

Available online at www.sciencedirect.com





Procedia Earth and Planetary Science 10 (2014) 23 - 27

# Geochemistry of the Earth's Surface meeting, GES-10

# A brief overview of the GLObal RIver CHemistry Database, GLORICH

Jens Hartmann<sup>a</sup>\*, Ronny Lauerwald<sup>b, c</sup>, Nils Moosdorf<sup>a</sup>

<sup>a</sup>Institute for Geology, Center for Earth System Research and Sustainability (CEN), Universität Hamburg, Bundesstraße 55, 20146 Hamburg, Germany

> <sup>b</sup>Institut Pierre-Simon Laplace, CNRS – FR636, 78280 Guyancourt cedex, France <sup>c</sup>Department of Earth and Environmental Sciences, Université Libre de Bruxelles, Bruxelles, Belgium

# Abstract

Over the last decade the number of regional to global scale studies of river chemical fluxes and their steering factors increased rapidly, entailing a growing demand for appropriate databases to calculate mass budgets, to calibrate models, or to test hypotheses. We present a short overview of the recently established GLObal RIver CHemistry database GLORICH, which combines an assemblage of hydrochemical data from varying sources with catchment characteristics of the sampling locations. The information provided include e.g. catchment size, lithology, soil, climate, land cover, net primary production, population density and average slope gradient. The data base comprises 1.27 million samples distributed over 17,000 sampling locations.

© 2014 Published by Elsevier B.V. This is an open access article under the CC BY-NC-ND license (http://creativecommons.org/licenses/by-nc-nd/3.0/). Peer-review under responsibility of the Scientific Committee of GES-10

Keywords: river, hydrochemistry, water quality, global database

# 1. Introduction

River chemical data have been reported since the 19<sup>th</sup> century [1-3] and were often used as base reference to estimate global fluvial exports of dissolved and particulate matter to the coastal zone [4-6]. The GLORI-database assembled by Michel Meybeck was particularly influential and often used to evaluate or calibrate models. However,

\* Corresponding author. Tel.: +49 40 42838 6686. *E-mail address:* geo@hattes.de the growing model complexity in the past years increased the demand for river chemical data, e.g., to study the fluxes of nutrients, carbon or geogenic matter and quantify the factors steering the observed fluxes. Further, as the availability of high resolution geodata on river networks (Hydrolk, Hydrosheds) and important river catchment properties like e.g., climate [7] and lithology [8] increased, the detailed analysis of Earth Surface processes at extensive scales and high resolution has become feasible. While earlier global scale studies were based mainly on data from the mouths of large rivers [e.g., 9], a series of more recent studies [e.g., 10] proved the value of small catchments covering a wide variety of catchment properties, to more efficiently elucidate the spatial heterogeneity of Earth Surface processes and their controls on lateral matter fluxes and identifying hotspots

To meet the increasing demand of hydrochemical data, the new GLObal RIver CHemistry database GLORICH was established, which comprises 1.27 million samples distributed over 17,000 sampling locations. The reported hydrochemical parameters include concentrations of major ions, nutrients (N, P, Si), organic and inorganic carbon, alkalinity, pH, dissolved oxygen and water temperature (Table 1). For 15,500 sampling locations, the catchments could be derived, ranging in size from  $< 0.6 \text{ km}^2$  to  $> 5.3 \text{ million km}^2$  (Figure 1). A suite of geodata was used to calculate catchment properties covering climate, terrain, lithology, soils, land cover, net primary production, and population density.

#### 2. Methods, Results, and Discussion

Hydrochemical data (Table 1) were mostly gathered from environmental monitoring programs, but also from scientific literature. The data were homogenized and test routines for the feasibility of data helped to identify erroneous or implausible data. The sampling locations were georeferenced and adjusted to the hydrological routing schemes Hydrosheds [11] or, for latitudes above 60°N, Hydro1K [12]. These routing schemes were then used to delineate the catchment boundaries, based on which finally the catchment properties were calculated, including lithological composition [8], soil properties [13], climate [7], runoff [14], lake abundance [15], average relief based on the SRTM digital elevation model [16], land cover [17], permafrost occurrence [18], wind speed [19], net primary production [20] and population density [21]. Some of the catchment property data with seasonal variability are available on monthly basis, e.g. climate or runoff. For all geoprocessing the software ArcGIS 10 by ESRI was used.



Figure 1: Sampling locations and covered catchment areas of the monitoring stations included in GLORICH.

Table 1: Included variables per sampling location and count of sampling locations and individual samples per parameter. For all georeferenced sampling locations catchment area attributes are provided as described in the text.

| Description                                              | Parameter<br>abbreviation in | Unit                      | No. of<br>sampling | No. of<br>samples |
|----------------------------------------------------------|------------------------------|---------------------------|--------------------|-------------------|
|                                                          | database                     |                           | locations          | 1                 |
| ID of the sampling location                              |                              |                           |                    |                   |
| Date and time of the sampling                            |                              |                           |                    |                   |
| Type of sampling (single sample, mixed samples           |                              |                           |                    |                   |
| collected over specific periods, averages from different |                              |                           |                    |                   |
| samples)                                                 |                              |                           |                    |                   |
| Reference                                                |                              |                           |                    |                   |
| Discharge, if not flagged, this refers to instantaneous  |                              |                           |                    |                   |
| discharge at time of sampling                            |                              | $m^{3} s^{-1}$            | 4,817              | 353,388           |
| Water temperature                                        |                              | °C                        | 13,970             | 549,899           |
| pH                                                       | pН                           |                           | 17,437             | 889,355           |
| Dissolved oxygen concentration                           | DO_mgL                       | $mg O_2 L^{-1}$           | 3,785              | 152,319           |
| Oxygen saturation                                        | DOSAT                        | %                         | 7,110              | 170,369           |
| Specific conductivity                                    | SpecCond25C                  | μS cm-1                   | 14,963             | 919,916           |
| Suspended matter concentration                           | SPM                          | mg L <sup>-1</sup>        | 6,000              | 241,656           |
| Alkalinity                                               | Alkalinity                   | μeq L <sup>-1</sup>       | 12,931             | 639,259           |
| Bicarbonate ion concentration                            | HCO3                         | μmol L <sup>-1</sup>      | 6,554              | 144,979           |
| Carbonate ion concentration                              | CO3                          | μmol L <sup>-1</sup>      | 2,344              | 82,616            |
| Calcium concentration, dissolved                         | Ca                           | μmol L <sup>-1</sup>      | 12,154             | 615,500           |
| Magnesium concentration, dissolved                       | Mg                           | μmol L <sup>-1</sup>      | 12,081             | 613,108           |
| Sodium concentration, dissolved                          | Na                           | μmol L <sup>-1</sup>      | 11,802             | 598,367           |
| Potassium concentration, dissolved                       | K                            | µmol L <sup>-1</sup>      | 11,642             | 594,157           |
| Silica concentration, dissolved                          | SiO2                         | μmol L <sup>-1</sup>      | 9,880              | 624,877           |
| Chloride concentration, dissolved                        | Cl                           | μmol L <sup>-1</sup>      | 12,600             | 742,662           |
| Sulphate concentration, dissolved                        | SO4                          | μmol L <sup>-1</sup>      | 12,629             | 663,739           |
| Fluoride concentration, dissolved                        | F                            | μmol L <sup>-1</sup>      | 6,551              | 486,010           |
| Strontium concentration, dissolved                       | DSr                          | μmol L <sup>-1</sup>      | 2,200              | 30,839            |
| Total carbon concentration                               | TC                           | μmol L <sup>-1</sup>      | 86                 | 2,245             |
| Total inorganic carbon concentration                     | TIC                          | μmol L <sup>-1</sup>      | 670                | 14,162            |
| Dissolved inorganic carbon concentration                 | DIC                          | μmol L <sup>-1</sup>      | 666                | 18,409            |
| Particulate inorganic carbon concentration               | PIC                          | μmol L <sup>-1</sup>      | 540                | 3,536             |
| Total organic carbon concentration                       | TOC                          | μmol L <sup>-1</sup>      | 3,541              | 117,301           |
| Dissolved organic carbon concentration                   | DOC                          | μmol L <sup>-1</sup>      | 6,771              | 201,401           |
| Particulate organic carbon concentration                 | POC                          | μmol L <sup>-1</sup>      | 2,677              | 32,732            |
| Total nitrogen concentration                             | TN                           | μmol L <sup>-1</sup>      | 4,685              | 267,069           |
| Dissolved nitrogen concentration                         | DN                           | μmol L <sup>-1</sup>      | 855                | 35,201            |
| Particulate nitrogen concentration                       | PN                           | μmol L <sup>-1</sup>      | 57                 | 445               |
| Total inorganic nitrogen concentration                   | TIN                          | μmol L <sup>-1</sup>      | 73                 | 13,124            |
| Dissolved inorganic nitrogen concentration               | DIN                          | μmol L <sup>-1</sup>      | 121                | 8,009             |
| Total organic nitrogen concentration                     | TON                          | μmol L <sup>-1</sup>      | 211                | 13,846            |
| Dissolved organic nitrogen concentration                 | DON                          | μmol L <sup>-1</sup>      | 29                 | 571               |
| Particulate organic nitrogen concentration               | PON                          | μmol L <sup>-1</sup>      | 4                  | 64                |
| Total Kjeldahl nitrogen                                  | TKN                          | µmol L <sup>-1</sup>      | 7,092              | 299,198           |
| Dissolved Kjeldahl nitrogen                              | DKN                          | μmol L <sup>-1</sup>      | 3,049              | 52,759            |
| Nitrate concentration, dissolved                         | NO3                          | μmol L <sup>-1</sup>      | 7,200              | 208,229           |
| Nitrite concentration, dissolved                         | NO2                          | μmol L <sup>-1</sup>      | 8,393              | 240,300           |
| Nitrate+Nitrite concentration, dissolved                 | NO2_NO3                      | μmol L <sup>-1</sup>      | 7,413              | 583,839           |
| Ammonium concentration, total                            | TNH4                         | μmol L <sup>-1</sup>      | 1,512              | 75,987            |
| Ammonium concentration, dissolved                        | DNH4                         | μmol L <sup>-1</sup>      | 11,350             | 609,307           |
| Total phosphorous concentration                          | ТР                           | μmol L <sup>-</sup>       | 10,540             | 484,825           |
| Dissolved phosphorous concentration                      | DP                           | μmol L <sup>-</sup>       | 3,296              | 105,999           |
| Particulate phosphorous concentration                    | PP                           | μmol L <sup>-1</sup>      | 18                 | 613               |
| Total inorganic phosphorous concentration                | TIP                          | µmol L'                   | 1,037              | 26,841            |
| Dissolved inorganic phosphorous concentration            | DIP                          | µmol L <sup>-1</sup>      | 11,844             | 661,267           |
| Particulate sulphur concentration                        | PS                           | $\mu$ mol L <sup>-1</sup> | 8                  | 98                |

Parts of the GLORICH database have been used to study fluxes and controlling factors on dissolved silica and inorganic carbon fluxes [22-25], chemical weathering rates and associated phosphorus release [10, 26], dissolved carbon fluxes [27], controls on the carbonate system of fluvial systems [28], as well as the global CO<sub>2</sub>-evasion from aquatic systems [29].

# 3. Conclusion

The combination of hydrochemical parameters and catchment properties render GLORICH a valuable tool for a wide spectrum of research related to chemical as well as physical denudation, biogeochemistry of river ecosystems and fluvial exports of nutrients, carbon and sediments to coastal ecosystems. The data base is of particular interest to assess terrestrial matter inputs to head water streams, as a large number of small catchments are included. In the future, the database will be steadily extended by integrating new data (sampling locations as well as parameters like trace elements or isotopes) to provide an evolving tool for the scientific community.

### Acknowledgements

Jens Hartmann and Nils Moosdorf are funded through the DFG Cluster of Excellence CLiSAP (EXC 177). Ronny Lauerwald is funded by the French National Research Agency ("Investissement d'Avenir", n°ANR-10-LABX-0018"). All data providers are acknowledge here for their help here and thanked.

# References

- 1. Roth, J., *Flusswasser, Meerwasser, Steinsalz*. Sammlung gemeinverst, ndlicher wissenschaftlicher Vortr, ge. Berlin: Verlag von Carl Habel. 1878, 1-36.
- 2. Roth, J., Allgemeine und Chemische Geologie, Erster Band Bildung und Umbildung der Mineralien. Quell-, Fluss- und Meerwasser. Die Abs., tze. Berlin: Verlag von Wilhelm Hertz (Bessersche Buchhandlung). 1879, 1-634.
- 3. Clarke, F.W., The data of geochemistry. 5 ed. U.S. Geological Survey Bulletin. Vol. 770. Washington D.C.: Government Press. 1924, 841.
- 4. Livingstone, D.A. Chemical composition of rivers and lakes. in M. Fleischer, Editor, editors. *Data of Geochemistry, Sixth Edition*, United States Government: Washington. 1963. p. 1-61.
- 5. Meybeck, M. and A. Ragu, River discharges to the oceans: An assessment of suspended solids, major ions and nutrients. UNEP. 1997, 245.
- 6. Holland, H.D., The chemistry of the atmosphere and oceans. New York: Wiley. 1978, 351.
- Hijmans, R.J., et al. Very high resolution interpolated climate surfaces for global land areas. *International Journal of Climatology* 2005; 25(15): 1965-1978.
- 8. Hartmann, J. and N. Moosdorf. The new global lithological map database GLiM: A representation of rock properties at the Earth surface. *Geochemistry Geophysics Geosystems* 2012; **13**(12): Q12004.
- Gaillardet, J., et al. Global silicate weathering and CO<sub>2</sub> consumption rates deduced from the chemistry of large rivers. *Chemical Geology* 1999; 159(1-4): 3-30.
- 10. Hartmann, J., et al. Global chemical weathering and associated P-release the role of lithology, temperature and soil properties. *Chemical Geology* 2014; **363**: 145-163.
- 11. Lehner, B., K. Verdin, and A. Jarvis. New global hydrography derived from spaceborne elevation data. *EOS Transactions* 2008; **89**(10): 93-94.
- 12. USGS, HYDRO1k Elevation Derivative Database. US Geological Survey, EROS Datacenter: Sioux Falls. 2000.
- 13. FAO, et al., Harmonized World Soil Database (version 1.1), FAO and IIASA, Editors.: Rome and Laxenburg. 2009.
- 14. Fekete, B.M., C.J. Vorosmarty, and W. Grabs. High-resolution fields of global runoff combining observed river discharge and simulated water balances. *Global Biogeochemical Cycles* 2002; **16**(3): 1042.
- 15. Lehner, B. and P. Döll. Development and validation of a global database of lakes, reservoirs and wetlands. *Journal of Hydrology* 2004; **296**(1-4): 1-22.
- Jarvis, A., et al., Hole-filled seamless SRTM data V3. International Centre for Tropical Agriculture (CIAT): available from http://srtm.csi.cgiar.org. 2006.
- 17. Arino, O., et al. GlobCover: ESA service for global land cover from MERIS. editors. *Proceedings of the International Geoscience and Remote Sensing Symposium (IGARSS) 2007*, IEEE International: Barcelona. 2007. p. 2412 2415.
- 18. Gruber, S. Derivation and analysis of a high-resolution estimate of global permafrost zonation. Cryosphere 2012; 6: 221-233.
- 19. New, M., et al. A high-resolution data set of surface climate over global land areas. Climate Research 2002; 21: 1-25.
- 20. Zhao, M., et al. Improvements of the MODIS terrestrial gross and net primary production global data set. *Remote Sensing of Environment* 2005; **95**: 164-176.
- 21. CIESIN and CIAT, Gridded population of the world version 3 (GPWv3): Population grids. CIESIN, Columbia University New York: Palisades, NY. 2005.
- Hartmann, J. Bicarbonate-fluxes and CO<sub>2</sub>-consumption by chemical weathering on the Japanese Archipelago Application of a multilithological model framework. *Chemical Geology* 2009; 265(3-4): 237-271.
- Hartmann, J., et al. Predicting riverine dissolved silica fluxes to coastal zones from a hyperactive region and analysis of their first-order controls. *International Journal of Earth Sciences* 2010; 99(1): 207-230.
- 24. Jansen, N., et al. Dissolved silica mobilization in the conterminous USA. Chemical Geology 2010; 270(1-4): 90-109.

- Moosdorf, N., et al. Atmospheric CO<sub>2</sub> consumption by chemical weathering in North America. *Geochimica Et Cosmochimica Acta* 2011; 75(24): 7829-7854.
- Hartmann, J. and N. Moosdorf. Chemical weathering rates of silicate-dominated lithological classes and associated liberation rates of phosphorus on the Japanese Archipelago – implications for global scale analysis *Chemical Geology* 2011; 287(3 - 4): 125-157.
- 27. Lauerwald, R., et al. Assessing the nonconservative fluvial fluxes of dissolved organic carbon in North America. *Journal of Geophysical Research Biogeosciences* 2012; **117**: G01027.
- Lauerwald, R., et al. What controls the spatial patterns of the riverine carbonate system? A case study for North America. *Chemical Geology* 2013; 337-338: 114-127.
- 29. Raymond, P.A., et al. Global carbon dioxide emissions from inland waters. Nature 2013; 503(7476): 355-359.