 + p

1 + p2
R0, (C.4)

where Q φ and QM are the Sasaki–Mukhanov variables and R0
denotes the curvature perturbation for the conventional hybrid-
type inflation (i.e. for p = 0). For p � 1, we may disregard the
effect of the field M in the curvature perturbation generated at
the horizon crossing. However, for p � 1, we should consider the
curvature perturbation caused by the field M at the horizon cross-
ing.
Let us consider modulated inflation for p 	 1. The perturbation
related to the modulated inflation (i.e. the perturbation caused by
δφ̇ and δṀ) gives

Ṙ= −H
δP

ρ + P
� −H

(1 + p2)

[
β

δM
M + 2p2 δφ

φ

]
. (C.5)

Note that the second term related to δṀ becomes important for
p 	 1.

Using the above results, we can examine the conditions for
modulated inflation. For p 	 1, the main source of the curvature
perturbation at the horizon crossing is caused by the motion of
M, which is multiplied by a factor (1 + p)/(1 + p2) ∼ p−1. A fac-
tor 1/(1 + p2) ∼ p−2 appears for modulated inflation caused by
δφ̇, while the factor is p2/(1 + p2) ∼ 1 for δṀ. In addition to the
above conditions, we must consider the condition (2.8). Finally, we
conclude that modulated inflation can be significant for p 	 1, but
in this case the roles played by φ and M are exchanged.
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