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Abstract

The AVISPA Tool is a push-button tool for the Automated Validation of Internet Security Protocols
and Applications. It provides a modular and expressive formal language for specifying protocols and
their security properties, and integrates different back-ends that implement a variety of automatic
protocol analysis techniques. Experimental results, carried out on a large library of Internet security
protocols, indicate that the AVISPA Tool is a state-of-the-art tool for Internet security protocol
analysis as, to our knowledge, no other tool exhibits the same level of scope and robustness while
enjoying the same performance and scalability.
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1 Introduction

With the spread of the Internet and network-based services, and the develop-
ment of new technological possibilities, the number and scale of new security
protocols under development is out-pacing the human ability to rigorously
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analyze and validate them. This is an increasingly serious problem for stan-
dardization organizations like the Internet Engineering Task Force (IETF),
the International Telecommunication Union (ITU), and the World Wide Web
Consortium (W3C), as well as for companies whose products and/or services
depend on the rapid standardization and correct functioning of these proto-
cols. It is also a problem for users of these technologies whose rights and
freedoms, such as the right to privacy of personal data, depend on a secure
infrastructure.

Designing secure protocols is a hard problem. In open networks, such as the
Internet, protocols should work even under worst-case assumptions, e.g., that
messages may be eavesdropped or tampered with by an intruder (often also
called the attacker or the adversary). Severe attacks can be conducted even
without breaking cryptography, but by exploiting weaknesses in the protocols
themselves; for instance, by carrying out “masquerading attacks”, where an
attacker impersonates an honest agent, or “replay attacks”, where messages
from one protocol session (i.e., one execution of the protocol) are used in an-
other session. The possibility of these attacks sometimes stems from subtle
misconceptions in the design of the protocols. Typically, these attacks are
simply overlooked, as it is difficult for humans, even by careful protocol in-
spection, to determine all the complex ways that different protocol sessions
could be interleaved together, with the possible interference of a malicious
intruder.

To speed up the development of the next generation of security protocols,
and to improve their security, it is thus of the utmost importance to have
tools that support the rigorous analysis of security protocols by either finding
flaws or establishing their correctness. Optimally, these tools should be com-
pletely automated, robust, expressive, and easily usable, so that they can be
integrated into the protocol development and standardization processes.

In the last decade, we have thus witnessed the development of a large
number of new techniques for the formal analysis of security protocols. Many
(semi-)automated security protocol analysis tools have been proposed (e.g.,
[3,21,23,26,27,28,41,42,43,61,64,66,69,71,73,76]), which can analyze small and
medium-scale protocols such as those in the Clark/Jacob library [39]. How-
ever, scaling up to large, industrial-scale security protocols is both a scientific
and a technological challenge. The AVISPA Tool 3 is a push-button tool

3 The AVISPA Tool has been developed jointly by the four partners of the project “AVISPA:
Automated Validation of Internet Security Protocols and Applications” [10]: the research
team lead by A. Armando at the University of Genova, Italy; the team lead by M. Rusi-
nowitch at INRIA-Lorraine, Nancy, France; the team lead by D. Basin at the ETH Zurich,
Switzerland; and the team lead by J. Cuellar at SIEMENS AG, Munich, Germany. The
AVISPA Tool significantly extends the scope, effectiveness, and performance of its predeces-
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for the Automated V alidation of I nternet Security-sensitive Protocols and
Applications which rises to this challenge in a systematic way by

(i) providing a modular and expressive formal language for specifying secu-
rity protocols and properties, the High-Level Protocol Specification Lan-
guage HLPSL, and

(ii) integrating different back-ends that implement a variety of automatic
analysis techniques ranging from protocol falsification (by finding an at-
tack on the input protocol) to abstraction-based verification methods for
infinite numbers of sessions.

In order to assess the strength of the AVISPA Tool, and to demonstrate
proof-of-concept on a large collection of practically relevant, industrial pro-
tocols, we have given HLPSL specifications of a substantial set of security
protocols currently being drafted or standardized by organizations like the
IETF, along with the security properties these protocols are expected to en-
joy. The result of this specification effort is the AVISPA Library (also publicly
available at the AVISPA web-site [10]), which currently comprises 215 secu-
rity problems derived from 33 industrial-scale security protocols. We have
assessed the AVISPA Tool by running it against the AVISPA Library, and the
results indicate that, to the best of our knowledge, no other tool exhibits the
same scope and robustness while enjoying the same performance and scala-
bility. In particular, the AVISPA Tool has detected a number of previously
unknown attacks on some of the protocols analyzed, e.g., on some protocols
of the ISO-PK family, on the IKEv2 protocol with digital signatures, on the
SET protocol, on the ASW protocol, and on the H.530 protocol, which will
be our running example throughout the paper.

The remainder of this paper is organized as follows. Section 2 is devoted
to the description of the AVISPA Tool, presenting the architecture and the
web-based graphical interface of the tool (§2.1), and discussing the main char-
acteristics of the high-level and the low-level specification languages (§2.2) and
of the four back-ends of the tool (§2.3). Section 3 discusses the results of the
experiments that we have carried out on applying the tool for the validation
of the protocols in the AVISPA Library. Section 4 concludes the paper by
giving an outlook on possible future extensions of the AVISPA Tool.
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Fig. 1. The architecture of the AVISPA Tool.

2 The AVISPA Tool

2.1 The Architecture of the AVISPA Tool

The architecture of the AVISPA Tool is depicted in Fig. 1. A user inter-
acts with the tool by specifying a security problem (a protocol paired with
a security property that it is expected to achieve) in the High-Level Proto-
col Specification Language HLPSL. The HLPSL is an expressive, modular,
role-based, formal language that allows for the specification of control-flow
patterns, data structures, different cryptographic operators and their alge-
braic properties, alternative adversary models, as well as complex security
properties. These features allow one to specify protocols in HLPSL without
resorting to specific techniques to simplify the protocols first, as is often re-
quired in weaker approaches. The AVISPA Tool automatically translates (via
the HLPSL2IF Translator) a user-defined security problem into an equivalent
specification written in the rewrite-based formalism Intermediate Format IF.
An IF specification describes an infinite-state transition system amenable to
formal analysis: IF specifications are automatically input to the back-ends of
the AVISPA Tool, which implement different techniques to search the corre-
sponding infinite-state transition system for states that represent attacks on
the intended properties of the protocols.

The current version of the tool integrates four back-ends: the On-the-fly

sor tool, the AVISS Tool [3], which automated the analysis of security protocols like those
in the Clark/Jacob library.
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Model-Checker OFMC, the Constraint-Logic-based Attack Searcher CL-AtSe,
the SAT-based Model-Checker SATMC, and the TA4SP protocol analyzer,
which verifies protocols by implementing tree automata based on automatic
approximations. All the back-ends of the tool analyze protocols under the
assumptions of perfect cryptography and that the protocol messages are ex-
changed over a network that is under the control of a Dolev-Yao intruder [44].
That is, the back-ends analyze protocols by considering the standard protocol-
independent, asynchronous model of an active intruder who controls the net-
work but cannot break cryptography; in particular, the intruder can intercept
messages and analyze them if he possesses the corresponding keys for decryp-
tion, and he can generate messages from his knowledge and send them under
any party name.

Upon termination, each back-end of the AVISPA Tool outputs the result
of its analysis using a common and precisely defined output format stating
whether the input problem was solved (giving a description of the considered
protocol goal or, in case it was violated, the related attack trace), some of
the system resources were exhausted, or the problem was not tackled by the
required back-end for some reason.

The AVISPA Tool has been designed to be easily usable by IT profession-
als, engineers, and protocol designers working in industry or standardization
organizations. We thus deployed the AVISPA Tool as a downloadable single
“package” to be installed on the users’ local machines, as well as a remote
tool that can be employed by external users thanks to a web-based graphical
user interface that supports the editing of protocol specifications and allows
the user to select, configure, and execute the different back-ends of the tool. 4

Using the interface, the user can easily load a protocol specification among
the ones provided in the AVISPA Library, or write a specification on his own
and invoke one or all of the back-ends. An XEmacs mode for editing protocol
specifications is available as well. In case an attack is found, the attack trace
is output in ASCII as well as in a graphical format, using Message Sequence
Charts, which can be displayed in a new window or output to a postscript file.
The interface features specialized menus for both novice users (basic mode)
and expert users (expert mode), as displayed in Fig. 2 and Fig. 3, respectively.
In particular, Fig. 3 shows part of the specification of the H.530 protocol (in
the main window of the interface and in an XEmacs window) and the message
sequence chart of the attack trace that the AVISPA Tool found when analyzing
the protocol (in the bottom window), to which we will return below.

4 Both the package and the web-based graphical user interface are available at the project’s
web-site [10].
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Fig. 2. A screen-shot of the AVISPA Tool in basic mode.

2.2 The Specification Languages HLPSL and IF

2.2.1 The HLPSL

The so-called Alice&Bob notation is commonly used to describe security pro-
tocols as sequences of message exchange steps of the form

A → B : M .

This notation is quite convenient as it gives an illustration of the messages
exchanged in a normal, successful run of a given protocol, and several pro-
tocol specification languages (e.g., [23,55,64,73] as well as an older version of
HLPSL [3]) are based on (a formalization of the) Alice&Bob notation. How-
ever, this notation, while intuitive and compact, is also informal and not
expressive enough to capture the sequence of events that need to be specified
when considering large-scale Internet protocols. For instance, such protocols
often call for control-flow constructs such as if-then-else branches, looping
and other features. The Alice&Bob notation, which shows only message ex-
changes, is too high level to capture such constructs, which require defining
the sequence of actions taken by each honest principal participating in a pro-
tocol run. That’s why we need a more expressive language like HLPSL, which,
as we remarked above, enjoys a number of features that make it well suited
for specifying modern, industrial-scale protocols.

In order to discuss the main features of the HLPSL and of the AVISPA
Tool, let us consider, as a running example, the H.530 protocol of the ITU [53],
which has been developed by Siemens in order to provide mutual authentica-
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Fig. 3. A screen-shot of the AVISPA Tool in expert mode.

tion and key agreement in mobile roaming scenarios in multimedia communi-
cation. The interested reader will find more details about the HLPSL in the
paper [31], in the HLPSL Tutorial [11], and in the AVISPA User Manual [12],
which are all available at the AVISPA web-site [10]. There, the reader will also
find the AVISPA Library, which contains example specifications of Internet
protocols that are even more complex than the H.530 protocol.

2.2.2 The H.530 Protocol in HLPSL

The H.530 protocol is deployed as shown in the left part of Fig. 4: a mo-
bile terminal (MT) wants to establish a secure connection and negotiate a
Diffie-Hellman key with the gatekeeper (VGK) of a visited domain. As they
do not know each other in advance, the authentication is performed using an
authentication facility AuF within the home domain of the MT. Both MT and
VGK initially have shared keys with AuF. The right part of Fig. 4 shows the
messages exchanged: first, both MT and VGK create Diffie-Hellman half-keys,
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Fig. 4. The H.530 protocol (simplified). The deployment of the protocol is on the left, the messages
exchanged between the participants are summarized on the right.

along with hashes that are encrypted for AuF (denoted by the messages ReqMT

and ReqVGK, respectively). After checking these messages, AuF replies with
appropriate acknowledgment messages AckMT and AckVGK that also contain
encrypted hashes for the respective recipients. Finally, MT and VGK per-
form a mutual challenge-response using the new Diffie-Hellman key that was
authenticated by AuF (directly or over a chain of trustworthy servers).

HLPSL is a role-based language, meaning that we first specify the sequence
of actions of each kind of protocol participant in a module, which is called a
basic role. This specification can later be instantiated by one or more agents
playing the given role, and we further specify how the resulting participants
interact with one another by “gluing” multiple basic roles together into a
composed role. In the case of the H.530 protocol, for instance, there are
three basic roles, which we call mobileTerminal, visitedGateKeeper, and
authenticationFacilityserver. Note that role names begin with lower-
case letters. We use, for instance, the name mobileTerminal to denote the
role itself, while the name of the agent playing the role will be called MT, as in
Fig. 4.

Each basic role describes what information the participant can use ini-
tially (parameters), its initial state, and ways in which the state can change
(transitions). Fig. 4 already displayed part of the HLPSL-specification of the
visitedGateKeeper role (as well as part of the message exchanges of the pro-
tocol in the Alice&Bob notation), and the following is the initial part of the
role mobileTerminal:

role mobileTerminal (MT,VGK,AuF : agent,

SND,RCV : channel(dy),

F : hash_func,

ZZ : symmetric_key,

NIL,G : text)

played_by MT def=

local State : nat,

X,CH1,CH2,CH3,CH4 : text,
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GY,Key : message

init State := 0

transition

...

end role

The role has a number of parameters. MT, VGK, and AuF are of type agent,
F is of type hash function, ZZ is of type symmetric key, and NIL and G are
of type text and will represent nonces created in the course of the protocol
execution. The SND and RCV parameters are of type channel, indicating that
these are channels through which the agent playing role mobileTerminal will
communicate. The attribute to the channel type, in this case (dy) for Dolev-
Yao, denotes the intruder model to be considered for this channel (different
intruder models and their specification in HLPSL, as well as other details
such as the different types available in HLPSL, are discussed in [12], which
describes the full syntax and semantics of the language). All variables in
HLPSL begin with a capital letter, and all constants begin with a lower-case
letter. Moreover, all variables and constants are typed.

The parameter MT appears in the played by section, which means, intu-
itively, that MT denotes the name of the agent who plays the mobileTerminal

role. The local section declares local variables of mobileTerminal, such as
the local variable called State, which is a natural number and is initialized to
0 in the init section.

The transition section of a HLPSL specification contains a set of tran-
sitions. Generally, each transition represents the receipt of a message and
the sending of a reply message. A transition consists of a trigger, or pre-
condition, and an action to be performed when the triggering event occurs.
For instance, the role mobileTerminal in our running example contains the
following transition (where some details have been omitted for simplicity):

step2.

State = 1 /\ RCV(VGK.MT.CH1.CH2’.GY’.

F(ZZ.xor(exp(G,X),GY’)).F(ZZ.VGK).

F(exp(GY’,X).VGK.MT.CH1.CH2’.GY’.

F(ZZ.xor(exp(G,X),GY’)).F(ZZ.VGK)))

=|>

State’:= 2 /\ CH3’ := new()

/\ Key’ := exp(GY’,X)

/\ SND(MT.VGK.CH2’.CH3’.F(Key’.MT.VGK.CH2’.CH3’))

This is a transition called step2, but note that the names of the transitions
serve merely to distinguish them from one another. It specifies that if the
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value of State is equal to 1 and the message received on channel RCV has the
expected structure shown above, then a transition fires which, among other
things, sets the new value of State to 2 and generates and sends the key Key’

(hashed and paired together with other data) on channel SND. Here we see an
example of priming ; X’ means: the new value of the variable X. The notation
stems from the Temporal Logic of Action TLA [59,60], upon which HLPSL
is based. It is important to realize that the value of the variable will not be
changed until the current transition is complete. So, the right-hand side tells
us that the value of the State variable, after transition step2 fires, will be 2.
The variables that occur within the RCV behave as follows: a variable that is
not primed indicates that the received message must have the same value as
the current value of the variable, while primed variables are bound in the next
step to whatever is received. This is how one may model the way in which
the information available to a role may change.

The other transitions of the mobileTerminal role and those of the other
two basic roles are specified similarly, and the basic roles are then composed
together in a composed role. Composed roles have no transition section,
but rather they instantiate one or more basic roles, “gluing” them together
so they execute together, usually in parallel (with an interleaving semantics)
by means of the operator /\. That is, composed roles describe sessions of the
protocol. In our example, we can define the following composed role session

which instantiates one instance of each basic role and thus describes one whole
protocol session:

role session(

MT,VGK,AuF : agent,

F : hash_func,

ZZ,ZZ_VA : symmetric_key,

NIL,G : text)

def=

local SND,RCV : channel (dy)

composition

mobileTerminal(MT,VGK,AuF,SND,RCV,F,ZZ,NIL,G)

/\ authenticationFacility(MT,VGK,AuF,SND,RCV,F,ZZ,

ZZ_VA,NIL,G)

/\ visitedGateKeeper(MT,VGK,AuF,SND,RCV,F,ZZ_VA,NIL,G)

end role

The last role to be defined in an HLPSL protocol specification is a top-level
role that contains global constants and a composition of one or more sessions,
where the intruder may play some roles as a legitimate user. There is also
a statement which describes the initial knowledge of the intruder. Typically,
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this includes the names of all agents, all public keys, the intruder’s own private
key, any keys he shares with others, and all publicly-known functions. Note
that the constant i is used to refer to the intruder. In our example, we could
include the following in our HLPSL specification:

role environment()

def=

const

a,b,auf : agent,

f : hash_func,

sec_m_Key,key,key1 : protocol_id,

zz_a_auf,zz_b_auf,zz_i_auf : symmetric_key,

nil,g : text

intruder_knowledge = {a,b,auf,f,g,nil,zz_i_auf}

composition

session(a,b,auf,f,zz_a_auf,zz_b_auf,nil,g)

/\ session(a,b,auf,f,zz_a_auf,zz_b_auf,nil,g)

end role

The sessions specified allow the AVISPA Tool to perform bounded session
verification, but note that the associated search space is still infinite as the
messages are not bounded. As we discuss in [17], we also have a preliminary
implementation of a technique that we call symbolic session generation, which
can be used to exploit the symbolic representation of the intruder provided by
OFMC and CL-AtSe, and thereby avoid enumerating all possible session in-
stances associated with a bounded number of sessions. The TA4SP back-end,
which performs unbounded protocol verification, simply ignores the session
declarations in the specification.

Finally, we declare the goal(s) of the protocol, which in the case of the
H.530 protocol are:

goal

authentication_on key

authentication_on key1

secrecy_of sec_m_Key, sec_v_Key

end goal

Security goals are specified in HLPSL by augmenting the transitions of
basic roles with so-called goal facts and by then assigning them a meaning
by describing, in the HLPSL goal section, what conditions — that is, what
combination of such facts — indicate an attack. In other words, we model the
goals of the protocol by labeling several transitions in the HLPSL specification
with special events that express the meaning of the transition with respect to
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the protocol goals.

For instance, for secrecy, the goal facts assert which values should be secret
between whom, and the goal declaration in the goal section (e.g., secrecy of

sec m Key, sec v Key) specifies that if the intruder learns a secret value that
is not explicitly a secret between him and someone else, then the intruder
has successfully attacked the protocol. Similarly, HLPSL provides for the
specification of goal facts related to authentication (e.g., authentication on

key and authentication on key1), which are for instance used to check that
a principal is right in believing that his intended peer is present in the current
session, has reached a certain state, and agrees on a certain value, which
typically is fresh.

Internally, the attack conditions are specified in terms of temporal logic (as
safety properties), but macros are provided for the most frequently used se-
curity goals, i.e., secrecy and different forms of authentication (cf. the notions
of authentication discussed in [63]).

2.2.3 The IF

The HLPSL enjoys both a declarative semantics based on a fragment of the
TLA [59,60] and an operational semantics based on the translation into the
rewrite-based formalism Intermediate Format IF, which is performed automat-
ically by the HLPSL2IF translator. 5 An IF specification describes a protocol
in terms of rewrite rules describing an infinite-state transition system with
an initial state, transition rules, and a state-based safety property, namely a
goal (attack) predicate that defines whether a given state is an attack state
or not. (An attack trace is then a path that leads from the initial state to an
attack state.) IF specifications can be generated both in an untyped variant
and in a typed one, which abstracts away type-flaw attacks (if any) from the
protocol; this is useful as in many cases type-flaws can be prevented in the
actual implementation of a protocol [51].

The Intermediate Format thus provides low-level descriptions of protocols
and their properties that are suitable for automatic analysis (rather than being
abstract and fairly easy to read for human users like the HLPSL), and yet this
format is independent from the analysis methods employed by the various
back-ends of the tool. This decoupling allows for the independent development
of the high-level language and of the back-ends, and also provides an interface
for the future connection of other tools to the AVISPA Tool. 6

5 Similar translations from a high-level language into a low-level one have been developed
for CAPSL/CIL [29] and for CASRUL [55], as well as from an older version of HLPSL based
on Alice&Bob notation to IF [3], and from Alice&Bob-style protocol notation to a process
algebra that is similar to the spi-calculus [23].
6 A first example of such a connection is the work of Gotsman, Massacci, and Pis-
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2.3 The Back-Ends of the AVISPA Tool

The Constraint-Logic-based Attack Searcher (CL-AtSe) applies con-
straint solving to perform both protocol falsification and verification for boun-
ded numbers of sessions [30,32,33,34,35,36,37,38,55,72,77]. The protocol mes-
sages can be typed or untyped, and the pairing can be considered to be associa-
tive or not. Several properties of the XOR operator can be handled too, and,
more generally, CL-AtSe is built in a modular way and is thus open to exten-
sions for handling algebraic properties of cryptographic operators. CL-AtSe
performs several kinds of optimizations to reduce, and often eliminate, redun-
dancies or useless branches in the protocol symbolic execution. For instance,
the lazy intruder technique represents terms symbolically to avoid explicitly
enumerating the possible messages the Dolev-Yao intruder can generate, and
thus significantly reduces the search space without excluding any attacks nor
introducing new ones. This is achieved by representing intruder messages us-
ing terms with variables, and storing and manipulating constraints about what
terms must be generated and which terms may be used to generate them.

The On-the-fly Model-Checker (OFMC) [13,14,15,16,17,49,50] per-
forms both protocol falsification and bounded session verification, by exploring
the transition system described by an IF specification in a demand-driven way
(i.e., on-the-fly, hence its name). OFMC considers both typed and untyped
protocol models. OFMC’s effectiveness is due to the integration of a number
of symbolic, constraint-based techniques, which are correct and complete, in
the sense that no attacks are lost nor new ones are introduced by them. One
such technique is the lazy intruder technique. As another significant example,
the constraint differentiation technique is a general search reduction technique
that integrates the lazy intruder with ideas from partial-order reduction, and
which can be formally proved to terminate and to be correct and complete,
thereby reducing search time by a factor of two to several orders of magnitude.
Moreover, OFMC also implements a number of efficient search heuristics. It
also provides support for the modeling an intruder who is capable of perform-
ing guessing attacks on weak passwords, and for the specification of algebraic
properties of cryptographic operators.

The SAT-based Model-Checker (SATMC) [4,5,6,7,8,40] considers the
typed protocol model and performs both protocol falsification and bounded
session verification by reducing the input problem to a sequence of invoca-

tore [48], who have formalized a translation procedure from protocol descriptions in HLPSL
to descriptions in the applied pi calculus, which allowed them to apply the ProVerif
tool [1,2,21,22] to some of our HLPSL protocol specifications. It will be interesting to
compare similar translations from IF into the applied pi calculus or other protocol specifi-
cation formalisms.
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tions to state-of-the-art SAT solvers. More specifically, SATMC first builds a
propositional formula encoding a bounded unrolling of the transition relation
specified by the IF, the initial state, and the set of states representing a viola-
tion of the security properties. The propositional formula is then fed to a SAT
solver and any model found is translated back into an attack. The interface
between the SATMC and the SAT solver complies with the DIMACS for-
mat (a de facto standard for SAT problems) and therefore SATMC can easily
incorporate and exploit new SAT solvers as soon as they become available.

The TA4SP (Tree Automata based on Automatic Approximations
for the Analysis of Security Protocols) back-end [24,25,70] performs un-
bounded protocol verification by approximating the intruder knowledge by
using regular tree languages and rewriting. Its starting point is an extension
of an approximation method based on tree automata, introduced by Genet
and Klay [46,47] for verifying security protocols. The previous procedures of
this kind required the presence of an expert to transform by hand a security
protocol into a term-rewriting system and compute an ad hoc approxima-
tion function. Our result allows one to compute an approximation function
automatically. For secrecy properties in the typed model, TA4SP can show
whether a protocol is flawed (by under-approximation) or whether it is safe
for any number of sessions (by over-approximation).

3 Experimental Results

We have assessed the AVISPA Tool by running it against the AVISPA Library,
which at present comprises HLPSL-specifications of 215 security problems de-
rived from 33 protocols (or 147 problems if all the secrecy properties specified
for a protocol are checked in one single security problem). The tool success-
fully analyzes all problems in the library in less than 24 minutes of CPU time
per problem (globally, the entire library of 215 problems requires 87 minutes
of CPU time to be analyzed). In more detail, the majority of the problems
(namely, 206 problems) require less than 1 second of CPU time each, and 211
problems require less than 10 seconds of CPU time each to be analyzed. Hence,
the time required by the AVISPA Tool for analyzing most of the problems is
very low and thus acceptable for a modeler involved in security protocol de-
sign. Note that the time spent by the AVISPA Tool for compiling HLPSL into
IF is always negligible (a few milliseconds), and therefore we do not report it
in the tables of results.

To the best of our knowledge, no other tool exhibits the same scope and
robustness while enjoying the same performance and scalability. Moreover,
the AVISPA Tool has detected a number of previously unknown attacks on
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some of the protocols analyzed, e.g., on some protocols of the ISO-PK family,
on the IKEv2 protocol with digital signatures, on the SET protocol, on the
ASW protocol, and on the H.530 protocol.

We will discuss these new attacks found by the AVISPA Tool in §3.2, after
a detailed presentation of the results of the experimental evaluation of the
effectiveness and the performance of the tool in §3.1.

3.1 Effectiveness and Performance of the Tool

The protocol specifications in the IF are equipped with a signature section de-
scribing the types of the messages exchanged among the participating agents.
This section may be neglected by the back-ends in order to search for type-flaw
attacks; when this is the case, we say that the back-end considers the untyped
model of the security problem. If the signature section is taken into account,
then type-flaw attacks are abstracted away from the analysis, and we say that
the back-end considers the typed model of the security problem.

It is fundamental that both models are considered during analysis as, on
the one hand, it is important to be able to detect all possible attacks, but on
the other hand, many type-flaw attacks are of little practical significance as
actual implementations of security protocols often enforce simple mechanisms
that exclude their applicability (see, for instance, [51]). All the four back-
ends are able to carry out the analysis with respect to the typed model, and
CL-AtSe and OFMC are also able to adopt the untyped model. The AVISPA
Tool can thus analyze protocols with respect to both models.

We have run the AVISPA Tool against three classes of problems modeling
a typed scenario with a bounded number of protocol sessions (denoted by
ty&b), an untyped scenario with a bounded number of protocol sessions
(denoted by unty&b), and a typed scenario with an unbounded number
of protocol sessions (denoted by ty&unb, but note that experimentation
with ty&unb has started only recently and so the results in this case are
preliminary).

By running the back-ends of the AVISPA Tool against all the 215 problems
under the ty&b and unty&b scenarios, we obtained the results summarized
in Table 1 and Table 2, respectively. 7 For each of the protocols, the tables give
the number of security problems (“#P”), and for each back-end, the number of
problems for which no attacks are detected (“S”), the number of problems for
which attacks are detected (“A”), and the (average) time in seconds (“Time”)
spent by the back-end to find the attacks or to report that no attack exists

7 Results are obtained by each single back-end with a resource limit of 1 hour CPU time
and 1GB memory, on a Pentium IV 2.4GHz under Linux.
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Table 1
Effectiveness of the AVISPA Tool on the ty&b scenario.

Problems CL-AtSe OFMC SATMC TA4SP

Protocol #P Time S A Time S A Time S A Time S A

UMTS AKA 4 0.01 4 0 0.03 4 0 0.01 4 0 0.56 2 0

ISO1 1 0.02 0 1 0.02 0 1 0.04 0 1 - 0 0

ISO2 1 0.02 1 0 0.07 1 0 0.63 1 0 - 0 0

ISO3 2 0.03 0 2 0.03 0 2 0.39 0 2 - 0 0

ISO4 2 0.03 2 0 0.38 2 0 208.31 2 0 - 0 0

CHAPv2 4 0.02 4 0 0.18 4 0 0.10 4 0 16.29 2 0

EKE 4 0.03 2 2 0.10 2 2 0.09 2 2 2.86 2 0

SRP 4 0.02 4 0 0.07 4 0 - 0 0 - 0 0

EKE2 4 0.03 4 0 0.05 4 0 - 0 0 - 0 0

SPEKE 6 0.07 6 0 1.49 6 0 - 0 0 - 0 0

IKEv2-CHILD 4 0.07 4 0 0.51 4 0 - 0 0 - 0 0

IKEv2-DS 4 0.29 3 1 2.38 3 1 - 0 0 - 0 0

IKEv2-DSx 4 3.74 4 0 17.28 4 0 - 0 0 - 0 0

IKEv2-MAC 4 0.05 4 0 3.01 4 0 - 0 0 - 0 0

IKEv2-MACx 4 5.27 4 0 15.94 4 0 - 0 0 - 0 0

TLS 4 0.05 4 0 0.29 4 0 1018.28 4 0 to 0 0

LPD-MSR 2 0.02 0 2 0.02 0 2 0.06 0 2 0.61 0 0

LPD-IMSR 2 0.04 2 0 0.04 2 0 0.10 2 0 3.25 1 0

Kerb-basic 10 0.07 10 0 0.61 10 0 6.24 10 0 to 0 0

Kerb-Cross-Realm 18 0.52 18 0 2.22 18 0 5.70 18 0 - 0 0

Kerb-Ticket-Cache 11 0.08 11 0 0.60 11 0 28.90 11 0 - 0 0

Kerb-PKINIT 12 0.06 12 0 0.47 12 0 27.21 12 0 - 0 0

Kerb-Forwardable 12 0.16 12 0 7.12 12 0 to 0 0 - 0 0

Kerb-preauth 12 0.12 12 0 0.39 12 0 20.54 12 0 - 0 0

CRAM-MD5 2 0.04 2 0 0.23 2 0 0.17 2 0 0.97 1 0

PBK 1 0.01 0 1 0.34 0 1 0.25 0 1 - 0 0

PBK-fix 1 0.03 0 1 0.14 0 1 0.09 0 1 - 0 0

PBK-fix-weak-auth 1 0.49 1 0 3.47 1 0 0.33 1 0 - 0 0

hip 2 0.09 2 0 0.23 2 0 - 0 0 - 0 0

DHCP-delayed-auth 2 0.02 2 0 0.06 2 0 0.12 2 0 6.84 1 0

lipkey-spkm-knw-init. 6 0.06 6 0 0.17 6 0 - 0 0 - 0 0

lipkey-spkm-unknw-init. 5 0.12 5 0 4.72 5 0 - 0 0 - 0 0

TSIG 2 0.05 2 0 0.19 2 0 0.38 2 0 - 0 0

ASW 3 0.10 3 0 0.35 3 0 to 0 0 - 0 0

ASW-abort 4 0.20 3 1 1.98 3 1 65.75 3 1 - 0 0

FairZG 5 0.37 5 0 8.76 5 0 0.28 5 0 - 0 0

SET-purchase 4 23.66 1 2 1.24 0 2 to 0 0 - 0 0

SET-p.-hon.-payment-gw 4 0.61 4 0 0.83 4 0 to 0 0 - 0 0

AAAMobileIP 9 0.03 9 0 0.14 9 0 0.11 9 0 754.11 3 0

h.530 4 to 0 0 0.70 0 2 - 0 0 - 0 0

h.530-fix 4 to 0 0 1391.66 4 0 - 0 0 - 0 0

Simple 3 100.17 3 0 78.50 3 0 0.50 3 0 - 0 0

CTP-non predictive-fix 3 0.06 3 0 0.23 3 0 to 0 0 - 0 0

geopriv 5 0.04 5 0 0.25 5 0 0.08 5 0 - 0 0

pervasive 2 47.67 2 0 30.52 2 0 4.00 2 0 to 0 0

two pseudonyms 5 0.06 5 0 0.30 5 0 0.07 5 0 - 0 0

QoS-NSLP 2 32.16 2 0 16.01 2 0 0.21 2 0 - 0 0

sip 1 0.05 1 0 1.86 1 0 810.01 1 0 - 0 0

Legend:

- : the problem is not supported by the back-end

to : time-out
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in the given (bounded) scenario. For SATMC, we report only the time spent
to generate the SAT formula since that spent to solve the formula is always
negligible. A “to” in the Time column indicates that a “time-out” occurred
(after 1 hour of CPU time), while “−” indicates that the back-end does not
support some of the features required by the problem (in most cases, this
regards special properties of cryptographic operators such as exponentiation)
and hence that the problem cannot be properly analyzed by the back-end. A
boxed number in the “A” column denotes that the AVISPA Tool has found
at least one new (previously unknown in literature) attack.

When using the untyped model (see Table 2), CL-AtSe uses the associa-
tivity property of pairing, while OFMC does not. This explains why CL-AtSe
finds more attacks on some protocols than OFMC. It must be said that the
majority of these attacks are not of practical significance, since they can be
straightforwardly prevented in actual implementations (in fact, the length of
each message field is usually known in advance and can be simply checked).

Table 3 shows the results obtained by running the TA4SP back-end of
the AVISPA Tool under the ty&unb scenario. For each problem, we report
whether the absence of any attack has been established in the considered
unbounded scenario (a “yes” in the column “Safe”) and the time in seconds
spent by the TA4SP back-end to analyze the problem (column “TA4SP”).

3.2 New Attacks

We briefly discuss some of the new attacks that the AVISPA Tool has found.

The ISO-PK3 protocol

The AVISPA Tool has found a new attack on the ISO-PK3 (also known as
“ISO Public Key Two-Pass Mutual Authentication”) protocol [52]. It was al-
ready known that ISO-PK3 is vulnerable to replay attacks and hence does not
provide strong authentication [45]: nothing in the messages ensures the fresh-
ness of the messages for the responder role. The analysis with the AVISPA
Tool showed that the ISO-PK3 protocol does not even guarantee weak authen-
tication, i.e., after successfully executing the protocol, neither the initiator nor
the responder can be sure about the authenticity of the exchanged messages.

The IKEv2 protocol with digital signatures

A man-in-the-middle attack discovered on the IKEv2 protocol with digital
signatures (IKEv2-DS [56]) is new 8 although it is similar to a well-known
attack on the Station-2-Station protocol [62]. As pointed out in [67], several

8 Notice that, independently, the same attack has been reported in [65].
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Table 2
Effectiveness of the AVISPA Tool on the unty&b scenario.

Problems CL-AtSe OFMC

Protocol #P Time S A Time S A

UMTS AKA 4 0.02 4 0 0.04 4 0

ISO1 1 0.01 0 1 0.02 0 1

ISO2 1 0.01 0 1 0.07 1 0

ISO3 2 0.02 0 2 0.03 0 2

ISO4 2 0.04 0 2 0.63 2 0

CHAPv2 4 0.02 4 0 0.27 4 0

EKE 4 0.04 2 2 0.10 2 2

SRP 4 0.03 4 0 0.08 4 0

EKE2 4 0.02 4 0 0.04 4 0

SPEKE 6 0.08 6 0 1.52 6 0

IKEv2-CHILD 4 0.07 4 0 0.43 4 0

IKEv2-DS 4 0.11 0 4 2.52 3 1

IKEv2-DSx 4 1.19 0 4 23.63 4 0

IKEv2-MAC 4 0.15 2 2 3.25 4 0

IKEv2-MACx 4 4.82 2 2 22.14 4 0

TLS 4 0.07 4 0 0.27 4 0

LPD-MSR 2 0.02 0 2 0.03 0 2

LPD-IMSR 2 0.03 2 0 0.05 2 0

Kerb-basic 10 0.30 8 2 0.60 10 0

Kerb-Cross-Realm 18 7.75 15 3 1.93 18 0

Kerb-Ticket-Cache 11 0.18 0 6 0.53 11 0

Kerb-Forwardable 12 0.97 0 5 9.74 12 0

Kerb-PreAuth 12 0.20 0 6 0.54 12 0

Kerb-PKINIT 12 0.17 11 1 0.39 12 0

CRAM-MD5 2 0.07 2 0 0.83 2 0

PBK 1 0.01 0 1 0.35 0 1

PBK-fix 1 0.03 0 1 0.12 0 1

PBK-fix-weak-auth 1 0.50 1 0 4.26 1 0

hip 2 0.19 2 0 0.63 2 0

DHCP-delayed-auth 2 0.02 2 0 0.07 2 0

lipkey-spkm-knw-init. 6 0.06 6 0 0.14 6 0

lipkey-spkm-unknw-init. 5 0.29 5 0 3.78 5 0

TSIG 2 0.04 2 0 0.17 2 0

ASW 3 1.10 3 0 0.44 3 0

ASW-abort 4 7.76 3 1 4.92 3 1

FairZG 5 0.34 5 0 7.97 5 0

SET-purchase 4 91.17 0 3 1.45 0 2

SET-p.-hon.-payment-gw 4 to 0 0 0.94 4 0

AAAMobileIP 9 0.03 7 2 0.13 7 2

h.530 4 93.43 0 2 0.62 0 2

h.530-fix 4 to 0 0 1291.39 4 0

Simple 3 102.28 3 0 84.24 3 0

CTP-non predictive-fix 3 0.05 1 2 0.21 3 0

geopriv 5 0.05 4 1 0.29 5 0

pervasive 2 92.19 2 0 67.25 2 0

two pseudonyms 5 4.07 5 0 0.39 5 0

QoS-NSLP 2 60.55 2 0 48.59 2 0

sip 1 0.07 1 0 4.05 1 0

Legend:

to : time-out
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Table 3
Effectiveness of the AVISPA Tool on the ty&unb scenario.

Problem Safe TA4SP

UMTS AKA-secrecy-sseq1 yes 2.16

UMTS AKA-secrecy-sseq2 yes 2.13

CHAPv2-secrecy-sec kab1 yes 113.74

CHAPv2-secrecy-sec kab2 yes 113.70

EKE-secrecy-sec k1 yes 4.18

EKE-secrecy-sec k2 yes 4.15

TLS-secrecy-sec clientk to

TLS-secrecy-sec serverk to

LPD-IMSR-secrecy-secx yes 3.25

CRAM-MD5-secrecy-sec SK yes 0.37

DHCP-delayed-auth-secrecy-sec k yes 11.72

AAAMobileIP-secrecy-secFAHA to

AAAMobileIP-secrecy-secFAMN to

AAAMobileIP-secrecy-secMNHA to

Legend:

yes : the protocol is proved to be secure with respect to secrecy

to : time-out

protocols that were inspired by Station-2-Station (e.g., also the first version of
IKE) exhibit the same vulnerability. Also, as described in both [62] and [67],
the attack has limited practical impact, since the intruder can confuse agents
about whom they are talking to, but he cannot find out the key negotiated
in such a run. We were able to formally express what it means that these
attacks are “not relevant”. More precisely, IKEv2 (and, similarly, the other
similar protocols) does provide strong authentication when not viewing the
key-negotiation in isolation but in relation with the usage of the key.

The SET protocol

The Secure Electronic Transactions (SET) protocol suite has been designed
to allow for a secure e-commerce. The key feature is to hide the customer’s
credit card details from the merchant, and the customer’s purchase details
from the payment gateway. The AVISPA tool detects an attack where a dis-
honest payment gateway forwards payment authorization requests to another
payment gateway. This is due to the fact that the part of the message signed
by the card-holder (as well as the one signed by the merchant) does not con-
tain the name of the desired payment gateway. This weakness of the protocol
was already mentioned in the analysis of the SET protocol by Bella, Massacci,
and Paulson using the interactive theorem prover Isabelle [18]. They argue
that the attack is not very interesting as a dishonest payment gateway “has
more interesting crimes to commit”, however we believe that this vulnerability
is not uncritical as it may lead to the situation that two payment gateways
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charge the account of the card-holder and both posses messages that seem to
prove that the card-holder authorized the transaction. Like [18], we suggest
to include the name of the desired payment gateway into the messages to fix
this problem.

The ASW protocol

The ASW protocol [9] is an optimistic fair exchange protocol for contract sign-
ing intended to enable two parties to commit themselves to a previously agreed
upon contractual text. A trusted third party (T3P) is involved only if dispute
resolution is required (hence the term optimistic). In resolving disputes, the
T3P issues either a replacement contract asserting that he recognizes the con-
tract in question as valid, or an abort token asserting that he has never issued,
and will never issue, a replacement contract. An important requirement of the
protocol is that the intruder cannot block messages between an honest agent
and the T3P forever.

The particular challenge in analyzing this protocol with the AVISPA Tool
lies in the formulation of the goals of the protocol. In particular, we cannot
directly formulate the main goal, fair exchange, which requires that if one
party has a valid contract, then the other also has a valid contract or can obtain
one from the T3P. This is a liveness property and we thus have approximated
the goal by (stronger) safety properties.

The weakness the AVISPA tool has detected on this protocol, described
in [49], is related to this approximation of the goal. A first, quite näıve,
approximation of the goals implies that it already counts as an attack, if an
intruder possesses both a valid contract and an abort token for that contract.
This goal is easy to violate: the intruder as initiator can first run a normal
exchange with an honest responder (not involving the T3P) and then ask
the T3P for an abort. Moreover, after this, the intruder can start another
exchange with the same contractual text and abort at any time; when the
honest responder asks the T3P for a resolve, it will obtain an abort token. A
more appropriate formulation of the goal thus allows the intruder to obtain
both a valid contract and an abort token, as long as the other involved party of
the contract also possesses a valid contract (with the same contractual text).
This goal still implies the desired fair exchange property.

Still, the situation that one party has both a valid contract and an abort
token was unexpected for us and it is unclear whether this situation was
anticipated by the designers of the protocol. In fact, it is not unrealistic
that an intruder can make another agent execute the protocol once more with
the same contractual text by a kind of social engineering. 9 The weakness

9 For instance, after the first exchange, the intruder could tell the contract partner that

L. Viganò / Electronic Notes in Theoretical Computer Science 155 (2006) 61–8680



can be eliminated by replay protection (logging all commitments used in any
exchange and refusing to start a run with commitments that appear in the
log). A similar weakness was discovered by [74] on another contract signing
protocol, GJM, while for ASW this weakness was not reported previously in
the literature. Moreover, as already shown in [75], ASW cannot provide strong
authentication, and the AVISPA tool can also detect such attacks. However,
these attacks against strong authentication are not very serious since one
should assume that the contracts have some kind of unique identifier, e.g., in
bank transactions a unique transaction number, so that accepting the same
contractual text several times counts just as one time.

The H.530 protocol

The previously unknown attack on the H.530 protocol shown by the message
sequence chart in Fig. 3 was discovered when we applied OFMC to auto-
matically analyze this protocol in collaboration with Siemens [14,17]. It is
a replay attack based on replaying old messages: the attack is caused by
the lack of information in one protocol message and allows the intruder to
masquerade as any honest agent. More specifically, the intruder first listens
to a session between honest agents MT in role mobileTerminal, VGK in role
visitedGateKeeper, and AuF in role authenticationFacilityserver. The
intruder then starts a new session impersonating both MT and AuF. The weak-
ness that makes the replay possible is the lack of fresh information in the mes-
sage AckVGK, i.e., the message where AuF acknowledges to visitedGateKeeper
that he is actually talking with MT. Replaying the corresponding message from
the first session, the intruder impersonating MT can negotiate a new Diffie-
Hellman key with visitedGateKeeper, “hijacking” MT’s identity. To perform
the attack, the intruder must at least be able to eavesdrop and insert messages
both on the connection between mobileTerminal and visitedGateKeeper

and on the connection between visitedGateKeeper and authenticationFa-

cilityserver.

The attack can be prevented by including the Diffie-Hellman half-key of
mobileTerminal in the encrypted hash of the message AckVGK. With this
extension, we have not found any further weaknesses in the protocol and
Siemens has thus revised the protocol accordingly [54].

his (the intruder’s) computer crashed and he lost the signed contract and therefore asks the
contract partner to run the contract signing again.
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4 Concluding remarks

Thanks to its advanced methodologies and technologies for formal protocol
specification and analysis, the AVISPA Tool is a state-of-the-art tool for the
automatic validation of industrial-scale security protocols such as those in the
AVISPA Library. Besides for the possible connection of new back-ends with
complementary features (such as the preliminary work of [48]), current work
is focusing in particular on further scaling up our specification and analysis
techniques to classes of security problems that are at present outside of the
scope of the AVISPA Tool. To this end, we have begun extending our approach
in order to capture

• larger classes of protocols such as group protocols with evolving agent com-
munities (we believe that the extension of CAPSL into MuCAPSL [68] will
provide useful hints for the necessary extensions of our HLPSL),

• different network models such as wireless and ad hoc networks,

• composed security services, such as those provided by web services, and

• more complex security properties (including different channel properties,
and properties of group and routing protocols).

As a concrete example, work is currently underway on scaling-up dif-
ferent formal analysis methods and tools to web services for security, e.g.,
CASPER [57,58] and TulaFale/ProVerif [19,20]. We have similarly begun ap-
plying the AVISPA Tool for the analysis of web services and the first results
are very promising and we will report on them soon.
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