An upper bound for the Ramsey numbers $r\left(K_{3}, G\right)^{*}$

Wayne Goddard and Daniel J. Kleitman
Department of Mathematics, Massachusetts Institute of Technology, Cambridge, MA 02139, USA

Received 12 July 1991
Revised 16 December 1991

Abstract

The Ramsey number $r(H, G)$ is defincd as the minimum N such that for any coloring of the edges of the N-vertex complete graph K_{N} in red and blue, it must contain either a red H or a blue G. In this paper we show that for any graph G without isolated vertices, $r\left(K_{3}, G\right) \leqslant 2 q+1$ where G has q edges. In other words, any graph on $2 q+1$ vertices with independence number at most 2 contains every (isolate-free) graph on q edges. This establishes a 1980 conjecture of Harary. The result is best possible as a function of q.

1. Introduction

For graphs G and H, the Ramsey number $r(H, G)$ is defined as the minimum number N such that for any coloring of the edges of the N-vertex complete graph K_{N} in red and blue, it must contain either a red H or a blue G. Harary conjectured that $r\left(K_{3}, G\right) \leqslant 2 q+1$, where q is the number of edges of G. This inequality is the best possible, since Chvátal [1] showed that $r\left(K_{3}, T_{n+1}\right)=2 n+1$ for any tree T_{n+1} on n edges. Also, it is well-known that $r\left(K_{3}, K_{p}\right)<2\binom{p}{2}+1$.

Erdős et al. [2] showed that $r\left(K_{3}, G\right) \leqslant\lceil 8 q / 3\rceil$. Sidorenko [3] improved this by showing that $r\left(K_{3}, G\right) \leqslant 5 q / 2-1$ (for $q \geqslant 4$). In this paper we establish Harary's conjecture.

Theorem 1.1. For any graph G with q edges and without isolated vertices, $r\left(K_{3}, G\right) \leqslant 2 q+1$.

In other words, any graph on $2 q+1$ vertices with independence number at most 2 contains every (isolate-free) graph on q edges.

[^0]
2. Preliminaries

Let G have q edges, p vertices and minimum degree δ. We prove the result by induction on q. In particular, let R be such that a red-blue coloring of K_{R} without a red K_{3} always contains a blue copy of every graph on fewer edges than G and yet does not necessarily contain G. Then we find an upper bound on R, assuming it exists.

Like Sidorenko [3], we focus on the minimum degree. He established that $R \leqslant 2 q$ when $\delta=1$, so we will assume that $\delta \geqslant 2$.

Further, we use the same two-case approach as Sidorenko. Call a vertex a δ-vertex if it has degree δ. Then the first case is when G has adjacent δ-vertices.

Lemma 2.1. If G has two adjacent δ-vertices then $R \leqslant 2 q$.

Proof. Let u_{1} and u_{2} be adjacent δ-vertices with neighborhoods W_{1} and W_{2} (themselves excluded). Let G^{\prime} be the resultant graph when one contracts $u_{1} u_{2}$ to form w. Consider a coloring of K_{R} that includes a blue G^{\prime} (but no red K_{3}), and let X denote the remaining vertices.

Suppose there exist distinct vertices $x_{1}, x_{2} \in X$ with x_{i} blue-adjacent to all of $W_{i}(i=1,2)$. Consider the three vertices x_{1}, x_{2} and w. It is easy to see that if any two of these are joined by a blue edge, then we obtain a blue G. Therefore, these three vertices form a red K_{3}, a contradiction.

Thus, there exists an $i \in\{1,2\}$ such that every vertex in X, except perhaps one, is red-adjacent to some vertex in W_{i}. We claim that a vertex has red-degree at most $p-1$; for otherwise its red-neighborhood would contain a blue K_{p} and hence G. Thus $|X| \leqslant(p-1)\left|W_{i}\right|+1$. Hence

$$
R \leqslant(p-1)+(p-1)(\delta-1)+1=\delta p-(\delta-1) \leqslant 2 q-(\delta-1),
$$

as required.

Now, consider a coloring of K_{R} without a red K_{3} and without a blue G. Let t denote the size of the largest blue clique. It is trivial that the maximum red-degree is at most t, and that $t \leqslant p-1$. Another simple bound is given by the following lemma.

Lemma 2.2. $R \leqslant p+\delta t-1$.
Proof. Let v be any δ-vertex. Then in K_{R} there is a blue $G-v$, with the remaining vertices constituting X, say. Let $w_{1}, \ldots, w_{\delta}$ be v 's neighbors in this copy of $G-v$. If this copy does not directly extend to a blue G, then every vertex in X is red-adjacent to one of the w_{i}. Thus, the red neighborhoods of the w_{i} cover X, and hence $|X| \leqslant \delta t$.

3. Independent δ-vertices

From now on we assume that the δ-vertices form an independent set of size s. We focus on the largest blue clique T in the coloring of $K_{2 q+1}$, and argue that this can be extended to a blue copy of G. In this copy, the non- δ-vertices lie in T, while some δ-vertices lie in T and some outside. We use a greedy approach to show that there must be enough good vertices outside T.

We assume that the coloring of $K_{2 q+1}$ does not contain a red K_{3}. Let $Y=V\left(K_{2 q+1}\right)-T$ have cardinality y, and let $f=p-t$ denote the number of vertices to be placed outside T. The proof is in three parts. We first establish conditions which ensure that T can be extended to a copy of G. We then derive some useful bounds, and verify that $y=2 q+1-t$ satisfies the conditions for $\delta \geqslant 3$. Finally, we handle the case when $\delta=2$.

3.1. Conditions for extension

Suppose $y \geqslant t$. For I a δ-subset of T, let g_{I} denote the number of vertices in Y which are blue-adjacent to all of I. Every vertex in T is blue-adjacent to at least $y-t$ vertices in Y. We will assume that we have equality here. (For example, we may forbid our blue copy of G to use certain edges.) Thus,

$$
y-\delta t \leqslant g_{I} \leqslant y-t .
$$

Further, let \bar{g} denote the average value of g_{I}.
Now, assume $t \geqslant p-s$. Consider a possible placement in T of the non- δ-vertices of G. Let $I_{1}, I_{2}, \ldots, I_{s}$ denote the resulting sets to which we need to attach δ-vertices $w_{1}, w_{2}, \ldots, w_{s}$. Assume $g_{I_{1}} \geqslant g_{I_{2}} \geqslant \cdots \geqslant g_{I_{s}}$. We can place $w_{f+1}, w_{f+2}, \ldots, w_{s}$ inside T without problems. Then we place w_{f} outside T; this requires $g_{I_{f}} \geqslant 1$. Next we place w_{f-1} outside T; if $g_{I_{f-1}} \geqslant 2$ then such a vertex is guaranteed to exist. So a greedy algorithm completes the placement of the δ-vertices provided:

$$
\begin{equation*}
g_{I_{j}} \geqslant f-j+1 \quad \text { for } 1 \leqslant j \leqslant f . \tag{1}
\end{equation*}
$$

For this it is sufficient that

$$
\begin{equation*}
\sum_{i=1}^{s} g_{I_{i}} \geqslant s(f-j)+(j-1)(y-t-f+j)+1 \quad \text { for } j=1,2, \ldots, f . \tag{2}
\end{equation*}
$$

(See Fig. 1.) The right-hand side of this expression is maximized at either $j=1$ or $j=f$ where it has values $s(f-1)+1$ and $(f-1)(y-t)+1$, respectively. Further, by the above lower bound on g_{I}, if $y-\delta t \geqslant 0$ then we need only worry about $j \leqslant f-(y-\delta t)$.

By standard reasoning there exists a placement such that $\sum_{j=1}^{s} g_{I_{j}} \geqslant s \bar{g}$. Hence we have the following lemma.

Fig. 1. We need the staircase to be under curve $\left\{g_{I_{j}}\right\}$.

Lemma 3.1. Assume $y \geqslant t \geqslant p-s$. Then the following two conditions guarantee that the $\left\{g_{I_{j}}\right\}$ satisfy eq. (1), and thus that T can be extended to a copy of G :
(C1) $f \leqslant \bar{g}$, and
(C2) $f(y-t) \leqslant s \bar{g}$.
If $\sigma=y-\delta t \geqslant 0$ then we may replace $\mathbf{C} 2$ by
$\left(\mathbf{C 2}^{\prime}\right) \sigma s+(f-\sigma)(y-t-\sigma) \leqslant s \bar{g}$.

3.2. Verification of conditions

Recall that $0<s, t<p$ and $f=p-t$. Observe that $2 q \geqslant(\delta+1) p-s$. By the independence of the δ-vertices, $q \geqslant \delta$ s. Further, we may assume that $2 q<p+\delta t$, else we are done by Lemma 2.2. Thus,

$$
\begin{equation*}
p+\delta t>2 q=y+t-1 \geqslant \max (2 \delta s,(\delta+1) p-s) . \tag{3}
\end{equation*}
$$

In particular, we have the following lemma.
Lemma 3.2. (a) $s \geqslant \delta f$,
(b) $y \geqslant p 2 \delta(\delta+1) /(2 \delta+1)-t+1$,
(c) $t>f(2 \delta-2)$.

Proof. Part (a) follows from $p+\delta t \geqslant(\delta+1) p-s$. The lower bound for y is minimized when $2 \delta s=(\delta+1) p-s$; this yields (b). Now $p+\delta t \geqslant y+t \geqslant p 2 \delta(\delta+1) /(2 \delta+1)$, so that $p / t \leqslant\left(2 \delta^{2}+\delta\right) /\left(2 \delta^{2}-1\right)$. This implies that $p / t<(2 \delta-1) /(2 \delta-2)$ which rearranged gives (c).

Hence $y \geqslant t \geqslant p-s$.

Lemma 3.3. If $\bar{g} \geqslant(y-t) / \delta$, then Conditions $\mathbf{C 1}$ and $\mathbf{C 2}$ are satisfied.
Proof. Condition C1 holds since $\bar{g} \geqslant(y-t) / \delta \geqslant(2 q-2 t) / \delta \geqslant p-2 t / \delta \geqslant f$. Condition C2 holds since $s \geqslant \delta f$ (by Lemma 3.2).

So we need a bound on \bar{g}. Let d_{i} denote the blue-degree into T of the i th vertex of Y. Then $\sum_{I} g_{I}=\sum_{i}\binom{d_{i}}{\delta}$, while $\sum_{i} d_{i}=t(y-t)$. Hence,

$$
\begin{equation*}
\bar{g} \geqslant y\binom{t(y-t) / y}{\delta} /\binom{t}{\delta}=(y-t) \prod_{j=1}^{\delta-1}\left(1-\frac{t^{2}}{y(t-j)}\right) . \tag{4}
\end{equation*}
$$

The above bound for $\bar{g} /(y-t)$ is minimized at y as small as possible; so take $y=(\delta-1) t$, a lower bound by Lemma 3.2. Then it is minimized for t as small as possible; so take $t=2(\delta-1)$, a lower bound by Lemma 3.2. Thus $\bar{g} /(y-t) \geqslant \prod_{j=1}^{\delta-1}(1-2 /(2 \delta-2-j))=(\delta-3) /(4 \delta-6)$.

For $\delta \geqslant 6$ we are thus home. If we are more careful, we can show that $\bar{g} \geqslant(y-t) / \delta$ for $\delta \geqslant 3$ (with one exceptional case). When $\delta=2$ we must go back and verify the conditions of Lemma 3.1 directly. The details are given below.

3.3. Arithmetical details

From Lemma 3.2 and bound given by eq. (4) we obtain, as follows, $\bar{g} \geqslant(y-t) / \delta$ for $3 \leqslant \delta \leqslant 5$ except when $(\delta, f)=(3,1)$. If $\delta=5$, then $y \geqslant 60 p / 11-t \geqslant 49(t+1) / 11$, and $t \geqslant 9$. The expression $t^{2} /((t+1)(t-j))$ is minimized at t as small as possible. So plug in lower bounds for y and t and get $\bar{g} /(y-t) \geqslant 0.253$. Similarly for $\delta=4$: $y \geqslant 40 p / 9-t \geqslant 31(t+1) / 9$ and $t \geqslant 7$, and plug in to get $\bar{g} /(y-t) \geqslant 0.251$. If $\delta=3$ and $f \geqslant 2$, then $t \geqslant 9$. Since $y \geqslant 24(t+f) / 7-t \geqslant 17 t / 7+48 / 7$, it holds that $y(t-j) \geqslant y(t-2) \geqslant\left(17 t^{2}+14 t-96\right) / 7 \geqslant 17 t^{2} / 7$. Hence $\bar{g} /(y-t) \geqslant(10 / 17)^{2} \geqslant 0.346$. When $(\delta, f)=(3,1)$, we merely need $\bar{g}>0$ (by eq. (2)). For this it is sufficient that $t(y-t)>3 y$. The expression $E=t(y-t)-3 y$ is minimized at y as small as possible, say $y=17 t / 7+24 / 7$; and then at t as small as possible, viz. $t=5$. E 's value there is $43 / 7$.

Thus, it remains to verify the conditions when $\delta=2$. Note that $p \leqslant 10 t / 7$ (cf. proof of Lemma 3.2).

We consider first the case when $f=1$. Here we need $\bar{g}>0$ (by eq. (2)). For this it is sufficient that $t(y-t)>2 y$. The expression $E=t(y-t)-2 y$ is minimized at y as small as possible, say $y=12(t+1) / 5-t+1=7 t / 5+17 / 5$ (Lemma 3.2); and then at t as small as possible. If $t \geqslant 4$ then $E \geqslant 2$. The case when $t=3$ is easily dispensed with. (Recall that $r\left(K_{3}, K_{4}\right)=9$.) So from now on we assume that $f \geqslant 2$, and thus $t \geqslant 5$ (by Lemma 3.2).

We next verify Condition C1. By the bound of (4), it suffices to show that $f \leqslant(y-t)\left(y t-t^{2}-y\right) /(y t-y)$. By rearranging it suffices to show that

$$
y^{2} t-y t^{2}+t^{3}-y t p \geqslant y^{2}-y p
$$

Since $y \leqslant p+t$, the right-hand side of this expression is at most $t(p+t)$. On the other hand, the left-hand side L is minimized at the smallest value of $y(\partial L / \partial y=t(2 y-p-t)$
and $y \geqslant(p+t) / 2$ by Lemma 3.2). So take $y=12 p / 5-t$ (a lower bound by Lemma 3.2), where $L=t\left(84 p^{2}-155 p t+75 t^{2}\right) / 25 \geqslant t\left(79 p^{2}-150 p t+75 t^{2}\right) / 25=t\left(4 p^{2}+75 f^{2}\right) / 25$. So it is sufficient that $4 p^{2}+300 \geqslant 25(p+t)$, which is true.

Finally, we verify Condition C2. Let $s=\alpha f$. By Lemma 3.2, $\alpha \geqslant 2$. We need to establish that $y t-y \leqslant \alpha\left(y t-t^{2}-y\right)$, or equivalently that $F=t(\alpha(y-t)-y)-(\alpha-1) y \geqslant 0$. The expression F is minimized at y as small as possible $(\partial F / \partial y=(t-1)(\alpha-1)$). We start with the case $y \leqslant 2 t$. Then $\alpha \geqslant 3$ since $s \geqslant 3 p-y-t$ by inequality (3). As $y \geqslant 3 p-\alpha f-t$,

$$
\alpha(y-t)-y \geqslant 3 p \alpha-\alpha^{2} f-\alpha t-\alpha t-3 p+\alpha f+t=(\alpha-3)(p-s)+t \geqslant t .
$$

Thus, it remains to verify that $t^{2} \geqslant(\alpha-1) y$. Since $y \leqslant 2 t$, for this it is sufficient that $t \geqslant 2 s / f$. By inequality (3), $y \geqslant 4 s-t$ so that $t \geqslant 4 s / 3$. As $f \geqslant 2$ we are done.

Next we consider the case $y \geqslant 2 t$. Then for $F \geqslant 0$ it is sufficient that $\alpha \geqslant 2(t-1) /(t-2)$. Hence, if $\alpha>5 / 2$ and $t \geqslant 6$, we are done. The case $t=5$ and $\alpha>5 / 2$ is easily handled. (Since it follows that $p=7$ and $f=2$, whence $\alpha \geqslant 3>8 / 3$, as required.)

So consider $\alpha \leqslant 5 / 2$ and Condition $\mathbf{C 2}^{\prime}$. By plugging in the bound of (3) and multiplying through by $y(t-1) / t$, it is sufficient to show that

$$
s t^{3}-s t y-p y t^{2}+y^{2} t^{2}-y t^{3}+p y t-y^{2} t+y t^{2} \geqslant 0 .
$$

The left-hand side L is minimized at y as small as possible $(\partial L / \partial y=$ $t((2 y-p-t)(t-1)-s)$). By Inequality (3), $y \geqslant 3 p-s-t \geqslant 3 p-5(p-t) / 2-t$. Using this bound it follows that L is minimized at s as small as possible, so take $s=2(p-t)$. Simplifying, the condition reduces to verifying that $5 t^{2}-9 t-p t-3 p \geqslant 0$. This is valid since $p \leqslant 10 t / 7$ and $t \geqslant 5$.

Notes added in proof

The result in this paper was obtained earlier and independently by A.F. Sidorenko (The Ramsey number of an N-edge graph versus triangle is at most $2 N+1$, J. Combin. Theory Ser. B 58 (1993) 185-196) by different means.

References

[1] V. Chvátal, Tree-complete graph Ramsey numbers, J. Graph Theory 1 (1977) 93.
[2] P. Erdős, R.J. Faudree, C.C. Rousseau and R.H. Schelp, A Ramsey problem of Harary on graphs with prescribed size, Discrete Math. 67 (1987) 227-233.
[3] A.F. Sidorenko, An upper bound on the Ramsey number $r\left(K_{3}, G\right)$ depending only on the size of the graph G, J. Graph Theory 15 (1991) 1517.

[^0]: Correspondence to: Wayne Goddard, Department of Mathematics, University of Pennsylvania, Philadelphia, PA 19104, USA.

 * Research supported in part by grants AFOSR-89-0271 and NSF-DMS-8606225.

