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Abstract

Here we describe a novel set of peptidergic neurons conserved throughout all developmental stages in the Drosophila central nervous

system (CNS). We show that a small complement of 28 apterous-expressing cells (Ap-let neurons) in the ventral nerve cord (VNC) of

Drosophila larvae co-express numerous gene products. The products include the neuroendocrine-specific bHLH regulator called Dimmed

(Dimm), four neuropeptide biosynthetic enzymes (PC2, Fur1, PAL2, and PHM), and a specific dopamine receptor subtype (dDA1). For the

PC2, Fur1, and PAL2 enzymes, and for the dDA1 receptor, this neuronal pattern represents the vast majority of their total expression in the

VNC. In addition, while Dimm and PHM are present in the peritracheal Inka cells in larvae, pupae, and adults, Ap, PC2, Fur1, PAL2, and

dDA1 are not. PC2, PAL2, and DA1 receptor expression were all controled by both dimm and ap. Previous genetic analysis of animals

deficient in PC2 revealed an abnormal larval ecdysis phenotype. Together, these data support the hypothesis that the small cohort of Ap-let

interneurons regulates larval ecdysis behavior by secretion of an unidentified amidated peptide(s). This hypothesis further predicts that the

production of the Ap-let neuropeptide(s) is dependent on each of four specific enzymes, and that a certain aspect(s) of its production and/or

release is regulated by dopamine input.

D 2004 Elsevier Inc. All rights reserved.
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Introduction

The molting process of insects ends with the highly

orchestrated emergence of the animal from the old cuticle.

This behavior is called ecdysis for larval and pupal animals,

and eclosion for adults. An extensive series of experiments

in moths and in Drosophila has produced a model of

endocrine and neuroendocrine steps that initiate and coor-

dinate ecdysial behaviors (reviewed by Ewer and Reynolds,

2002). Ecdysial behaviors are controlled by at least three

distinct peptide hormones, eclosion hormone (EH), ecdysis-

triggering hormone (ETH) and crustacean cardioactive pep-

tide (CCAP). The general model features positive interac-

tions between EH and ETH to initiate the ecdysial program,
0012-1606/$ - see front matter D 2004 Elsevier Inc. All rights reserved.

doi:10.1016/j.ydbio.2004.01.015

$ Supplementary data associated with this article can be found, in the

online version, at doi: 10.1016/j.ydbio.2004.01.015.

* Corresponding author. Department of Anatomy and Neurobiology,

Washington University School of Medicine, 660 South Euclid Avenue,

Saint Louis, MO 63110. Fax: +1-314-362-3446.

E-mail address: taghertp@thalamus.wustl.edu (P.H. Taghert).
and EH finally causing release of CCAP in a cGMP-

dependent manner within the central nervous system

(CNS). CCAP then helps trigger the motor activities to

complete ecdysial behavior (Gammie and Truman, 1999;

Park et al., 2002; Park et al., 2003; Zitnan et al., 1999).

Many observations indicate the model requires additional

details and refinement. There are apparent differences in

regulation according to stages of development, as indicated

by the phenotype of animals lacking EH-producing neurons

(McNabb et al., 1997). There are likely species differences

as well: Drosophila neurons containing CCAP do not

display an EH-induced cGMP increase (Ewer and Truman,

1996). Also there is evidence for functional redundancy

between control systems: larvae deficient in ETH fail to

complete ecdysis at the end of the 1st instar, although many

display some ecdysial behaviors (Park et al., 2003). A

simple deduction is that other factors, whether normal or

compensatory, may be available as part of a more compli-

cated mechanism underlying the control of ecdysial behav-

ior. Therefore, to test the established hypothesis, and to

build a more detailed model, it is important to identify other
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signaling components and neural circuits relevant to Dro-

sophila ecdysial behaviors.

The genetic analyses of neuropeptide biosynthetic

enzymes offer a potential means by which to address

ecdysial behaviors. Mammalian prohormone convertase 2

(PC2) is an important endoprotease for neuroendocrine

prohormone processing (Seidah et al., 1998; Westphal et

al., 1999). The Drosophila orthologue is encoded by

CG6438 (also called amontillado, amon). Recombinant

dPC2 displays predictable interactions with the mammalian

PC2 regulatory binding partner 7B2 and with the Drosoph-

ila orthologue of 7B2 (Hwang et al., 2000). PC2 produces a

lethal phenotype in which animals fail to hatch from the egg

case, or fail to complete larval ecdysis (Rayburn et al., 2003;

Siekhaus and Fuller, 1999). Likewise, animals deficient in

production of the amidating enzyme PHM (PHM, CG3832),

fail to produce amidated peptides, and display a lethal

phenotype similar to that of PC2 (Jiang et al., 2000).

Synthetic PHM hypomorphs fail at later ecdyses, including

pupal ecdysis (Jiang et al., 2000). These data are consistent

with the possibility that ecdysial behaviors require one or

more peptide precursors processed by PC2 and also by

PHM. ProETH, which is required for proper larval ecdysis

behavior (Park et al., 2000), is possibly one such precursor,

as it requires cleavage at dibasic residues and amidation of

the ETH peptide (Zitnan et al., 1999). PHM is widely

expressed by numerous peptidergic neurons and endocrine

cells, such as the ETH-expressing Inka cells, at all stages of

development (O’Brien and Taghert, 1998; Jiang et al.,

2000). The spatial expression of PC2 has been described

by in situ hybridization in embryos, where it is found in

numerous neurons, in the Inka cells and in putative gut

endocrine cells (Siekhaus and Fuller, 1999).

To address mechanisms of larval ecdysis, we have

focused on the expression of such neuropeptide (NP) bio-

synthetic enzymes in post-embryonic stages. In addition to

PC2 and PHM, we studied Furin1 (fur1, CG10772) and

PAL2 (Peptidyl-a-hydroxyglycine a-amidating lyase PAL2,

CG5472). Fur1 is one of two Drosophila enzymes related to

the mammalian tetra-basic cleaving endoprotease, furin (De

Bie et al., 1995; Roebroek et al., 1991, 1992). PAL2 is one

of two distinct Drosophila PAL-like enzymes (Kolhekar et

al., 1997; M. Han, D. Park, P. Vanderzalm, D. Mains, B.A.

Eipper, and P.H. Taghert, submitted) that act in series with

PHM to catalyze peptide amidation (Eipper et al., 1992).

The vast majority of Drosophila neuropeptides appear to be

amidated (Hewes and Taghert, 2001).

PC2 immunosignals are generally restricted to a small

complement of apterous (ap)-expressing CNS interneurons,

but are not found in ETH-producing Inka cells. Further-

more, this complement of ap larval neurons is the only

neural site in which PC2 and PHM are co-expressed.

Apterous is a LIM homeodomain protein that helps regulate

neuronal pathway choice and peptidergic cell differentiation

(Benveniste et al., 1998; Lundgren et al., 1995). The axons

of this ap-cell group project to the brain in a fasciculated
bundle (Lundgren et al., 1995) and hence may represent a

functional unit. We expand and refine the definition of this

cellular complement incorporating several, additional cell

type-specific markers that are expressed by this neuronal

group. We show that this group is the primary site for

expression for two other putative neuropeptide biosynthetic

enzymes, Fur1 and PAL2, and further that the normal

differentiation of these properties is highly dependent on

expression of ap and one other regulator, dimmed. Finally,

we show that this group represents one of two specific larval

CNS sites that express the D1-like dopamine receptor dDA1

(Kim et al., 2003). Based on this extensive and highly

detailed anatomical and molecular signature, we infer a

common functional specification to this group of interneur-

ons. We have named them the Ap-let cells and hypothesize

they secrete a specific neuropeptide(s) acting as a central

transmitter to help regulate ecdysial behaviors. We discuss

these data in the contexts of ecdysial control mechanisms

and peptidergic cell differentiation.
Experimental methods

Fly stocks

The stocks used as controls were either Canton S, or y

w (Bloomington Stock Center). P[UAS-GFP] and P[UAS-

lacZ] were also obtained from the Bloomington Stock

Center. P[c929GAL4] (here called c929) was derived from

a screen conducted in Kim Kaiser’s laboratory (Univ.

Glasgow; cf., O’Brien and Taghert, 1998). We studied three

alleles of apterous. y w aprk586/CyO (here called ap-lacZ)

contains a lacZ-bearing enhancer trap inserted within the

5Vend of the ap gene; this enhancer trap accurately reports

ap expression (Benveniste et al., 1998; Cohen et al., 1992).

y w; apGAL4/CyO, wg-lacZ (here called apGAL4) also con-

tains an enhancer trap insertion within ap and appears to be

a strong hypomorphic allele (O’Keefe et al., 1998), and y w;

app44 contains a deletion of the 5Vend of the ap gene and is

transcriptional null (Bourgouin et al., 1992). A recombinant

stock containing y w; app44, P[UAS-tau GFP], and balanced

by CyO, wg-lacZ, was the kind gift of Stefan Thor and John

Thomas. Alleles of dimm studied here included the specific

P element insertion P{KG02598} and the small deficiencies

Rev8, Rev4, and Rev6 (Hewes et al., 2003).

Immunocytochemistry

Immunostaining procedures followed the methods of

Benveniste et al. (1998) and of Jiang et al. (2000). In all

cases, the fixative was 4% paraformaldehyde in phosphate

buffered saline (PBS) containing 7% (v/v) saturated picric

acid. Fixation proceeded for 1 h at room temperature. The

following dilutions and sources were used for primary

antibodies: mouse anti-beta-gal (1:500, Promega Corp.,

Madison, WI); rabbit anti-PHM (1:750; Jiang et al.,
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2000); guinea pig anti-PAL2 (1:500); rabbit anti-PC2

(1:750; Hwang et al., 2000); rabbit anti-Fur1 (1:500; A.

Roebroeck, Univ. Leuven); rabbit anti-CCAP (1:500; M.

Ekert, University of Jena); mouse anti-dDA1 (1:1000; Kim

et al., 2003). Secondary antibodies included Cy3-conjugat-

ed anti-mouse, anti-guinea pig, and anti-rabbit (1:500 each;

Jackson Labs), and Alexa-488 anti-mouse, anti-guinea pig,

and anti-rabbit (1:500 each; Molecular Probes). Images

were collected on a Fluoview confocal microscope using

1 Am optical sections at 20 or 40�, or a Nikon E1000

epifluorescent microscope. Adobe Photoshop was used to

process and assemble images. Cell counts were performed

using a Zeiss Axioplan microscope.
Results

A large subset of the ap-positive VNC cells co-express four

peptidergic biosynthetic enzymes

In the embryonic ventral nerve cord (VNC), ap expres-

sion marks three cell groups (Benveniste et al., 1998;

Lundgren et al., 1995), and these are schematized in Fig.

1. In each thoracic and abdominal hemi-neuromere, there is

a single ap cell that lies mid-laterally on the dorsal aspect;

we refer to these collectively as the Dorsal chain. Likewise,

each thoracic and abdominal hemi-neuromere contains a

pair of ap neurons located ventrally. Finally, the third ap cell

group comprises four neurons that are clustered ventrally
Fig. 1. The pattern of ap expression in the embryonic and larval VNC. Top

left: a 70-Am confocal stack representing a first instar larval VNC of the

genotype y w; apGAL4/y w; UAS-GFP. Three cell groups are indicated. T—

the four cell cluster in the ventro-lateral aspect of each thoracic hemi-

neuromere; Dorsal—the chain of single cells in the dorsal aspect of each

thoracic and abdominal hemi-neuromere; ventral—the chain of pairs of

neurons in the ventral aspect of each thoracic and abdominal hemi-

neuromere. Top right: schematic representation of the same image with cell

groups marked. Bottom: coronal diagram of the VNC at thoracic (left) and

abdominal (right) levels to indicate relative locations of ap cell groups in

the dorsal/ventral plane. Scale bar = 33 Am.
and laterally: we refer to this group collectively as the ap T

cluster (Thoracic). In a minority of prothoracic neuromeres,

the T cluster contains five cells (Allan et al., 2003). In this

report, we describe examples in the second and third

thoracic neuromeres.

Fur1 and PC2

Both the anti-Fur1 (n = 5, Figs. 2A and 2D) and anti-PC2

antisera (n = 7, Figs. 2B and 2E) labeled one or sometimes

two of the T cluster neurons. One cell was round and

displayed intense ap-lacZ which we refer to as Tvb. The

other was large and ovoid, and displayed weak ap-lacZ

expression—the Tv neuron (based on data presented below).

Both antisera also labeled most or all of the Dorsal chain ap-

positive neurons, but none of the ventral chain ap neurons.

PC2 and Fur1 immunostaining was routinely weak to mod-

erate; Tvb was always more distinctly stained than Tv; Dorsal

ap cells in anterior neuromeres were more often intensely

stained than were homologous neurons in posterior neuro-

meres (with the exception of the last abdominal neuromere).

PC2 immunosignals were also found in a small number of

scattered cells of the brain and subesophageal neuromeres,

and were typically weak. Likewise, weak Fur1 immunosig-

nals were also found in a small number of additional cells,

which were not identical to the additional PC2 cells.

PHM

PHM is widely expressed in the larval CNS (Jiang et al.,

2000; Kolhekar et al., 1997) in a heterogeneous pattern that

specifically features peptidergic neurons. Most neurons

express PHM at very low levels, while several hundred

cells in the larval CNS express it strongly; the latter appear

to be peptidergic, primarily neuroendocrine neurons (Jiang

et al., 2000). Among the four ap-positive neurons in the T

cell cluster, two neurons were strongly PHM-positive (n = 6,

Fig. 2C): one of these with a large ovoid cell body was

weakly ap-positive (presumed Tv), and the other with a

smaller, round cell body was strongly ap-positive (presumed

Tvb). In addition, all Dorsal chain ap-positive neurons were

strongly PHM-positive (n = 6, Fig. 2F), but none of the

ventral chain of ap-positive neurons was so stained.

PAL2

We have recently found two PAL-like enzymes in Dro-

sophila that are likely involved in peptide biosynthesis (M.

Han, D. Park, P. Vanderzalm, R. Mains, B. Eipper, and P.

Taghert, submitted). While PAL1 is broadly expressed in the

larval CNS, a high level of PAL2 expression is prominent in

only about 60 neurons (Fig. 3). Additionally, more diffuse

PAL2 immunostaining is present in several brain regions,

including the developing optic lobes. Because many of the

prominent PAL2 neurons resembled ap neurons by position,

we examined apGAL4/UAS-lacZ larvae stained with anti-

PAL2 and anti-h-gal antibodies. In this experiment, 46 of

the approximately 60 PAL2-positive neurons in 3rd instar

larvae co-expressed ap (n = 10, Figs. 3A–3D, schematized



Fig. 2. Co-labeling of diverse ap neurons by antibodies to three different neuropeptide biosynthetic enzymes. Left: immunostaining of the T cluster; Right:

immunostaining of the Dorsal chain of neurons. These identifications are based on multiple, different antibody stainings; see text for further details. (A) Double

immunostaining for fur1 and for ap-lacZ in the T cluster reveals that the strong (Tvb) and one of the weak ap-lacZ cells (Tv) are Fur1-positive (a 22.5-Am
stack). (B) Double immunostaining for PC2 and for ap-lacZ in the T cluster reveals that the strong (Tvb) and one of the weak ap-lacZ cells (Tv) are PC2-

positive (a 23.4-Am stack). (C) Double immunostaining for PHM and ap-lacZ in the T cluster reveals that the strong (Tvb) and one of the weak ap-lacZ cells

(Tv) are PHM-positive (a 16-Am stack). (D) Double immunostaining for Fur1 and for ap-lacZ in the region of the Dorsal ap chain reveals precise overlap

between the two patterns of immunosignals (a 10-Am stack). (E) Double immunostaining for PC2 and for ap-lacZ in the region of the Dorsal ap chain reveals

precise overlap between the two patterns of immunosignals (a 32-Am stack). (F) Double immunostaining for PHM and for ap-lacZ in the region of the Dorsal

chain reveals precise overlap between the two patterns of immunosignals (a 33-Am stack). An additional example of PHM expression in the Dorsal cells is

shown in Figs. 4J–L. Scale bar = 15 Am (A and B); = 7.5 Am (C); = 33 Am (D–F).
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in Fig. 3E). In the VNC, two neurons in the T cluster and the

Dorsal ap neurons expressed PAL2 (Figs. 3A and 3B).

Based on cell shapes, sizes, and double staining with c929

(see below), these T cluster neurons were identified as the

Tv and Tvb cells. In addition, PAL2-positive cells were
present in the brain (e.g., neuron Br1, Figs. 3B, and 3E–G)

and subesophageal neuromeres (Figs. 3C and 3D). In certain

genotypes, we observed that most of the ap-positive PAL2

staining was greatly reduced or absent, and only ap-negative

neurons were reliably stained (data not shown). How



Fig. 3. Most PAL2-positive neurons express ap. Ap expression indicated by apGAL4DUAS-GFP expression. (A) Two cells in the T cluster of ap neurons are

PAL2-positive neurons. (B) The Dorsal ap cells are PAL2-positive. Red asterisk indicates non-ap, PAL2-positive neurons. (C) PAL2 co-expression in the brain;

white asterisk indicates double-labeled neuron in superior protocerebrum. (D) The Br1 PAL-2 in ventral tritocerebrum is ap-negative. (E) Diagram of the larval

CNS indicating positions and number of PAL2 neurons that co-express apGAL4 (filled circles) and those that do not (open circles). (F) PAL2 staining in an ap

heterozygote; (G) PAL2 staining in an ap trans-heterozygous mutant. *—optic lobe primordia. In the mutant, many ap-negative cells (e.g., * and Br1) retain

PAL2 expression, while ap-positive cells have lost it. Scale bar = 70 Am (A–D); 50 Am (F and G).
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precisely this difference correlates with genotype, or with

some other unknown variable (e.g., activation state), is

presently uncertain.

Double-labeling with anti-enzyme antibodies was per-

formed where possible to confirm tentative cell identifica-

tions. The guinea pig anti-PAL2 antibody was used with the

rabbit anti-PC2 antibody (n = 5; data not shown), and with

the rabbit anti-PHM antibody (M. Han, D. Park, P. Vander-

zalm, R. Mains, B. Eipper, and P. Taghert, submitted). In all
specimens examined, the double-labeling revealed co-ex-

pression of biosynthetic enzymes, as previously indicated by

their co-expression with the ap reporter and with the

reporter for the gene dimm (see below).

In summary, most of the cells that display intense

staining for PAL2, PC2, and Fur1 immunosignals were

identical, and they co-expressed ap. We refer to them

hereafter as the Ap-let cohort of neurons. Specifically, they

include the Tvb and the Dorsal chain of ap cells. The
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exclusion of Tv from the Ap-let group is based on (i) gene

expression differences (very weak and inconsistent staining

by the antibodies to the PC2, Fur1, and PAL2 enzymes, and

weak ap reporter expression, compared to the strong ex-

pression for these of Tvb and Dorsal chain cells) and on (ii)

the difference in axon projection patterns between Tv versus

that of Tvb and the Dorsal chain cells.

ap regulates NP biosynthetic enzyme expression in Ap-let

neurons

We tested the hypothesis that ap regulates expression of

these NP biosynthetic enzymes by staining for PC2 and

PAL2 in ap mutant (apGAL4/app44) and control larvae.

Previous studies have demonstrated that the ap neurons

survive in this mutant (Benveniste et al., 1998): this hetero-

allelic combination produced a dFMRFa expression pheno-

type that was quantitatively similar to that of homozygous

(hypomorphic) apGAL4 or homozygous (null) app44 mutants.

In the T cluster, and in Dorsal cells, both PC2 and PAL2

expression was lost in ap trans-heterozygous mutant larvae

(Table 1 and Figs. 3F and 3G). The immunosignals that

remained in mutant tissues were found only in ap-negative

neurons (e.g., Br-1, Fig. 3G).

dimm is expressed in many VNC ap neurons and also

controls their differentiation

The c929 line (O’Brien and Taghert, 1998) was useful in

further characterizing the Ap-let neurons. c929 contains a P

element inserted in the ATF-4 (crc) gene at 39CD (CG8669,

Hewes et al., 2000). The spatial expression pattern of GAL4

in the P element primarily reflects a distant bHLH gene

called dimmed (dimm). dimm normally regulates the differ-

entiation of neuroendocrine lineages (Hewes et al., 2003). In

the larval CNS, the expression patterns and levels of c929

and PHM are highly correlated, thus making the c929

pattern an accurate indicator of high-level amidated, pep-

tidergic activity levels. We double immunostained c929/

UAS-lacZ larvae for h-gal and for Fur1, PC2, PHM (n = 8,

Fig. 4) or for PAL2 (n = 6; data not shown). Those

experiments indicated that the Fur1/PC2/PHM/PAL2-posi-

tive pair of neurons in the T cluster cells was c929-positive,

and thus corresponded to the Tv neuron and the Tvb
Table 1

Incidence of anti-PC2 and anti-PAL2 immunostaining in larval CNS of different

Genotype PC2a (n) Tvb PC2 Dorsals PC2

apGAL4/+ 4 22/24 (92%) 55/88 (63%)

app44/+ 4 23/24 (96%) 72/88 (82%)

app44/apGAL4 8 1/48 (2%) 0/176 (0%)

dimmP1/+ or Df(2R)Rev 4/+

dimmP1/Df(2R)Rev 4

a 1st instar larvae; Tv staining by anti-PC2 was typically weak, and was not scor
b n = number of larvae studied; ap—early 3rd instar larvae; dimm-1st instar larva
c These two genotypes were analyzed together.
d Not determined—Br1 staining was rarely seen during the 1st instar.
neurons (Figs. 4A–4C). The Tvb neuron, as indicated by

its cell size and shape, was typically stained more brightly

for c929 than the Tv neuron. In addition, the Dorsal chain of

ap neurons was c929-positive (Figs. 4D–4F; cf., Hewes et

al., 2003). Recently, we showed that dimm regulates Fur1

expression in the ap-positive Dorsal cells (Hewes et al.,

2003). Similarly, PAL2 expression was dependent on dimm:

In a severe hypomorphic dimm allelic combination, PAL2

expression was strongly reduced, though not eliminated in

1st instar CNS (Table 1). Thus, dimm is expressed by Ap-let

neurons and controls their expression of NP biosynthetic

enzymes.

The dDA1 dopamine receptor is also expressed specifically

by Ap-let neurons

One of the Drosophila D1-like dopamine receptors,

dDA1 (CG9562), is expressed in a subset of the larval

and adult CNS neurons (Kim et al., 2003). In the VNC,

dDA1 immunoreactivity is evident in a single Dorsal neuron

in each thoracic and abdominal hemi-neuromere, and a

single lateral neuron in each thoracic hemi-neuromere. This

expression pattern is similar to that of the Ap-let group

described above. To test whether dDA1 is expressed in Ap-

let neurons, the larval CNSs of apGAL4/UAS-GFP or of

c929/UAS-GFP were stained with the dDA1 antibody (Kim

et al., 2003; Figs. 5A and 5B, n = 5 each). All of the dDA1

cells were positive with apGAL4 (Figs. 5A and 5B), and with

c929 (data not shown), and they included the Dorsal chain

and one of the two Tv neurons. This indicates the dDA1-

positive T neuron is either Tv or Tvb. When the CNS was

double-stained with anti-FMRFa antibody that stains the

larval Tv neuron, the dDA1 and dFMRFa immunosignals

were in distinct cells (n = 13, Fig. 5C insert). Together, these

data indicate that the dDA1-positive cell in the T cluster was

the Tvb neuron. Similar to PHM, PC2, Fur1, and PAL2,

none of the ap-positive ventral neuron pairs expressed

dDA1 immunosignals.

ap and dimm both control expression of the dDA1 dopamine

receptor in Ap-let neurons

We next explored potential regulation of dDA1 expres-

sion levels by ap and dimm. We stained the larval CNS
ap and dimm genotypes

PAL2b (n) Br1 PAL2 Tv/Tvb PAL2 Dorsals PAL2

16c 20/32 (63%) 118/192 (62%) 256/352 (73%)

17 21/34 (62%) 2/204 (<1%) 0/374 (0%)

9 N.D.d 102/198 (52%) 26/108 (24%)

6 N.D. 2/72 (3%) 19/132 (14%)

ed; n = number of larvae studied.

e.



Fig. 4. Co-labeling of Fur1/PC2/PHM ap neurons by c929. Left: immunostaining of neurons in the T cluster. Right: immunostaining of the Dorsal chain of ap

neurons. (A) Double immunostaining for Fur1 and for c929-lacZ reveals that the Fur1-positive cells Tvb and Tv are both c929-positive (a single focal image).

The strong c929-lacZ cell (Tvb) displays moderate Fur1 immunosignals; the weaker c929-lacZ cell (Tv) displays weak Fur1 immunosignals. Similar results

were observed by double immunostaining for PC2 and c929-lacZ (B—a single focal image) and for PHM and c929-lacZ (C—a 25-Am stack). (D) The precise

overlap of Fur1 and c929-lacZ reveals the Dorsal cells are also c929-positive (a 10-Am stack). Similar results were obtained by double staining with PC2 and

c929-lacZ (E—a 32-um stack) and with PHM and c929-lacZ (F—a 33-um stack). Scale bar = 10 Am (A and B); 7.5 Am (C); 33 Am (D and F); 20 Am (E).
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of homozygous apGAL4 and trans-heterozygous apGAL4/

app44 with anti-dDA1 antibody. As depicted in Fig. 5E

for the case of the trans-heterozygote, dDA1 immunosig-

nals were not detectable in the VNC of ap mutants. In the

brain lobes, dDA1 and ap were also co-expressed in the

mushroom bodies (MB; Fig. 5D); however, this dDA1

expression was not abrogated in ap mutants (Fig. 5E).

The larval dDA1 expression pattern is conserved in adult

VNC (Kim et al., 2003) and was absent in ap trans-

heterozygous mutants as well (data not shown; n = 6).
Therefore, the expression of dDA1 in both developing

and adult Ap-let neurons required normal ap expression.

dDA1 expression also depended on dimm activity. We

tested larvae trans-heterozygous for the small dimm defi-

ciencies Rev4 and Rev8: together, these represent a

strongly hypomorphic allelic combination (Hewes et al.,

2003). All dDA1 immunostaining in Ap-let cells was also

lost in the mutant, but it was retained in the MB (Figs.

5F and 5G). The data for these experiments are summa-

rized in Table 2.



Fig. 5. dDA1 immunoreactivity in ap- and c929-positive cells in the larval VNC. (A) dDA1 immunoreactivity in apGAL4/UAS-GFP. (B) A composite image of

(A) with GFP expression in ap neurons. The co-localization of dDA1 and GFP is marked with an asterisk in Dorsal neurons in each of eight abdominal hemi-

segments and in the 2nd and 3rd thoracic hemi-segments. In addition, the co-localized lateral neurons in the 2nd and 3rd thoracic hemi-segments are marked

with arrows. The Dorsal neurons in the 2nd and 3rd thoracic segments, and one lateral neuron in the 1st thoracic segment are hidden under the brain lobe, thus

are not shown. (C) A schematic presentation of dDA1-positive neurons (red circles) among ap neurons (black circles). Inset shows that distinct T cluster cells

are labeled by anti-dDA1 (red) and anti CT-FMRFa (green) antibodies. (D and E) dDA1 immunostaining in the CNS of ap heterozygous (D) and trans-

heterozygous animals (E, apGAL4/apP44). The dDA1 immunoreactivity is absent in the VNC, but not in the MB, of ap mutants (E). (F) dDA1 immunostaining in

the CNS of dimm heterozygotes (Rev8/+ or Rev4/+). (G) dDA1 immunostaining in the CNS of dimm trans-heterozygotes (Rev8/Rev4). In dimm mutants,

dDA1 immunoreactivity is absent in the VNC, but not in the MB. Images in (A) and (B) were generated by stacking multiple images taken at different focal

planes using an epifluorescent microscope. Scale bars = 50 Am (A, B); 20 Am (D–G).
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Larval Inka cells express c929 and PHM, but not ap-lacZ,

PC2, PAL2, Fur1, or dDA1

We examined larval Inka cells for their ability to stain

with the panel of antibodies that define Ap-let neurons. We
Table 2

Incidence of anti-dDA1 immunostaining in 1st instar larval CNS in

different ap and dimm genotypes

Genotype n Tvb dDA1 Dorsals dDA1

app44, + or apGAL4/+ 6a 32/36 (89%) 94/132 (71%)

app44/apGAL4 14 2/84 (2%) 0/308 (0%)

Rev8/+ Or Rev4/+ 9a 50/54 (93%) 59/198 (30%)

Rev8/Rev4 10 3/60 (5%) 0/122 (0%)

a These two genotypes were analyzed together.
double-stained larval progeny (two to four specimens each)

of the cross c929 � UAS-lacZ with antibodies to h-gal, and
either to PC2, PAL2, Fur1, PHM, or dDA1. In addition, we

examined four larvae of the line ap-lacZ with antibodies to

h-gal. As previously observed (O’Brien and Taghert, 1998),

Drosophila Inka cells are positive for c929 (n = 52 hemi-

segments), and also for PHM (n = 18/18, data not shown).

However, Inka cells were not stained by antibodies for PC2

(n = 0/9), Fur1 (n = 0/10), PAL2 (n = 0/15), dDA1 (n = 0/

22) or ap-lacZ (n = 0/28, data not shown).

Ap-let neurons in later developmental stages

Ap-let neurons (the Dorsal neurons and the Tvb, Fig.

6) maintained their cellular properties (ap-lacZ, c929,



Fig. 6. CT-dFMRFa peptidergic neurons in the T cell cluster of a first

instar ap-lacZ larva. (A) In the third thoracic neuromere, single large, tear-

dropped cell body Tv, is stained by the CT-dFMRFa antibody (18 Am
stack). Immunostaining for h-gal reveals four adjacent nuclei, among

which Tv is weakly stained. Tvb, which is strongly stained for ap-lacZ, is

marked by an asterisk. (B) In the 3rd instar wandering stage, the second

weakly staining ap neuron of the T cluster, Tva, displays CT-dFMRFa

expression. The two neurons strongly staining for the ap reporter (Tvb

and Tvc) are marked by asterisks. (C) At the P5 stage of developing

adults, all four T cluster neurons display some CT-dFMRFa immunosig-

nals. Those of Tv and Tva are strong; those of Tvb and Tvc are extremely

weak and transient. The two neurons strongly staining for the ap reporter

(Tvb and Tvc) are marked by asterisks. Note that adjacent, unidentified,

ap-negative cells also express CT-dFMRFa immunosignals (curved

arrow). Scale bar = 5 Am (A and B); 20 Am (C).
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PHM, PC2, Fur1, PAL2, and dDA1 expression) through-

out pupal and adult stages. At all stages, these neurons

represented the principal sites of PC2 and Fur1 expression

Supplemental Figure 1 and dDA1 expression (Kim et al.,
2003) in the VNC. Regarding the other ap VNC neurons,

each cell within the four cell T cluster could be distin-

guished by a particular set of properties, including repro-

ducible patterns of ap-lacZ expression. Larval clusters

included a single nucleus with very bright ap-lacZ stain-

ing (Tvb, Fig. 7), and a second nucleus (Tvc) with a

moderately bright level of staining (n > 10, Fig. 6A). The

remaining two nuclei (Tv and Tva) typically had low-to-

moderate ap-lacZ levels. This pattern persisted in devel-

oping adult (P5, n = 8, Fig. 6B) and adult stages (n = 5,

supp. Fig. 1), although the differences were sometimes

less pronounced.

In larvae, the Tv neuron is a neuroendocrine cell that

projects its axon to a neurohemal organ at the dorsal mid-

line and it is the only cell in the ap T cluster expressing the

neuropeptide gene dFMRFa (Allan et al., 2003; Benveniste

et al., 1998; Schneider et al., 1993). It is one of the two

weak ap-lacZ cells, and has a large, ovoid cell body

throughout all larval stages (n = 10, Figs. 6A–C). In

wandering larvae, a second dFMRFa neuron appears near

the T cluster in the mesothoracic neuromere (Silber, 1997)

and later differentiates as the neuroendocrine Tva neuron of

the adult (O’Brien et al., 1991). As shown in Fig. 6B, when

Tva first expresses dFMRFa at the wandering larval stage, it

expresses ap-lacZ weakly, and hence also represents an ap T

cluster cell. Tva expresses ap weakly and Tvc expresses ap

moderately (n > 10 for both embryonic and larval stages).

Tv and Tva maintained strong dFMRFa and weak to

moderate ap-lacZ expression through adult development.

Surprisingly, there was a brief stage (approximately P5),

when all four T cluster neurons in neuromere T2 expressed

dFMRFa immunosignals: two did so strongly (Tv and

presumed Tva) and two weakly (Tvb and Tvc; Fig. 6C,

n = 5). This transient and coordinate expression of dFMRFa

by all ap T cluster neurons was also noted in the other

thoracic neuromeres, but not studied in detail. In contrast to

other ap T cells, Tvc was not positive for any of the

enzymes examined in this study nor for dDA1.

A summary of cellular phenotypic profiles for Ap-let

neurons

Fig. 7 presents a summary of information that describes

cell type-specific features of the ap neurons in the T cluster

and in the Dorsal chain. Briefly, the T cluster contains two

pairs of cells distinguishable by their level of ap-lacZ

expression, two are weak, and two are moderate-to-strong.

The Tv (weak ap-lacZ) and Tvb (strong ap-lacZ) neurons

appear to be differentiated peptidergic neurons from the

late embryo through the larval stages. Tv expresses

dFMRFa, while the presumed Tvb neuropeptide(s) is

unknown. The Tvb axon projects to the brain along with

that of Tvc (Lundgren et al., 1995; S. Thor, personal

communication). The Dorsal chain ap cells are most

similar in profile to the Tvb cells in that they share the

same set of molecular markers and their axons fasciculate



Fig. 7. Block diagram to represent the interpretation of ap VNC cell identities and properties throughout all developmental stages. Two ap VNC groups are

described—the T cluster and the Dorsal chain—during both embryonic and post-embryonic developmental stages. The intensity of the color for a given marker

denotes the relative strength of staining observed on a consistent basis (i.e., Tvb was always the strongly stained for ap-lacZ and had a small round cell body

with the staining properties indicated).

D. Park et al. / Developmental Biology 269 (2004) 95–108104
with those of Tvb neurons and project to the brain

(Lundgren et al., 1995). Likewise, their presumed neuro-

peptide product(s) is unknown. The pattern of the Ap-let

neurons (Tvb and Dorsal cells) resembles the pattern of

CCAP immunoreactive cells in the VNC (Ewer and Tru-

man, 1996). However, Ap-let neurons do not express

CCAP because these two sets of cells are not overlapping

(Supplemental Figure 2). The Tva cell is weakly ap-

positive in embryos; its larval fate is unknown. It acquires

a peptidergic phenotype at metamorphosis, as indicated by

its prominent co-expression of c929, PHM, and dFMRFa.

Likewise, its adult axon projection mirrors that of Tv, and

both are therefore neuroendocrine neurons. The Tvc cell

remains largely undefined, except for moderate ap expres-

sion beginning in the embryo, and weak, transient

dFMRFa expression during metamorphosis.
Fig. 8. Summary of Ap-let neuron properties. (A) Neural and endocrine

cells involved in control of ecdysial behaviors. The hypothetical roles of

VM cells secreting EH and the Inka cells secreting ETH are supported by

genetic evidence. The hypothetical roles of the CCAP neurons secreting

CCAP and the Ap-let neurons secreting an unknown NP are suspected, but

not proven. (B) Flow diagram indicating regulatory relationships between

gene products identified within Ap-let neurons. For simplicity, only a single

putative effect of elevated cAMP levels (on the secretion of a hypothetical

NP) is shown. This diagram features a hypothetical effect of the secreted

NP on ecdysis: see text for discussion of this hypothesis.
Discussion

The Ap-let cohort of neurons

We identified a small cohort of ap neurons that represent

the majority of CNS neurons that are immunostained for

three putative NP biosynthetic enzymes, PC2, Fur1, and

PAL2. We further associated that pattern with expression of

a distinct neuroendocrine-specific transcription factor, the

bHLH protein Dimm. Finally, the cohort of neurons also

features specific expression of aminergic receptor, the dDA1

dopamine receptor. To distinguish this remarkably complex

pattern of cellular differentiation, we have dubbed this

group of neurons the Ap-let cohort (Fig. 8A). We have

chosen to name the group not simply because it displays a

distinctive set of molecular markers. Rather, we believe it

warrants a special name to call attention to its putative

functions in regulating ecdysial behaviors, according to the

following hypothesis.
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Hypothesis—the Ap-let cohort contributes to the

performance of ecdysial behaviors

We hypothesize that the Ap-let set of neurons contributes

to ecdysial behaviors in larvae, and perhaps also in later

stages as well. The principle reason to propose this hypoth-

esis relates the phenotype of PC2-deficient animals: a failure

to complete embryonic hatching and later larval ecdyses

(Rayburn et al., 2003; Siekhaus and Fuller, 1999). PC2

transcripts are detected in Inka cells in stage 17 embryos,

but not in post-embryonic animals (Siekhaus and Fuller,

1999). We have found that the main site of PC2 accumu-

lation throughout post-embryonic stages is the Ap-let neu-

rons, while none is detectable in Inka cells (Fig. 8A). Given

that PC2-deficient animals display a severe disruption in the

ability to produce normal larval ecdysial behavior, we

surmise the involvement of the PC2-expressing neurons

(the Ap-let cohort) in supporting normal ecdysial behavior.

The hypothesis is supported by the highly related phenotype

of PHM-deficient animals (Jiang et al., 2000). Severe PHM

hypomorphs typically die at larval molts, while synthetic

hypomorphs survive through larval stages, but subsequently

display defects in head eversion behaviors that are associ-

ated with pupal ecdysis. While PHM is widely expressed, its

expression within the Ap-let cohort is consistent with its

necessity to produce an amidated peptide(s) within Ap-let

neurons. Furthermore, the lack of detectable PC2 expression

by post-embryonic Inka cells excludes the simple hypothe-

sis that PC2 supports ecdysial behaviors by processing of

pro-ETH peptides in Inka cells. Rather, the focus turns to the

CNS, and specifically to the Ap-let cohort.

Despite its complexity, the pattern of the Ap-let cohort

remained largely invariant throughout all post-embryonic

stages examined. The association of ap with three NP

biosynthetic enzymes, and with a fourth, more broadly

expressed enzyme, PHM, suggests this distinct neuronal

group produces a similar, amidated bioactive peptide(s)

(Fig. 8B). Until very recently, there was no indication of

which NP gene may be co-expressed by this group (see

recent reviews of the Drosophila neuropeptides by Nässel,

2002 and by Taghert and Veenstra, 2003). A very recent

report by Verleyen et al. (2004) describes a cell group that

greatly resembles the Ap-lets: these neurons express the

newly discovered Drosophila neuropeptide gene called

NPLP1 (CG3441). Therefore, follow-up studies may pursue

this possible identity, and ask about the phenotype of

animals deficient in production of NPLP1. Likewise, there

is now good reason to evaluate the potential role of

dopamine in regulating ecdysial behaviors via its effects

on Ap-let neurons. Studies in numerous animals including

Drosophila have indicated roles for dopamine signaling in

the control of motor behavior, including locomotion (Roth-

enfluh and Heberlein, 2002) and aggression (Baier et al.,

2002). The specific association of dDA1 expression with the

Ap-let cohort suggests a special role of dopamine in

controlling some aspect of Ap-let cell physiology. There is
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at present no evidence with which to support any particular

function for dopamine inputs in regulating Ap-let physiol-

ogy—it could affect NP release and/or its synthesis, or affect

transcriptional regulation of the ap and dimm regulators

(Fig. 8B). Analysis of its possible functions awaits the

creation of specific dDA1 alleles or loss-of-function

reagents. Regardless of its specific targets, its actions are

likely excitatory, since the dDA1 receptor causes elevation

of cAMP. We note a special association between ap and

dDA1, not only in the Ap-let cohort but also in the MBs. It

will be interesting to see if there is a similar association of

ap and D1-like receptors within specific interneuronal sets

in other animals. The phylogenetic conservation of each

genetic component described herein suggests this behavior-

ally relevant circuit may display evolutionary parallels in

other animals.

The Ap-let cohort contains two morphologically distinct

cell types—the Tvb and the Dorsal cells. To what extent is it

fair to assume they share functions, simply because they

share phenotypic features? There are many examples of

neurons that share transmitter properties but which likely

participate in different functional circuits. For example,

pigment dispersing factor (PDF) is expressed in circadian

pacemaker neurons of the brain, and in large non-pacemaker

neuroendocrine neurons of the VNC (Helfrich-Förster,

1995). Of these cell groups, only PDF neurons in the brain

display clock properties, and PDF expression in brain

neurons specifically is affected by clock gene mutations

(Park et al., 2000). Likewise, the 17 different dFMRFa cell

types of the larval VNC are controlled by several distinct

transcriptional regulatory mechanisms (Benveniste and

Taghert, 1999; Schneider et al., 1993). That feature suggests

such neurons, despite sharing a common peptide output, are

dedicated to different functions. In contrast, both the Tvb

and Dorsal Ap-let neuron cell types project axons to the

brain along a common, fasciculated pathway. In addition,

the two cell types display common mechanisms of regula-

tion (by ap and by dimm), and both display common

receptor (dDA1) and NP biosynthetic enzyme (PAL2,

Fur1, PC2) expression profiles. While these two cells types

are clearly different by position, at present, every other

property they exhibit suggests a similarity of function.

The four cells in the T cluster display characteristic levels

of ap reporter expression that are correlated with their

distinct cell fates. We have interpreted these levels to

represent durable features of the individual cells. This

assumption is difficult to prove without resort to real-time

observations. It is supported, however, by the strong corre-

lations between levels of ap reporter and expression of

peptidergic cell markers (e.g., dFMRFa is limited to the

cells with moderate ap-lacZ, dDA1 and strong c929 was

limited to the cell with the highest ap-lacZ levels, etc.).

Thus, the T cluster represents a spatially segregated set of

neurons that displays many common features, as well as

several unique, cell-specific features. Such details describe

lineally related cells in other parts of the Drosophila CNS,
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of which the best known are the progeny of the 7–3

neuroblast (Lundell and Hirsh, 1998; Novotny et al.,

2002). The NB 7–3 progeny include several serotonin-

expressing interneurons, as well as other non-aminergic cell

types. Whether T cluster neurons share lineal ancestries is

not yet known.

ap and dimm regulate coordinated neuroendocrine cell

differentiation in Ap-let neurons

We focused on the approximately 90 ap neurons in the 11

thoracic and abdominal neuromeres of the VNC. Of these

90 ap neurons, 42 (including the Ap-lets) display clear

evidence of moderate-to-strong NP production by virtue of

cell type-specific expression of NPs, NP biosynthetic

enzymes and/or of reporter genes whose spatial patterns

are themselves highly correlated with peptidergic cell fates.

Previous studies have suggested that ap mutant animals

have specific neuroendocrine deficits (Altaratz et al., 1991;

Shtorch et al., 1995), and two studies specifically implicated

ap in the regulation of peptidergic differentiation in the

dFMRFa-expressing Tv neuron (Benveniste et al., 1998),

and in a leukokinin-expressing neuron of the brain (Herrero

et al., 2003). The present results extend this suggestion, and

further indicate a notable (though not exclusive) association

between ap regulation, and the assumption of a peptidergic

cell fate. The effect of ap mutations on NP dFMRFa in the

Tv neuron was partially penetrant, while the same genotypes

had a much stronger effect on NP biosynthetic enzyme

expression in the same identified cell. There are several

potential reasons to explain this difference, but regardless of

the strength of the effect, it is clear that ap can affect

expression of both a NP gene and of NP biosynthetic

enzymes in a single identified neuron. Such observations

suggest that, within individual cells, ap has coordinate

control over each of several genes that contribute to the

differentiation of a peptidergic phenotype. By an alternative

model, ap may control levels of specific NPs only, and those

levels may in turn feedback to control levels of auxiliary

factors such as biosynthetic enzymes. While we favor the

first hypothesis for simplicity, we cannot rule out more

complex alternatives at the present time. Certain ap neurons

(e.g., the ventral chain of the VNC) do not appear to

differentiate a peptidergic/neuroendocrine cell fate. Like-

wise, many peptidergic/neuroendocrine neurons in the Dro-

sophila CNS do not express ap. While most of the other

peptidergic neurons express PHM, they likely utilize endo-

proteolytic biosynthetic enzymes distinct from PC2 and

Fur1.

We also showed that dimm regulates expression of

several NP biosynthetic enzymes in Ap-let neurons in a

manner consistent with a previous hypothesis of dimm

functions (Hewes et al., 2003). Namely, dimm was pro-

posed to support the regulated secretory pathway by

controlling levels of granule components in dedicated

secretory cells. Potential dimm targets include all constit-
uents of secretory granules including peptide hormones,

biosynthetic enzymes, and granule membrane components.

The regulation of dDA1 receptor levels by dimm appears

to represent an exception to that hypothesis, in that

receptors are presumably placed in the cell membrane by

constitutive insertion. Recent reports suggest, that follow-

ing receptor activation, A opioid receptors in sensory

neurons are inserted into the plasma membrane from stores

within secretory granules (Bao et al., 2003). Given its

control by dimm, it will be interesting to establish the sub-

cellular localization of dDA1 in Ap-let neurons. The

possible relationship between ap and dimm is presently

unclear. While these factors regulate common events in

certain peptidergic neurons, it is uncertain whether they do

so via common or independent mechanisms, or whether

they influence each other’s expression. In most cases of

co-expression, ap and dimm expression is temporally

coincident. In the Tva neuron, however, the two genes

are turned on at different times. ap expression commences

in the embryo, right after the birth of the cell; dimm

expression is delayed for many days until adult develop-

ment, when the cell first displays peptidergic differentia-

tion. This rank order of appearance may also suggest an

epistatic relation between Ap and Dimm in the functional

hierarchy within peptidergic neurons, but that hypothesis

requires further experimental evaluation.

The delayed differentiation of the Tva cell has precedent:

Certain Drosophila motor neurons innervate adult-specific

muscles, but lack synaptic targets during larval stages. For

example, the MN5 neuron makes a short axonal segment,

reaching only into the start of the peripheral nerve; the full

differentiation of this cell type is not displayed until during

adult development (Consoulas et al., 2002). Likewise,

Drosophila photoreceptors have distinct genetic require-

ments for early determination and for later cell type-specific

differentiation (Mollereau et al., 2001). Interestingly in the

moth Manduca, the homologous neuron (also called Tva) is

fully differentiated during embryogenesis as an FMRFa-

positive neuroendocrine neuron along with the Tv neuron in

second thoracic segment (Wall and Taghert, 1991).

The present experiments have led to the construction of a

provisional map that relates gene expression to individual

neuronal phenotypes within the T cluster and Dorsal cell ap

groups (Fig. 8). This resolution at the level of uniquely

identifiable cells is akin to that applied to Drosophila

neuroblasts (e.g., Doe and Skeath, 1996) and photoreceptors

(e.g., Krämer and Cagan, 1994). It provides a basis for

further molecular genetic analysis of the regulatory factors

that generate such precise cellular diversity. Recent results

of Allan et al. (2003) implicate another factor, the zinc

finger protein Squeeze, in regulation of dFMRFa expression

by Tv neurons. Furthermore, their studies also demonstrated

retrograde influences on Tv dFMRFa expression, mediated

by BMP signaling. It will be of interest to integrate the

action of those regulatory factors with the cellular properties

we have described here.
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Defining patterns of NP biosynthetic enzyme expression

Siekhaus and Fuller (1999) previously described a more

complex pattern of PC2 RNA during embryonic develop-

ment than we have described for post-embryonic PC2

immunosignals. In addition, Fur1 RNA patterns in embry-

onic stages display greater complexity than we have de-

scribed with antibody stains in post-embryonic stages

(Roebroek et al., 1993). There are several possible factors

that may explain these differences. First and most obvious is

that both previous methods measured the distribution of the

relevant RNAs, while we examined distributions of pre-

sumed protein immunosignals. Regulation at the level of

translation or protein stability could reduce the scope of

protein distribution. Second, the developmental stages ex-

amined were different—the broad embryonic patterns of

PC2 and Fur1 expression may resolve to more restricted

post-embryonic patterns. In fact, PC2 RNA signals decrease

in complexity even during embryonic times (Siekhaus and

Fuller, 1999), such that by the 1st larval instar, the pattern

greatly resembles that which we have described with an

anti-PC2 antiserum. In addition, we have used only single

antibodies for individual gene products and that may not

have reacted equally to all putative PC2 or Fur1 isoforms

(none yet described). These various considerations indicate

that NP biosynthetic genes may undergo complex develop-

mental regulation and these features bear further investiga-

tion. Regardless of the complexity of embryonic expression,

we note finally that the post-embryonic expression patterns

we have defined appear stable through all larval, pupal, and

adult stages. They call attention to a circumscribed group of

neurons, here called the Ap-lets, for their probable role in

regulating larval and pupal ecdysial behaviors.
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