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a b s t r a c t

In this paper we investigate the design of composite materials with simultaneously high stiffness and
high damping. We consider layered composite materials with parallel plane layers made of a stiff constit-
uent and a lossy polymer. We analyze the response of these composites to a dynamic load with an arbi-
trary direction. Using the viscoelastic correspondence principle and linear frequency domain viscoelastic
models, we derive an expression for the effective complex modulus of layered composites of infinite size
at infinitesimal strains. The dependence of the effective dynamic modulus and loss factor on the geomet-
rical parameters and on the tensile and bulk loss factors of the lossy constituent is analyzed. Moreover we
determine the magnitude of the strains in the lossy constituent and demonstrate that the combination of
high stiffness and high damping of these composites is due to the high normal and/or shear strains in the
lossy material. We use nonlinear constrained optimization to design layered composites with simulta-
neously high stiffness and high damping while constraining the strains in the polymer. To determine
the range of validity of the linear viscoelastic model, simulations using finite deformations models are
compared to the theoretical results. Finally, we compute the effective properties of composites of finite
size using finite element methods and determine the minimum size required to approach the formulae
derived for composites of infinite size.

� 2013 Elsevier Ltd. All rights reserved.
1. Introduction

The analysis and design of multifunctional materials is a topic of
active research (Cadman et al., 2012). The design of composite
materials with competing attributes have been explored using
mainly multiobjective topology optimization techniques. Examples
of composite properties that were optimized include stiffness and
permeability (Guest and Prevost, 2006), transport of heat and elec-
tricity (Torquato et al., 2002), and stiffness and resistance to heat
(de Kruijf et al., 2007). In this work we derive an analytical model
and use numerical optimization to design a class of composite
materials with simultaneously high stiffness and high damping.

As discussed in Lakes (2009), materials with both high damping
and stiffness would be useful in structural applications. However,
materials with high damping (such as high loss elastomers) tend
to be soft (Lakes, 2009; Ashby, 1989). Viscoelastic composites with
a stiff constituent and a lossy, soft constituent might achieve a
combination of high stiffness and high damping. The design of
composite topologies with high stiffness and/or damping have
been investigated before using analytical and computational meth-
ods. Lakes and coworkers investigated various topologies with high
ll rights reserved.
stiffness and damping (Chen and Lakes, 1993; Kim et al., 2002;
Lakes, 2002). Chen and Lakes derived formulae for the Reuss and
Voigt topologies and composites with spherical particulate inclu-
sions (Chen and Lakes, 1993). Kim et al. (2002) used computational
homogenization to determine the effective dynamic properties of
SiC–InSn particulate reinforced composites. Lakes (2002) showed
that hierarchical particulate morphologies can achieve high stiff-
ness and damping. Other theoretical studies include the design of
composites with optimal damping and/or stiffness using topology
optimization by Yi et al. (2000). Patel et al. used the finite element
method to design viscoelastic composite materials with high
damping over a wide frequency range (Patel et al., 2007). Prasad
and Diaz designed viscoelastic composites that include a negative
stiffness constituent and with a target effective viscoelastic tensor
(Prasad and Diaz, 2009) using topology optimization and inverse
homogenization. In a recent study we investigated using finite ele-
ment methods the effective stiffness and damping of composites
with wavy layers (Sain et al., in press).

In this paper we focus on layered composites with parallel plane
layers of two constituents. Layered composites are of interest be-
cause they are simple to manufacture. Neglecting the Poisson ef-
fects, Chen and Lakes (1993) derived formulae for the effective
dynamic properties of layered composites loaded in the layer
direction (Voigt topology) and perpendicular to the layer direction
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Fig. 1. Layered composites with layers of material A, of thickness TA , and of
material B, of thickness TB . The x axis corresponds to the layer, the y axis is out of
plane and the z axis is perpendicular to the layers. The composites are loaded in a
direction X, where the angle between x and X is h.

J. Meaud et al. / International Journal of Solids and Structures 50 (2013) 1342–1353 1343
(Reuss topology). The Reuss topology was found to combine high
stiffness with high damping. Brodt and Lakes measured the effec-
tive dynamic properties in bending of Reuss beams (Brodt and
Lakes, 1995). Liu et al. derived formulae for the effective elastic
moduli of Reuss and Voigt composites taking into account Poisson
effects (Liu et al., 2009). Applying the correspondence principle to
those equations, we derived equations for the effective dynamic
properties of Reuss and Voigt composites (Meaud and Hulbert, in
press). We demonstrated that the loss factor of a Reuss composite
is significantly lower while its effective dynamic modulus is much
higher when Poisson effects are taken into account, compared to
the formula derived by Chen and Lakes (Meaud and Hulbert, in
press). We also showed that the effective properties of Reuss com-
posites of finite size are very sensitive to the ratio of the in plane
dimensions to the layer thickness.

In this paper we derive the effective dynamic properties of lay-
ered composites in response to a uniaxial load in an arbitrary direc-
tion at infinitesimal strains. Many engineering structures are
primarily subject to uniaxial loads. However, while materials and
structures with high stiffness and high damping under bending
or shear deformation exist (such as constrained damping layer
for beam bending), materials with high stiffness and damping un-
der uniaxial loads are less common. We demonstrate that the lay-
ered composites can attain simultaneously high stiffness and high
damping under uniaxial loads depending on the orientation of the
layers and on the volume fractions of the constituents. We evaluate
the strains in the polymer and show that the high values of stiff-
ness and damping of these layered composites are due to large
strains in the polymer. We present results from optimization to
maximize damping and stiffness of the composites while con-
straining the maximum allowable strains in the polymer. Theoret-
ical results are compared to simulations using finite strain
viscoelastic models to establish the maximum macroscopic strain
amplitudes for which the linear viscoelastic theory approximates
the finite deformation theory. Following our previous findings for
Reuss composites of finite size (Meaud and Hulbert, in press), we
also compute the effective properties of layered composites of fi-
nite size and determine the minimum number of layers and mini-
mum height to width ratio required to approach the formulae
derived for composites of infinite size.
2. Effective dynamic properties of layered composites

2.1. Notations and assumptions

We consider a layered composite with layers of a stiff material,
material A, and a soft and lossy material, material B (Fig. 1). Let x
and y be the material principal directions and z the direction per-
pendicular to the layers. Let (X;Y; Z) be a another set of axis, repre-
senting a fixed Cartesian, Newtonian reference frame, such that
Y ¼ y and the angle between x and X and between z and Z is h.
We derive the effective properties of the composite when loaded
in the X direction. Using this notation, h is the angle between the
layer direction and the load direction and the configuration
h = 0�(respectively h = 90�) corresponds to the Voigt topology
(respectively Reuss topology).

For the derivations presented in this section, the composites are
assumed to have infinite size. Moreover perfect bonding is as-
sumed between the layers. As in our previous work (Meaud and
Hulbert, in press), we modeled material A and B as linear viscoelas-
tic materials in the frequency domain using complex notation
(Lakes, 2009; Christensen, 2003). A complex number is denoted
by �, i is the imaginary unit number, Re denotes the real part and
Im the imaginary part. The frequency of the load is assumed to
be sufficiently low such that inertial effects can be ignored. In each
layer, the values of the stress and strain components are indepen-
dent of the position and are denoted by the subscript A or B
depending on the material of the layer. An overbar denotes the
macroscopic value of stress and strain component. In response to
a dynamic load, the relationship between the complex valued nor-
mal stress, �r�XX , and the complex-valued normal strain, ���XX , is:

�r�XX ¼ E�XX
���XX ð1Þ

where E�XX is the effective complex Young’s modulus in the X direc-
tion. The dynamic modulus, jE�XX j, and loss factor, gXX , are given by:

jE�XX j ¼
ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
ReðE�XXÞ

2 þ ImðE�XXÞ
2

q
ð2Þ

gXX ¼
ImðE�XXÞ
ReðE�XXÞ

ð3Þ

jE�XX j is a measure of the stiffness of the material in response to a
uniaxial dynamic load and gXX is a measure of its damping capacity.

2.2. Derivations of the effective properties

�r�XX is the only non-zero macroscopic component of stress in the
ðX;Y; ZÞ coordinate system. Therefore, in the (x; y; zÞ coordinate sys-
tem, �r�yy ¼ �r�yz ¼ �r�xy ¼ 0 while in a general case �r�xx – 0; �r�zz – 0
and �r�xz – 0. The relation between the strain vector ���ðx;y;zÞ ¼
½���xx; ��

�
yy; ��

�
zz; �c�yz; �c�zx; �c�xy�

T and the stress vector �r�ðx;y;zÞ ¼ ½�r�xx; �r�yy; �r�zz;

�s�yz; �s�zx; �s�xy�
T is given by:

���ðx;y;zÞ ¼ ½s���r�ðx;y;zÞ ð4Þ

were ½s�� is the compliance matrix:

½s�� ¼

s�11 s�12 s�13 0 0 0
s�11 s�13 0 0 0

s�33 0 0 0
sym s�55 0 0

0 s�55 0
s�66

0
BBBBBBBB@

1
CCCCCCCCA

ð5Þ
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An expression for s�ij can be found by applying the viscoelastic
correspondence principle to the equations derived by Liu et al.
(2009). In particular,

s�11 ¼
1

E�11
¼ 1

E�eff

���
Voigt

ð6Þ

s�33 ¼
1

E�33
¼ 1

E�eff

���
Reuss

ð7Þ

where E�eff

���
Voigt

(respectively E�eff

���
Reuss

) is the effective Young’s modu-

lus of the Voigt topology (respectively Reuss topology) and is given
in Meaud and Hulbert (in press). Applying the viscoelastic corre-
spondence principle to Eqs. (22), (30) and (35) in Liu et al. (2009),

s�13 ¼
UAm�A þUBm�B � m�Am�B

UAm�BE�A þUBm�AE�B �UAE�A �UBE�B
ð8Þ

s�12 ¼
UAm�AE�A þUBm�BE�B �UAm�Am�2B E�A �UBm�Bm�2A E�B
ðUAm�BE�A þUBm�AE�BÞ

2 � ðUAE�A þUBE�BÞ
2 ð9Þ

s�55 ¼
1

G�eff

���
xz

ð10Þ

where UA (respectively UB) is the volume fraction of material A
(respectively B), m�A (respectively m�B) is the complex Poisson’s ratio
of material A (respectively B), E�A (respectively E�B) is the complex
Young’s modulus of material A (respectively B) and G�eff

���
xz

is the
effective complex shear modulus and is given by:

G�eff

���
xz
¼ 1

UA
G�A
þ UB

G�B

ð11Þ

where G�A (respectively G�B) is the complex shear modulus of mate-
rial A (respectively B).

The relationship between the strain vector,
���ðX;Y;ZÞ ¼ ½���XX ; ��

�
YY ; ��

�
ZZ ; �c�YZ ; �c�ZX ; ��

�
XY �

T and the stress vector
�r�ðX;Y ;ZÞ ¼ ½�r�XX ; �r�YY ; �r�ZZ ; �s�YZ ; �s�ZX ; �s�XY �

T is :

���ðX;Y;ZÞ ¼ ½S
���r�ðX;Y;ZÞ ð12Þ

where the compliance matrix ½S�� is given by:

½S�� ¼

S�11 S�12 S�13 S�14 S�15 S�16

S�22 S�23 S�24 S�25 S�26

S�33 S�34 S�35 S�36

sym S�44 0 0

0 S�55 0

S�66

0
BBBBBBBBBBB@

1
CCCCCCCCCCCA

¼ ½R�T½s��½R� ð13Þ

in which ½R� is expressed as:

½R� ¼

cos2 h 0 sin2 h 0 � sin 2h 0

0 1 0 0 0 0

sin2 h 0 cos2 h 0 sin 2h 0

0 0 0 cos h 0 sin h

sin h cos h 0 � sin h cos h 0 cos2 h� sin2 h 0

0 0 0 � sin h 0 cos h

0
BBBBBBBBBBBB@

1
CCCCCCCCCCCCA

ð14Þ

Therefore the effective complex modulus in the X direction is:
E�XX ¼
1

S�11

¼ cos4 h

E�eff

���
Voigt

þ sin4 h

E�eff

���
Reuss

þ cos2 h sin2 h

G�eff

���
xz

þ 2s�13 cos2 h sin2 h

2
64

3
75
�1

ð15Þ

Eq. (15) shows that the effective complex Young’s modulus is a
function of the volume fraction of material A, UA (because
E�eff

���
Voigt

; E�eff

���
Reuss

; G�eff

���
xz

and s�13 depends on UA) and of the angle h.
2.3. Material parameters

As discussed in Meaud and Hulbert (in press), a linear viscoelas-
tic material is characterized at a radian frequency x by the values
of its dynamic Young’s modulus, jE�j, the real part of the Poisson’s
ratio, m0, the tensile loss factor, gE, and the bulk loss factor, gK . For
the analysis herein, we consider material A to have the following
properties: jE�Aj = 200 GPa, m0A = 0.3 and gEA ¼ gK A = 0.001. For mate-
rial B, we use jE�Bj = 20 MPa, m0B = 0.45, gEB = 1.0 and gK B ¼

ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
1� 2m0B

p
.

The properties of material A correspond to steel; the properties of
material B correspond to a high loss elastomer. The choice of the
bulk of the loss factor of material B is motivated by our analysis
in Meaud and Hulbert (in press).
2.4. Stiffness, damping and stiffness-loss map as a function of UA

Fig. 2 presents the variations in the dynamic modulus, loss
factor and stiffness-loss map, computed numerically using Eqs.
(2), (3) and (15), as a function of UA and h. At any given volume
fraction, the Voigt topology has the highest stiffness among the
plotted configurations. However the Reuss topology does not
have the lowest stiffness, as h = 45� is predicted to have a lower
stiffness than h = 90�. This result is due to the Poisson effects
that significantly increase the stiffness of the Reuss topology,
as discussed by Liu et al. (2009). Interestingly, there is an in-
crease of several orders of magnitude in jE�XX j when UA ap-
proaches 100%, and h > 1�.

In the plot of the loss factor as a function of UA shown in
Fig. 2b, the Voigt topology has the lowest damping among the
plotted configurations. The h = 45� configuration provides the
highest damping at low volume fractions (less than about 1%)
while h = 10� has the highest damping at higher volume frac-
tions. A nonmonotonic response is observed for h = 1�, 10� and
45�.

The stiffness-loss map (a plot of the effective dynamic modu-
lus as a function of the loss factor) is shown in Fig. 2c. Points on
each line corresponds to different values of UA. The stiffness-loss
map for the Voigt and Reuss topology (with Poisson effects)
were described in Meaud and Hulbert (in press). The configura-
tions h = 1� and 10� behave like the Voigt topology at low vol-
ume fractions (high stiffness, low damping) and like the Reuss
topology at high volume fractions. The response for the h = 45�
configuration is almost a vertical line at low values of UA, which
implies that jE�XX j increases without any significant decrease in
gXX as UA is increased. It is clear from this figure that the config-
uration h = 10� best combines high stiffness and high damping
(for high values of UA), since the corresponding curve approaches
the top right hand corner of the figure. In particular, this topol-
ogy is significantly better than the Reuss topology (with Poisson
effects). This unexpected result is due to the axial-shear
coupling that is induced by the angled (with respect to the load)
layers.
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Fig. 2. Dynamic modulus, jE�XX j, and loss factor, gXX , of layered composites. a. Dynamic modulus as a function of the volume fraction of material A, UA . b. Loss factor as a
function of UA . c. and d. Stiffness-loss map for different values of h. In d., squares and circles correspond to UA = 0%, 0.1%, 10%, 90% and 99%.
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2.5. Dependence of the loss factor on the tensile loss factor and bulk
loss factor of the lossy material

We found in Meaud and Hulbert (in press) that the effective loss
factor of the Reuss composite is highly dependent on the bulk loss
factor of the lossy constituent. Such a dependency is not desirable
since the bulk loss factor of most materials tends to be low (Pritz,
2009) and is rarely measured. We analyzed the dependency of the
effective loss factor of layered composites on the tensile and bulk
loss factors of material B as shown in Fig. 3. For the results given
in Fig. 3a, gEB ¼ 1 and 0 6 gK B 6 1. In contrast to the case of the Re-
uss topology, the loss factor obtained for h = 0�, 10� and 45� is
nearly independent of gK B. In Fig. 3b, gK B ¼ 1 and 0 6 gEB 6 1.
The loss factors of the Reuss and Voigt composites are not very sen-
sitive to gEB. In contrast, the effective loss factor obtained for
h = 10� and 45� varies linearly with gEB, with a slope almost equal
to 1.

3. Strains in the soft and lossy constituent

High levels of damping and stiffness can be seen in these com-
posites because of the nonaffine deformation (Chen and Lakes,
1993). We show below that the strains in material B are much
higher than the macroscopic strain ���ZZ for the configurations that
have high stiffness and high damping. We derive the expression
for the strains in material B in the (x; y; z) coordinate system in or-
der to better understand the mechanisms of damping in these lay-
ered composites. In response to a macroscopic normal stress, �r�XX ,
the macroscopic stress components in the (x; y; z) coordinate sys-
tems are:

�r�xx

�r�zz

�s�xz

0
B@

1
CA ¼

cos2 h

sin2 h

sin h cos h

0
B@

1
CA�r�XX ð16Þ
3.1. Normal strains

The xx and yy components of strain in material B are the same
as the macroscopic components and are given by:

��xxjB ¼ s�11 �r�xx þ s�13 �r�zz ¼
cos2 h

E�eff

���
Voigt

þ s�13 sin2 h

2
64

3
75E�XX

���XX ð17Þ

and

��yy

���
B
¼ s�21 �r�xx þ s�23 �r�zz ¼ s�12 cos2 hþ s�13 sin2 h

h i
E�XX

���XX ð18Þ

The zz component of strain in the polymer can be decomposed
into the term due to stress �r�xx; �

�
zz

��
B;�r�xx

, and the term due to the
stress �r�zz; �

�
zz

��
B;�r�zz

:

��zz

��
B ¼ �

�
zz

��
B;�r�xx
þ ��zz

��
B;�r�zz

ð19Þ

In response to stress �rxx; r�zz

��
B
¼ 0; ��xx

��
B;�r�xx
¼ ���xx

��
�r�xx

and
��yy

���
B;�r�xx

¼ ���yy

���
�r�xx

so that:

��zz

��
B;�r�xx
¼ � m�B

1� m�B
1

E�eff

���
Voigt

þ s�12

0
B@

1
CA cos2ðhÞE�XX

���XX ð20Þ

Eqs. (9)–(17) Liu et al. (2009) can be solved to find ��zz

��
B;�r�zz

��zz

��
B;�r�zz
¼ ð1þ m�BÞð1� 2m�BÞ

1� m�B
1
E�B
� 2m�B

1� m�B
s�13

� �
sin2ðhÞE�XX

���XX ð21Þ

The magnitudes of the normal strains in the polymer, normal-
ized to the magnitude of the macroscopic normal strain, j���XX j, are
shown as a function of UA in Fig. 4a–c. While the zz component
is much higher than j���XX j for h = 10�, 45� and 90� at high values
of UA, the xx component is less than j���XX j except for h = 0� (then
it is equal to j���XX j) and the yy component is always lower than j���XX j.



a b

Fig. 3. Effective loss factor of layered composites, gXX , as a function of the bulk loss factor of material B, gK B a., and of the tensile loss factor of material B, gEB b. UA is set to 95%.
The loss factors are normalized to the loss factor obtained when gK B ¼ gEB ¼ 1:0.

a b

c

Fig. 4. Magnitude of the normal strains in the polymer as a function of UA . a. xx component. b. yy component. c. zz component. All values are normalized to the magnitude of
the macroscopic normal strain, j���XX j.
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3.2. Shear strains

The xy and yz components of strains in the polymer are 0. The xz
shear stress component in material B, s�xz

��
B, is the same as the xz

component of the macroscopic stress, �s�xz. so that
c�xz

��
B ¼

sin h cos h
G�B

E�XX
���XX ð22Þ

The magnitude of c�xz

��
B normalized to the magnitude of ���XX is shown

as a function of UA in Fig. 5. For the Voigt (h = 0�) and the Reuss



Fig. 5. Magnitude of the shear strain in the polymer, jc�xzjBj, normalized to the
magnitude of the macroscopic normal strain, j���XX j, as a function of UA .
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(h = 90�) topologies, the xz shear component is 0. In other cases, the
normalized magnitude of c�xz

��
B is very high at high volume fractions.

3.3. Equivalent strains

The time dependent strain components, �ði;jÞðtÞ (where i; j = 1,3)
can be expressed as a function of the magnitude and phase of the
complex-valued strain components. A time-dependent equivalent
strain measure, �eqðtÞ, can be computed using these time depen-
dent values:

�eqðtÞ ¼
X

i;j

2
3
�dev
ði;jÞ ðtÞ

h i2
ð23Þ

where

½�dev�ðtÞ ¼ ½�ðtÞ� �
1
3

tr½�ðtÞ�I ð24Þ

where I is the identity matrix and tr is the trace operator. The max-
imum value of �B

eqðtÞ; �B
eq

���
max

, normalized to the magnitude of ���XX , is
shown as a function of UA in Fig. 6. The equivalent strain in material
B is much higher than the macroscopic strain at high volume frac-
tions, except in the case of the Voigt topology. Therefore simulta-
neous high levels of damping and stiffness are obtained due to a
large equivalent strain in material B.
Fig. 6. Magnitude of the equivalent strain in the polymer, �B
eq

���
max

, normalized to the
magnitude of the macroscopic normal strain, j���XX j, as a function of UA .
4. Optimal design

4.1. Optimization problems

Our objective is to design materials with both high stiffness and
damping at small macroscopic strain amplitude. For this multiob-
jective optimization problem, we chose to minimize the following
objective function:

f ðh;UAÞ ¼ a�
jE�ref j
jE�XX j

þ ð1� aÞ �
gref

gXX
ð25Þ

where a is a weighting factor between 0 and 1. We chose to set jE�ref j
to the dynamic modulus of material A (200 GPa) and gref to the ten-
sile loss factor of material B (1.0).

The results of the previous section show that high levels of stiff-
ness and damping are due to very large strains in material B. How-
ever, lossy polymers tend to exhibit significant nonlinearity even at
moderate strains (starting from a few percents). Moreover the
presence of large strains in the polymer could cause failure of the
composites even at small macroscopic strains. Therefore we con-
strain the ratio of the equivalent strain in the polymer to be less
than 25 times the macroscopic normal strains j��XX j. This maximum
allowable strain is somewhat arbitrary but does enable the effect of
strain constraints to be observed on the optimal properties and
optimal configuration of the designed composites. The constrained
optimization problem is given below:

minimize
h;UA

f ðh;UAÞ

subject to �eq

j���
XX
j 6 25

We use the Matlab function fmincon for constrained nonlinear opti-
mization employing the SQP algorithm. We considered the same
material A as in previous sections and two different materials for
material B:

1. Polymer 1: jE�j = 20 MPa, gE ¼ 1:0 (same as in previous
sections).

2. Polymer 2: jE�j = 100 MPa, gE ¼ 1:0.

4.2. Optimization results

Optimization was performed both without the constraint and
with the constraint. The weighting factor, a, was varied from
10�5 to 1� 10�5 to generate a line in the stiffness-loss map, also
known as the Pareto front, such that there exists no feasible solu-
tion using layered composites with simultaneously higher dynamic
modulus and loss factor than any point of the generated line. The
Pareto fronts are shown in Fig. 7 for the two polymers considered
for this study. In contrast to Fig. 2d, neither h nor /A are constant
on the Pareto fronts, as each point on the line corresponds to the
optimal values of h and /A for a specific value of a.

The stiffness-loss maps obtained for the unconstrained optimi-
zation with polymers 1 and 2 are approximately the same (the
green1 lines in Fig. 7). This implies that the stiffness of the lossy
material has a minimal influence on the optimal stiffness and damp-
ing of the composite. The constraint on the strains in the polymer
has a significant effect on the Pareto fronts (shown in the red dashed
lines in Fig. 7), particularly with the softer polymer (polymer 1). It
affects the stiffness-loss map except at very small values of a. Com-
paring the stiffness-loss maps for the constrained optimization with
polymers 1 and 2 reveals that polymer 2 is a better choice than
polymer 1 for designing composites with both high stiffness and
1 For interpretation of color in Fig. 7, the reader is referred to the web version o
this article.
f



a b

Fig. 7. Stiffness-loss map of the optimal unconstrained and constrained solutions, for a varying from 10�5 to 1� 10�5. a. With polymer 1. b. With polymer 2. The circles
(respectively squares) correspond to the optimal unconstrained (respectively constrained) solution for a = 0.01, 0.5 and 0.99. The diamonds correspond to material A and
material B.

a

b c

Fig. 8. a. Equivalent value of the strains in the polymer, �max
eq , normalized to the magnitude of the macroscopic normal strain, j���XX j. b. Optimal value of h. c. Optimal value of UA .
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high damping if the strains in the polymer are constrained.
The equivalent strain in the polymer, �max

eq , normalized to the
magnitude of the normal macroscopic strain, j���XX j, is plotted as a
function of a in Fig. 8a. For the unconstrained optimization, the
strains in the polymer increase monotonically with a and are larger
in polymer 1 than in polymer 2. Therefore the constraint is active
at lower values of a with polymer 1 than polymer 2. Even though
the Pareto fronts obtained for the unconstrained optimization are
almost indistinguishable between polymers 1 and 2, the optimal
values of h and UA are significantly different (see Fig. 8b and c).
With the softer polymer (polymer 1), lower values of h and larger
values of UA are required. Moreover, the constraint reduces the
optimal value of h (almost 0 � in the case of polymer 1) and reduces
the optimal value of UA (except for a � 1). The optimal value of h
decreases monotonically with a and the optimal value of UA in-
creases monotonically with a in the case of the unconstrained opti-
mization. In the case of the constrained optimization, an increase
in a (increasing the weighting on the stiffness) requires simulta-
neous decreases in h and UA for a 6 0:2. This result is unexpected
as it means that obtaining a stiffer composite requires a lower vol-



Table 1
Optimal solution for a = 0.5.

Polymer 1 1 2 2
Constraint No Yes No Yes

jE�XX j (GPa) 97.9 34.6 97.8 60.6
gXX 0.474 0.215 0.472 0.404
UA (%) 99.8 22.3 99.6 53.4
h (�) 9.37 0.527 13.8 1.44

�B
eq

���
max

=j��ZZ j 1270 25 366 25

Table 2
Material parameters for polyurethane.

Parameters Value

l 1.0810 MPa
km 4.47
m0 0.48
G1 4.04 MPa
K1 6.73 MPa
s1 1.21 s
G2 15.0 MPa
K2 25.1 MPa
s2 0.163 s
G3 1.85 MPa
K3 3.09 MPa
s3 23.0 s
G4 107 MPa
K4 179 MPa
s4 0.0023 s
G5 43.3 MPa
K5 72.1 MPa
s5 0.0225 s

Fig. 9. Representative finite element model for a unit cell of height H and width W.
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ume fraction of the stiff constituent. The optimal dynamic modu-
lus, loss factor and design variables obtained for a = 0.5 are shown
in Table 1. Note that the constrained optimal composite with poly-
mer 2 has almost the same dynamic modulus as aluminium and a
loss factor of 0.4.

5. Dependence of the effective properties on the strain
amplitude and frequency

The results of the optimization have demonstrated that combi-
nation of high stiffness and high damping are obtained when
strains in the polymer are much higher than the macroscopic nor-
mal strains. Moreover, the composites exhibit significant axial-
shear coupling and the resulting macroscopic shear strains can
be much higher than the macroscopic normal strain when h is close
to 0. While we are interested here in the stiffness and damping at
low macroscopic normal strains, high strains in the polymer or
high macroscopic shear strains could affect the stiffness and damp-
ing due to geometric and/or material nonlinearity even when the
macroscopic normal strain is low. Using finite deformation models,
we simulate the response of layered composites with the geomet-
rical parameters corresponding to configurations on the Pareto
fronts obtained with the linear viscoelastic model.

5.1. Finite strain viscoelastic model

The polymer was modeled using a time-domain finite strain vis-
coelastic model. The rate dependent behavior was modeled using
Prony series, and the rate independent high stretchability using a
compressible hyperelastic Arruda and Boyce model (1993). The
parameters (listed in Table 2) were determined using the proce-
dure described in Sain et al. (in preparation) to fit, using a single
set of parameters, an extensive set of data for a high loss
polyurethane manufactured by our collaborators at the University
of Michigan. The model simulations for the pure polymer agree
well with DMA data over a wide frequency range (from 0.1 to
100Hz), uniaxial loading/unloading tensile measurements up at
various constant strain rates (from 0.5%/s to 10%/s) and strain
amplitude (from 0.5% to 10%) and relaxation tests. Simulations of
the response of the composites to a sinusoidal strain input were
run in Abaqus/Standard using an implicit algorithm. Generalized
plane strain bilinear quadrilateral elements (CPEG4) were em-
ployed, as it allows the elements to have the same non-zero out-
of-plane strain, which corresponds to the assumption of the Eq.
(15) for composites with infinite out-of-plane dimensions. A repre-
sentative finite element mesh for a unit cell of height H and width
W is shown in Fig. 9. Since the strains are uniform in each phase, a
coarse mesh is sufficient. Periodic boundary conditions were ap-
plied between nodes on opposite edges of the unit cell. The follow-
ing constraints equations were applied between nodes of
coordinates ðXi; Zi þWÞ (on the right edge) and ðXi; ZiÞ (on the left
edge):

UXðXi; Zi þWÞðtÞ � UXðXi; ZiÞðtÞ ¼ 0 ð26Þ

UZðXi; Zi þWÞðtÞ � UZðXi; ZiÞðtÞ ¼ UZ jref ðtÞ ð27Þ

The following constraint equations were applied between nodes of
coordinates ð0; ZiÞ (on the bottom edge) and ðH; Zi � HsinhÞ (on the
top edge)

UXðH; Zi � HsinhÞðtÞ � UXð0; ZiÞðtÞ ¼ UX jref ðtÞ ð28Þ

UZðH; Zi � HsinhÞðtÞ � UZð0; ZiÞðtÞ ¼ 0 ð29Þ

where UX jref ðtÞ and UZ jref ðtÞ denote the X and Z displacements of a
reference node. UX jref ðtÞwas prescribed to vary as a sinusoidal func-
tion of time. In order to eliminate rigid body motion, the X and Z
components of the bottom left corner were sets to 0 and the X com-
ponent of the bottom right corner was set to 0. The macroscopic
normal stress, �rXXðtÞ, is given by:

�rXXðtÞ ¼
RX jref ðtÞ
UX jref ðtÞ

H
W

ð30Þ

where RX jref is the reaction per unit length measured at the refer-
ence node. Eq. (3) cannot be used to compute the loss factor in
the case of a nonlinear material response. However, an energy-
based definition of damping can be used. In a linear viscoelastic
material (Lakes, 2009), the loss factor is equal to:

gXX ¼
Wd

Ws
ð31Þ

where Wd is the energy dissipated per cycle during sinusoidal load-
ing, which is equal to the area within the stress/strain hysteresis
loop. Ws, the stored energy is equal to the area of the triangle con-
necting the origin, the point with maximum strain, and the projec-
tion of this point onto the horizontal axis. Eq. (31) can be
generalized to define the loss factor of a nonlinear material. Due
to nonlinearity, the stored energy in compression and in tension
might be different. In order to take into account the full cycle, we
chose to define the stored energy as the average of the stored en-
ergy in compression and in tension. Similarly we defined the stor-
age modulus as the average of the absolute values of the slopes
connecting the origin with the point with maximum strain and to
the point with minimum strain. The 3rd cycle was chosen for the
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computations since transient effects have almost vanished after 2
cycles.

In order to compare simulations with the theoretical formulae
derived in this paper, we computed the effective modulus using
Eq. (15) with a linear viscoelastic model equivalent to the nonlin-
ear model at infinitesimal strains. At infinitesimal strains, the fre-
quency-dependent shear modulus, G�ðxÞ, and bulk modulus,
K�ðxÞ, are given by:

G�ðxÞ ¼ G0 þ
XNb

j¼1

Gjixsj

1þ ðxsjÞ2
ð32Þ

K�ðxÞ ¼
XNb

j¼1

Kjixsj

1þ ðxsjÞ2
ð33Þ

where G0 (respectively K0) is the long term shear modulus at infin-
itesimal strains (respectively long term bulk modulus at infinitesi-
mal strains), Nb is the number of terms in the Prony series. Eq.
(15) requires the value of the complex Young’s modulus, E�ðxÞ,
and complex Poisson’s ratio, m�ðxÞ, which are given by:

E�ðxÞ ¼ 9K�ðxÞG�ðxÞ
3K�ðxÞ þ G�ðxÞ ð34Þ

m�ðxÞ ¼ 3K�ðxÞ � 2G�ðxÞ
6K�ðxÞ þ 2G�ðxÞ ð35Þ
5.2. Comparison between linear and nonlinear model

The optimization for the effective dynamic modulus and loss
factor at 1 Hz was carried out using the linear viscoelastic model.
Predictions for the effective dynamic modulus and loss factor using
the finite strain model are compared to the results obtained with
the linear viscoelastic model, using the same geometrical parame-
ters, for different values of the macroscopic strain amplitudes (be-
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Fig. 10. Dependence of the effective dynamic modulus, a. and b. and loss factor, b. and d
predicted by the linear viscoelastic model. a. and c. correspond to the configurations obta
obtained with the constrained optimization.
tween 0.01% and 1%) of frequency 1 Hz in Fig. 10. As expected, both
for the unconstrained optimization and for the constrained optimi-
zation, the nonlinear simulations converge toward the linear visco-
elastic theory as the strain amplitude is reduced. In the case of the
unconstrained optimization, the nonlinear simulations start to dif-
fer significantly (by more than 25%) from the linear results when
the macroscopic strain amplitude is higher than 0.8% (in the case
of a = 0.5). Nonlinear effects play a bigger role in the case of the
constrained optimization, since the strain amplitude needs to be
less than about 0.02% to have effective properties within 25% of
the linear viscoelastic theory in the case of the stiffest configura-
tion (obtained with a = 0.9).

Comparisons between the predictions for the macroscopic nor-
mal stress, �rXXðtÞ, between the linear viscoelastic model and the fi-
nite deformation model are shown in Fig. 11 for the unconstrained
optimization, for a strain amplitude of 0.1%. Despite the high
strains in the polymer, the two models predict almost exactly the
same macroscopic strain. However, in the case of the constrained
optimization (shown in Fig. 12), there are some significant differ-
ences. The nonlinear model predicts a lower stiffness and higher
damping in compression than the linear viscoelastic model. The
opposite trend is observed in tension. The constrained optimal
solution tends to have a much smaller value of h than the uncon-
strained optimal solution (Fig. 8b). While these configurations with
low values of h have high stiffness at infinitesimal strains, an axial
load tends to cause a large shear deformation, causing h to increase
under compression. Moreover, at low values of h, the effective stiff-
ness is extremely sensitive to the value of h. Therefore compression
causes a softening and an increase in damping.

5.3. Frequency dependence

The results predicted by Eq. (15) at for frequencies between 0.1
and 100 Hz are plotted in a stiffness-loss map in Fig. 13 for the
unconstrained optimal configurations for different values of a.
Interestingly, the polymer as well as the a = 0.001 configuration
=0.1 α=0.9
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Fig. 11. Comparison between linear viscoelastic model and finite deformation
model, for the geometric parameters corresponding to the unconstrained optimi-
zation with a = 0.5. a. Stress as a function of time. b. Stress as a function of strain,
during the 3rd cycle.
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have a stiffness that is very sensitive to the frequency (varying by
more than one order of magnitude between 0.1 and 100 Hz). The
configuration using a = 0.99 has a loss factor that depends strongly
on frequency, while the stiffness is approximately independent of
frequency.
WW

Fig. 14. Examples of models used to determine the effect of the finite size on the
effective dynamic properties of layered composites. For both models shown here,
H
TB
¼ 50; h ¼ 88:56� and /A ¼ 53:4%. a. Unit cell of the model with finite height. b.

Model with finite height and finite number of layers (4 layers each of material A and
material B, Nlayer ¼ 4).
6. Effects of finite size and boundary conditions

The above analysis and optimization of layered composites of
infinite size demonstrated that a layered composite can have ex-
tremely high stiffness and damping. However physical composites
have a finite size. Therefore it is important to determine the mini-
mum size required to approach the results derived in the previous
sections. Here we investigate using a linear viscoelastic model the
dependence of the effective dynamic modulus and loss factor on
size for composites with the optimal unconstrained geometry.
6.1. Numerical model

Abaqus (2011) was used to simulate the response of layered
composites of finite sizes to a harmonic load of frequency 1 Hz.
We use frequency domain linear viscoelastic models using the
Prony series coefficient of Table 2. Generalized plane strain bilinear
quadrilateral elements (CPEG4) were employed. We considered
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composites with a finite height, H, and an infinite number of layers,
and composites with a finite height, H, and a finite number of lay-
ers, Nlayer . In both cases, a harmonic vertical displacement, U0, is ap-
plied to the top edge and the vertical displacement of the bottom
edge and the horizontal displacement of the bottom right corner
are set to zero.

For a composite of finite height and infinite number of layers,
we modeled a unit cell of width W and height H (see Fig. 14a, for
a representative model). Periodic boundary conditions were ap-
plied on the left and right edges, resulting in constraint equations
between each node of coordinate ðXi; ZiÞ of the left boundary and of
coordinate ðXi; Zi þWÞ of the right boundary:

UXðXi; Zi þWÞ � UXðXi; ZiÞ ¼ 0 ð36Þ

UZðXi; Zi þWÞ � UZðXi; ZiÞ ¼ UZ jref ð37Þ

where Zi ¼ �Xi � tan h and UZ jref is the horizontal displacement of a
reference node. Fig. 14b shows one example finite element model
for the case of a composite of finite height and finite number of lay-
ers. The left and right edges of the finite layer composite are uncon-
strained. In both cases, the effective complex Young’s modulus is
given by:

E�XX ¼
H
W

R�X
U0

ð38Þ

where R�X is the reaction force per unit length on the bottom edge
(Sun and Vaidya, 1996).

6.2. Effect of a finite height of the effective dynamic properties

The effective dynamic modulus, jE�XX j, and loss factor, gXX , are
plotted as a function of the ratio of the height of the composites
to the width of the composites, H

W, in Fig. 15a and b. As H
W is in-

creased, jE�XX j decreases and gXX increases. We observed the oppo-
site trend for cylindrical Reuss composite rods of finite radius
(Meaud and Hulbert, in press). At low values of the ratio H

W, the
strains in material A and B are identical and therefore, the effective
properties are approximately given by the Voigt formula
(E�XX ¼ UAE�A þ ð1�UAÞE�B) which makes the dynamic modulus
much higher and the loss factor much lower than predicted by
Eq. (15). Higher values of H

W are necessary for the polymer layers
to deform in shear. At high values of the ratio H

W, the effective prop-
erties approach the values given by Eq. (15), which validates the
derivations of this paper. The height, H, needs to be more than
100 times the width, W, to have properties within 10% of the values
given by Eq. (15).

6.3. Effect of a finite number of layers on the effective dynamic
properties

Based on the results discussed above, the ratio of the height to
the thickness of the layers of material B was chosen to be 130 for
composites of finite height and finite number of layers. The effec-
tive dynamic modulus and loss factor are plotted as a function of
the number of layers, Nlayer , in Fig. 16a and b. The effective dynamic
modulus and the loss factor of the composites tend to increase as
the number of layers is increased. When the number of layers is
small, the layers of material A carry almost exclusively the load
and therefore the damping is small. Moreover when Nlayer is low,
the vertical load, F�XX , causes a nonnegligible shear stress, �s�XZ (be-
cause of the geometry of the composite), which reduces the effec-
tive stiffness of the composite. As the number of layers is increased,
material B contributes more to the stiffness of the composite be-
cause the deformation of the material is more constrained and
the macroscopic shear stress becomes negligible. The change in
the mode of deformation of the composite induces shear dissipa-
tion in material B. Approximately 64 layers are needed to approx-
imate the effective properties of the composite of infinite size.
7. Conclusions

In this paper we investigated the effective dynamic modulus
and loss factor of layered composites with parallel plane layers
loaded in an arbitrary direction. We derived formulae for compos-
ites of infinite dimensions and analyzed the dependence of the
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effective properties on the volume fractions and angle as well as on
the bulk and tensile loss factors of the lossy constituent. We also
derived the magnitude of the strains in the polymer and showed
that the combination of high stiffness and high loss factor is due
to the nonaffine deformation. Further we optimized the geometri-
cal parameters of these composites both without and with a con-
straint on the strains in the polymer to be of moderate
magnitude. Composites with high stiffness and high damping were
obtained. As expected, simulations using finite deformation mod-
els converge to the linear viscoelastic model at low macroscopic
strain amplitude. In the case of the unconstrained optimization,
the finite deformation and linear viscoelastic models agree well
for strains amplitudes up to a few tenths of a percent despite the
presence of very high strains in the polymer. Deviations from the
linear viscoelastic theory are observed at lower macroscopic strain
amplitudes in the case of the constrained optimization. The behav-
ior of these configurations is due the softening in compression and
stiffening in tension induced by nonlinear geometric effects. In fu-
ture studies, these nonlinear geometric effects could be potentially
exploited to design adaptive materials that respond differently
depending on the magnitude of the loads. The use of wavy layers
to selectively induce nonlinear geometric effects that are different
in tension and compression has been studied by us as reported in
Sain et al. (in press). We also considered the practical consider-
ations of the finite size of manufacturable composites. Because
the effective properties are highly dependent on the height of the
composites and on the number of layers, we determined the
minimum size required to attain comparable performance as
the infinite dimensional case.
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