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Abstract 

The Ramsey number r(H, G) is defined as the minimum N such that for any coloring of the edges of 

the N-vertex complete graph KN in red and blue, it must contain either a ted H or a blue G. In this 

paper we show that for any graph G without isolated vertices, r(K,, G)< 2qf 1 where G has q edges. 

In other words, any graph on 2q+ 1 vertices with independence number at most 2 contains every 

(isolate-free) graph on q edges. This establishes a 1980 conjecture of Harary. The result is best 

possible as a function of q. 

1. Introduction 

For graphs G and H, the Ramsey number r(H,G) is defined as the minimum 
number N such that for any coloring of the edges of the N-vertex complete graph 
KN in red and blue, it must contain either a red H or a blue G. Harary conjectured that 
r(K3, G)<2q + 1, where 4 is the number of edges of G. This inequality is the best 
possible, since Chvatal [l] showed that r(K3, T,+,)=2n+ 1 for any tree T,,, on 
n edges. Also, it is well-known that r(K3, KP) < 2( 1) + 1. 

Erdiis et al. [2] showed that r(Kg, G)<r 8q/3 1. Sidorenko [3] improved this by 
showing that r(K3, G)< 5q/2- 1 (for q 24). In this paper we establish Harary’s 
conjecture. 

Theorem 1.1. For any graph G with q edges and without isolated vertices, 

r(K3,G)<2q+1. 

In other words, any graph on 2q + 1 vertices with independence number at most 
2 contains every (isolate-free) graph on q edges. 

Correspondence to; Wayne Goddard, Department of Mathematics, University of Pennsylvania, 

Philadelphia, PA 19104, USA. 
* Research supported in part by grants AFOSR-89-0271 and NSF-DMS-8606225. 

0012-365X/94/$07.00 0 1994-Elsevier Science B.V. All rights reserved 
SSDI 0012-365X(92)00195-Y 

brought to you by COREView metadata, citation and similar papers at core.ac.uk

provided by Elsevier - Publisher Connector 

https://core.ac.uk/display/82803774?utm_source=pdf&utm_medium=banner&utm_campaign=pdf-decoration-v1


178 W. Goddard, D.J. Kleitman 

2. Preliminaries 

Let G have q edges, p vertices and minimum degree 6. We prove the result by 

induction on q. In particular, let R be such that a red-blue coloring of K, without 

a red K3 always contains a blue copy of every graph on fewer edges than G and yet 

does not necessarily contain G. Then we find an upper bound on R, assuming it exists. 

Like Sidorenko [3], we focus on the minimum degree. He established that R<2q 

when 6 = 1, so we will assume that 6 b 2. 

Further, we use the same two-case approach as Sidorenko. Call a vertex a &vertex 

if it has degree 6. Then the first case is when G has adjacent a-vertices. 

Lemma 2.1. If G has two adjacent &vertices then R < 2q. 

Proof. Let u1 and u2 be adjacent S-vertices with neighborhoods WI and W, (them- 

selves excluded). Let G’ be the resultant graph when one contracts u1u2 to form w. 

Consider a coloring of K, that includes a blue G’ (but no red K3), and let X denote the 

remaining vertices. 

Suppose there exist distinct vertices x i, x2~X with Xi blue-adjacent to all of 

II$ (i= 1,2). Consider the three vertices xi, x2 and w. It is easy to see that if any two of 

these are joined by a blue edge, then we obtain a blue G. Therefore, these three vertices 

form a red K3, a contradiction. 

Thus, there exists an ie{l, 2) such that every vertex in X, except perhaps one, is 

red-adjacent to some vertex in fl. We claim that a vertex has red-degree at most p - 1; 

for otherwise its red-neighborhood would contain a blue K, and hence G. Thus 

lXl<(p-l)l Wil+l. Hence 

as required. 0 

Now, consider a coloring of K, without a red K3 and without a blue G. Let t 

denote the size of the largest blue clique. It is trivial that the maximum red-degree 

is at most t, and that t <p- 1. Another simple bound is given by the following 

lemma. 

Lemma 2.2. R<p+Gt-1. 

Proof. Let v be any b-vertex. Then in KR there is a blue G-v, with the remaining 

vertices constituting X, say. Let wi, . . . , wd be v’s neighbors in this copy of G-v. 

If this copy does not directly extend to a blue G, then every vertex in X is red-adjacent 

to one of the wi. Thus, the red neighborhoods of the Wi cover X, and hence 

[X1<&. q 
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3. Independent &vertices 

From now on we assume that the a-vertices form an independent set of size s. We 

focus on the largest blue clique Tin the coloring of K 2q + 1, and argue that this can be 

extended to a blue copy of G. In this copy, the non-&vertices lie in T, while some 

d-vertices lie in T and some outside. We use a greedy approach to show that there 

must be enough good vertices outside T. 

We assume that the coloring of K2q+l does not contain a red KS. Let 

Y= V(KZg+ 1 ) - T have cardinality y, and letf= p - t denote the number of vertices to 

be placed outside T. The proof is in three parts. We first establish conditions which 

ensure that T can be extended to a copy of G. We then derive some useful bounds, and 

verify that y=2q+ 1 -t satisfies the conditions for 623. Finally, we handle the case 

when 6=2. 

3.1. Conditions for extension 

Suppose y 2 t. For I a J-subset of T, let gr denote the number of vertices in Y which 

are blue-adjacent to all of I. Every vertex in T is blue-adjacent to at least y - t vertices 

in Y. We will assume that we have equality here. (For example, we may forbid our blue 

copy of G to use certain edges.) Thus, 

y-&Qg,<y-t. 

Further, let @ denote the average value of g,. 

Now, assume t Bp-s. Consider a possible placement in T of the non-b-vertices of 

G. Let I,, Z*,... ,I, denote the resulting sets to which we need to attach d-vertices 

Wl,W2,...,Ws. Assume g1,>g12>*..>gI,. We can place w~+~,w~+~,...,w, inside 

T without problems. Then we place ws outside T, this requires gI, > 1. Next we place 

ws_ 1 outside T; if gr,_, 22 then such a vertex is guaranteed to exist. So a greedy 

algorithm completes the placement of the a-vertices provided: 

grjaf-j+ 1 for 1 <j<f: 

For this it is sufficient that 

(1) 

[iIgIi >s(f-j)+(j-l)(y-t-f+j)+l forj=l,L...,f: 

(See Fig. 1.) The right-hand side of this expression is maximized at either j= 1 or 

j=f where it has values Q-l)+ 1 and (f-l)(y-t)+ 1, respectively. Further, 

by the above lower bound on gr, if y -6t 20 then we need only worry about 

j<f-(y-6t). 
By standard reasoning there exists a placement such that ES=1 gIj>sg. Hence we 

have the following lemma. 
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Fig. 1. We need the staircase to be under curve {g,,}. 

Lemma 3.1. Assume y > t 3 p-s. Then the following two conditions guarantee that the 
{gIj} satisfy eq. (l), and thus that T can be extended to a copy of G: 

(Cl) f<J, and 

(C2) f( y - t ) e sg. 
If CJ = y - 6t > 0 then we may replace C2 by 

(C2’) as+(f-o)(y- t-o)<sG. 

3.2. VeriJication of conditions 

Recall that 0 < s, t < p and f= p - t. Observe that 2q > (6 + 1)p - s. By the indepen- 

dence of the d-vertices, q 3 6s. Further, we may assume that 2q < p + 6t, else we are 

done by Lemma 2.2. Thus, 

p+&>2q=y+t-13max(26s,(6+l)p-s). 

In particular, we have the following lemma. 

(3) 

Lemma 3.2, (a) s> Sf 

(b) y>p26(6+ 1)/(26+ 1)-t+ 1, 

(c) t>f(26-2). 

Proof. Part (a) follows from p + 6t B (6 + 1)p - s. The lower bound for y is minimized 

when 26s = (6 + 1)p - s; this yields (b). Now p + 6t > y + t > p26(6 + 1)/(26 + l), so that 

p/t <(26’ + S)/(2S2 - 1). This implies that p/t <(26 - 1)/(26 -2) which rearranged 

gives (c). 0 

Hence y>t>p-s. 
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Lemma 3.3. If gj>(y- t)/& then Conditions Cl and C2 are satisjied. 

Proof. Condition Cl holds since Q 2 (y - t)/s > (2q - 2t)/6 > p - 2t/6 25 Condition C2 

holds since s B Sf (by Lemma 3.2). 

So we need a bound on S. Let di denote the blue-degree into T of the ith vertex of Y. 

Then ErgI = xi (‘$), while Ci di = t(y - t). Hence, 

The above bound for g/(y-- t) is minimized at y as 

take y=(6 - l)t, a lower bound by Lemma 3.2. Then it 

small as possible; so take t =2(6- l), a lower bound 

g/(y-t)>nj;:(l-2/(26-2-j))=(S-3)/(46-6). 

(4) 

small as possible; so 

is minimized for t as 

by Lemma 3.2. Thus 

For 6 2 6 we are thus home. If we are more careful, we can show that Sk (y - t)/d for 

62 3 (with one exceptional case). When 6 =2 we must go back and verify the 

conditions of Lemma 3.1 directly. The details are given below. 

3.3. Arithmetical details 

From Lemma 3.2 and bound given by eq. (4) we obtain, as follows, S 2 (y - t)/d for 

3~6~5 except when (S,f)=(3,1). If 6=5, then y360p/ll-t>49(t+l)/ll, and 

t 2 9. The expression t’/((t + l)(t -j)) is minimized at t as small as possible. So plug 

in lower bounds for y and t and get a/(y-- t)a0.253. Similarly for 6 =4: 

y340p/9-t>31(t+1)/9 and t37, and plug in to get g/(y-t)b0.251. If 6=3 

and fa2, then t>9. Since y > 24(t +f)/7 - t > 17t/7 + 48/7, it holds that 

y(t-j)>y(t-2)8(17t2+14t-96)/7a17t2/7. Hence #/(y-t)>(10/17)‘>0.346. When 

(6, f) = (3, l), we merely need S > 0 (by eq. (2)). For this it is sufficient that t(y - t) > 3y. 

The expression E= t(y- t)- 3y is minimized at y as small as possible, say 

y= 17t/7+24/7; and then at t as small as possible, viz. t =5. E’s value there is 43/7. 

Thus, it remains to verify the conditions when 6 = 2. Note that p d lot/7 (cf. proof of 

Lemma 3.2). 

We consider first the case when f= 1. Here we need J>O (by eq. (2)). For this it is 

sufficient that t( y - t) > 2y. The expression E = t (y - t) - 2y is minimized at y as small 

as possible, say y = 12(t + 1)/5-t + 1 = 7t/5 + 17/5 (Lemma 3.2); and then at t as small 

as possible. If t >/ 4 then E > 2. The case when t = 3 is easily dispensed with. (Recall that 

r(K3, K4)=9.) So from now on we assume thatfa2, and thus t 3 5 (by Lemma 3.2). 

We next verify Condition Cl. By the bound of (4), it suffices to show that 

f<(y-t)(yt-t2-y)/(yt-y). By rearranging it suffices to show that 

yzt-yyt2+t3-ytp>y2-yyp. 

Since y <p-t t, the right-hand side of this expression is at most t(p+ t). On the other 

hand, the left-hand side L is minimized at the smallest value of y (aLlay = t(2y --p - t) 
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and y > (p + t)/2 by Lemma 3.2). So take y = 12p/5 -t (a lower bound by Lemma 3.2), 

where L= t(84p2- 155pt+75t2)/253 t(79p2- 150pt+75t2)/25= t(4p2+75f2)/25. So 
it is sufficient that 4p2 + 300 > 25( p + t), which is true. 

Finally, we verify Condition C2. Let s= elf: By Lemma 3.2, ~22. We need to 

establish that yt - y < a( yt - t2 - y), or equivalently that F = t(cc( y - t) - y) - (m - 1)y > 0. 

The expression F is minimized at y as small as possible (dF/dy=(t - l)(a- 1)). We 

start with the case yd 2t. Then c( 3 3 since s 3 3p-y-t by inequality (3). As 

y>3p--f-t, 

Thus, it remains to verify that t2 >(c(- 1)~. Since yQ2t, for this it is sufficient that 

t >, 2sjf: By inequality (3), y k 4s - t so that t 2 4~13. As f > 2 we are done. 

Next we consider the case y>2t. Then for F 20 it is sufficient that 

GL~2(t-l)/(t-2).Hence,ifcr>5/2andt~6,wearedone.Thecaset=5anda>5/2is 

easily handled. (Since it follows that p = 7 and f = 2, whence CL k 3 > 8/3, as required.) 

So consider a< 512 and Condition C2’. By plugging in the bound of (3) and 

multiplying through by y(t- 1)/t, it is sufficient to show that 

The left-hand side L is minimized at y as small as possible (dL/dy = 
t((2y -p - t)(t - 1)-s)). By Inequality (3), y > 3p-s- t 2 3p- 5(p - t)/2- t. Using this 

bound it follows that L is minimized at s as small as possible, so take s=2(p- t). 
Simplifying, the condition reduces to verifying that 5t2 - 9t - pt - 3p 3 0. This is valid 

since p < lot/7 and t 2 5. 

Notes added in proof 

The result in this paper was obtained earlier and independently by A.F. Sidorenko 

(The Ramsey number of an N-edge graph versus triangle is at most 2N + 1, J. Combin. 

Theory Ser. B 58 (1993) 185-196) by different means. 
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