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Abstract 

 Over the last decade the number of regional to global scale studies of river chemical fluxes and their steering factors 
increased rapidly, entailing a growing demand for appropriate databases to calculate mass budgets, to calibrate 
models, or to test hypotheses. We present a short overview of the recently established GLObal RIver CHemistry 
database GLORICH, which combines an assemblage of hydrochemical data from varying sources with catchment 
characteristics of the sampling locations. The information provided include e.g. catchment size, lithology, soil, 
climate, land cover, net primary production, population density and average slope gradient. The data base comprises 
1.27 million samples distributed over 17,000 sampling locations.  
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1. Introduction 

 River chemical data have been reported since the 19th century [1-3] and were often used as base reference to 
estimate global fluvial exports of dissolved and particulate matter to the coastal zone [4-6]. The GLORI-database 
assembled by Michel Meybeck was particularly influential and often used to evaluate or calibrate models. However, 
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the growing model complexity in the past years increased the demand for river chemical data, e.g., to study the 
fluxes of nutrients, carbon or geogenic matter and quantify the factors steering the observed fluxes. Further, as the 
availability of high resolution geodata on river networks (Hydro1k, Hydrosheds) and important river catchment 
properties like e.g., climate [7] and lithology [8] increased, the detailed analysis of Earth Surface processes at 
extensive scales and high resolution has become feasible. While earlier global scale studies were based mainly on 
data from the mouths of large rivers [e.g., 9], a series of more recent studies [e.g., 10] proved the value of small 
catchments covering a wide variety of catchment properties, to more efficiently elucidate the spatial heterogeneity of 
Earth Surface processes and their controls on lateral matter fluxes and identifying hotspots  
 To meet the increasing demand of hydrochemical data, the new GLObal RIver CHemistry database GLORICH was 
established, which comprises 1.27 million samples distributed over 17,000 sampling locations. The reported 
hydrochemical parameters include concentrations of major ions, nutrients (N, P, Si), organic and inorganic carbon, 
alkalinity, pH, dissolved oxygen and water temperature (Table 1). For 15,500 sampling locations, the catchments 
could be derived, ranging in size from < 0.6 km² to > 5.3 million km² (Figure 1). A suite of geodata was used to 
calculate catchment properties covering climate, terrain, lithology, soils, land cover, net primary production, and 
population density. 
 

2. Methods, Results, and Discussion 

 
 Hydrochemical data (Table 1) were mostly gathered from environmental monitoring programs, but also from 
scientific literature. The data were homogenized and test routines for the feasibility of data helped to identify 
erroneous or implausible data. The sampling locations were georeferenced and adjusted to the hydrological routing 
schemes Hydrosheds [11] or, for latitudes above 60°N, Hydro1K [12]. These routing schemes were then used to 
delineate the catchment boundaries, based on which finally the catchment properties were calculated, including 
lithological composition [8], soil properties [13], climate [7], runoff [14], lake abundance [15], average relief based 
on the SRTM digital elevation model [16], land cover [17], permafrost occurrence [18], wind speed [19], net 
primary production [20] and population density [21]. Some of the catchment property data with seasonal variability 
are available on monthly basis, e.g. climate or runoff. For all geoprocessing the software ArcGIS 10 by ESRI was 
used. 

 
 

Figure 1: Sampling locations and covered catchment areas of the monitoring stations included in GLORICH. 
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Table 1: Included variables per sampling location and count of sampling locations and individual samples per parameter. For all georeferenced 
sampling locations catchment area attributes are provided as described in the text. 

 
Description Parameter 

abbreviation in 
database 

Unit No. of 
sampling 
locations 

No. of 
samples 

ID of the sampling location  
Date and time of the sampling  
Type of sampling (single sample, mixed samples 
collected over specific periods, averages from different 
samples) 

 

Reference  
Discharge, if not flagged, this refers to instantaneous 
discharge at time of sampling 

 
m3 s-1 4,817 353,388 

Water temperature °C 13,970 549,899 
pH pH 17,437 889,355 
Dissolved oxygen concentration DO_mgL mg O2 L-1 3,785 152,319 
Oxygen saturation DOSAT % 7,110 170,369 
Specific conductivity SpecCond25C µS cm-1 14,963 919,916 
Suspended matter concentration SPM mg L-1 6,000 241,656 
Alkalinity Alkalinity µeq L-1 12,931 639,259 
Bicarbonate ion concentration HCO3 µmol L-1 6,554 144,979 
Carbonate ion concentration CO3 µmol L-1 2,344 82,616 
Calcium concentration, dissolved Ca µmol L-1 12,154 615,500 
Magnesium concentration, dissolved Mg µmol L-1 12,081 613,108 
Sodium concentration, dissolved Na µmol L-1 11,802 598,367 
Potassium concentration, dissolved K µmol L-1 11,642 594,157 
Silica concentration, dissolved SiO2 µmol L-1 9,880 624,877 
Chloride concentration, dissolved Cl µmol L-1 12,600 742,662 
Sulphate concentration, dissolved SO4 µmol L-1 12,629 663,739 
Fluoride concentration, dissolved F µmol L-1 6,551 486,010 
Strontium concentration, dissolved DSr µmol L-1 2,200 30,839 
Total carbon concentration TC µmol L-1 86 2,245 
Total inorganic carbon concentration TIC µmol L-1 670 14,162 
Dissolved inorganic carbon concentration DIC µmol L-1 666 18,409 
Particulate inorganic carbon concentration PIC µmol L-1 540 3,536 
Total organic carbon concentration TOC µmol L-1 3,541 117,301 
Dissolved organic carbon concentration DOC µmol L-1 6,771 201,401 
Particulate organic carbon concentration POC µmol L-1 2,677 32,732 
Total nitrogen concentration TN µmol L-1 4,685 267,069 
Dissolved nitrogen concentration DN µmol L-1 855 35,201 
Particulate nitrogen concentration PN µmol L-1 57 445 
Total inorganic nitrogen concentration TIN µmol L-1 73 13,124 
Dissolved inorganic nitrogen concentration DIN µmol L-1 121 8,009 
Total organic nitrogen concentration TON µmol L-1 211 13,846 
Dissolved organic nitrogen concentration DON µmol L-1 29 571 
Particulate organic nitrogen concentration PON µmol L-1 4 64 
Total Kjeldahl nitrogen TKN µmol L-1 7,092 299,198 
Dissolved Kjeldahl nitrogen DKN µmol L-1 3,049 52,759 
Nitrate concentration, dissolved NO3 µmol L-1 7,200 208,229 
Nitrite concentration, dissolved NO2 µmol L-1 8,393 240,300 
Nitrate+Nitrite concentration, dissolved NO2_NO3 µmol L-1 7,413 583,839 
Ammonium concentration, total TNH4 µmol L-1 1,512 75,987 
Ammonium concentration, dissolved DNH4 µmol L-1 11,350 609,307 
Total phosphorous concentration TP µmol L-1 10,540 484,825 
Dissolved phosphorous concentration DP µmol L-1 3,296 105,999 
Particulate phosphorous concentration PP µmol L-1 18 613 
Total inorganic phosphorous concentration TIP µmol L-1 1,037 26,841 
Dissolved inorganic phosphorous concentration DIP µmol L-1 11,844 661,267 
Particulate sulphur concentration PS µmol L-1 8 98 
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 Parts of the GLORICH database have been used to study fluxes and controlling factors on dissolved silica and 
inorganic carbon fluxes [22-25], chemical weathering rates and associated phosphorus release [10, 26], dissolved 
carbon fluxes [27], controls on the carbonate system of fluvial systems [28], as well as the global CO2-evasion from 
aquatic systems [29].  

3. Conclusion 

 The combination of hydrochemical parameters and catchment properties render GLORICH a valuable tool for a 
wide spectrum of research related to chemical as well as physical denudation, biogeochemistry of river ecosystems 
and fluvial exports of nutrients, carbon and sediments to coastal ecosystems. The data base is of particular interest to 
assess terrestrial matter inputs to head water streams, as a large number of small catchments are included. In the 
future, the database will be steadily extended by integrating new data (sampling locations as well as parameters like 
trace elements or isotopes) to provide an evolving tool for the scientific community. 
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