
Europ. J. Combinatorics (1980) 1, 379-383 

A Symmetric Chain Decomposition of £(4, n) 

DouGLAS B. WEsT* 

L(m, n) is the set of integer m-tuples (a, ... , am) with 0,;;; a 1 ,;;; • · · ,;;; am ,;;; n, ordered by Q,;;; Q 
when a,,;;; b, for all i. R. Stanley conjectured that L(m, n) is a symmetric chain order for all (m, n ). 
We verify this by construction for m = 4. 

L(m, n) is defined as the lattice formed by order ideals in the direct product of two chains 
with m and n elements, respectively. Equivalently, it is the collection of integer sequences 
!!:_ = (a1, .. . , am) satisfying 0,;;;; a1,;;;; · • ·,;;;;am,;;;; n, with ordering!!:_,;;;; 1z when a;,;;;; b; for all i. 
The correspondence is simple. If the chain elements are x1 < · · · < Xm and y 1 < · · · < Ym 
then the number of elements paired with x; in the ideal corresponding to!!:_ is n -a;. In other 
words, the antichain generating the ideal is {(xl> Yn-aJ, .. . , (xm, Yn-am)}. 

Clearly, the rank of element !!:_ is La;, the rank of the entire lattice is mn, and the 
cardinality of the lattice is (m;n). For any element !!:_, we define its conjugate !!:.* = 
(n- am, ... , n- a 1). Note that!!:.**=!!:_. The ranks of an element and its conjugate sum to 
mn, so the sizes of the ranks are symmetric about the middle. Sylvester proved the sizes of 
the ranks are also unimodal. Stanley [ 4] proved a stronger property which implies 
unimodality, and he conjectured that L(m, n) is a symmetric chain order. A symmetric 
chain order is one whose elements can be partitioned into chains which are saturated (skip 
no ranks) and·symmetric about the middle rank. The conjecture is clearly true when m = 1 
or m = 2. Lindstrom [2] provided an inductive construction to verify it form= 3. Here we 
give a construction somewhat different from his which verifies the conjecture when m = 4. 
Since writing this paper, we have learned that Reiss [3] has independently verified the 
conjecture for m = 3, 4 by a different method of proof. 

LetS (m, n ), the "shell" of L(m, n ), be those elements which begin with 0 or end with n. 
When these are removed from L(m, n) the remainder is isomorphic to L(m, n -2). The 
conjecture holds trivially when n = 1, and L(m, 0) can be defined as having a single 
element. So, providing a symmetric chain decomposition of S(m, n) proves the conjecture 
by induction. We use this approch here for L(4, n). Unfortunately, when m is odd and n is 
even the rank sizes in S(m, n) are not unimodal. So, for that case Lindstrom was forced to 
strip off two shells for his induction. For m = 4 this difficulty does not arise. It is possible 
that Lindstrom's construction generalizes for odd m and this construction generalizes for 
even m. When m and n both exceed 2, L(m, n) is not an L YM-order, so Griggs' sufficient 
conditions for a symmetric chain order [1] cannot be applied. 

THEOREM. L(4, n) is a symmetric chain order. 

It suffices to give a symmetric chain decomposition of S(4, n ). The chains will be of two. 
types, C;i and D;i for suitable values of i and j. The chains are clearly saturated, so two steps 
will complete the proof. 

(1) No element appears in more than one chain. 
(2) The number of elements in the construction is the size of S(m, n). 
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Each chain is composed of six segments, with the top element of one segment and the 
bottom element of the next identical. Throughout a given segment only one position in the 
integer sequence changes. Table 1 explicitly defines the chains and gives the ranks where 
the changes between segments occur. 

TABLE 1 

Rank C;; Segment Dij Rank 

4n -6i -2j (n -3i-j, n -2i-j, n -i, n) (n -3i-j-2, n -2i-j-1, n -i, n) 4n -6i -2j -3 
6 

4n-6i-3j (n -3i-j, n-2i-j, n -i-j, n) (j+1, n -2i-j-1, n -i, n) 3n-3i 
5 

3n -3i -2j (0, n -2i-j, n -i-j, n) (j+1, i+j+1, n -i, n) 2n +2j +2 
4 

3n-3i-3j (0, n- 2i- j, n - i- j, n- j) (j+1, i+j+1, 2i+j+ 1, n) n+3i+3j+3 
3 

2n -2j (0, i, n- i- j, n- j) (0, i + j + 1, 2i + j + 1, n) n+3i+2j+2 
2 

n+3i (0, i, 2i + j, n- j) (0, i+j+1, 2i+j+1, 3i+j+1) 6i+3j+3 

6i+2j (0, i, 2i + j, 3i + j) (0, i + 1, 2i + j + 1, 3i + j + 1) 6i+2j+3 

Segments must have length at least 0. That is, top and bottom elements may be identical, 
but the top element must not have rank below the bottom element. Examining the lengths 
of segments and ensuring that we have legal elements at the bottom of C;i and the top of D;i 
yields necessary conditions on i and j. We claim the desired decomposition is obtained by 
taking all chains for which these necessary conditions are satisfied. 

S(4, n)={C;i: 3i+2j~n, i;;;.Q,j;;;.O}u{D;i: 3i+2j~n -3, i;;;.Q,j;;;oO} 

Figure 1 gives S(4, 5) explicitly as an example. 

5555 
4555 
3555 4455 
2555 4445 3455 
1555 3445 3355 2455 
0555 2445 3345 1455 2355 
0455 1445 3335 1355 2255 2345 
0355 0445 2335 1255 2245 1345 
0255 0444 1335 1155 2235 0345 1245 
0155 0344 0335 1145 2225 0245 1235 
0055 0244 0334 1135 1225 0145 0235 
0045 0144 0333 1125 0225 0135 0234 
0035 0044 0233 1115 0224 0125 0134 
0025 0034 0133 0115 0223 0124 
0015 0024 0033 0114 0222 0123 
0005 0014 0023 0113 0122 
0004 0013 0022 0112 
0003 0012 0111 
0002 0011 
0001 
0000 
Coo Cot Doo 

FIGURE 1. S(4, 5) 
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OuTLINE OF PROOF. To show the elements are all distinct, we express the D-chains in 
terms of the C-chains and then restrict our attention to the C-chains. Let C~i be the 
element of Cii of rank r, similarly for D~i· We claim that chain Di.i-1 is the conjugate of 
chain C.i when the top and bottoms elements of the latter are removed. That is, 
(D~.i- 1 )* = ct';-'. It suffices to perform the conjugation on the transition elements 
between segments of D i,i-1. They become the transition elements of C.i· Note the top and 
bottom elements of C.i are unaffected and are conjugates of each other. Whenever Di.i-1 
exists, Ci exists. The affected Ci are those where j > 0 and 3i +2j < n. 

Distinctness now reduces to showing: 

(1a) The elements of u{Cd are all distinct. 
(1b) The chains Co and Ci,(n-3il/2 are self-conjugate. 
(lc) There are no conjugate pairs among the elements of u{CiJ, where 0 <j < 

(n- 3i)/2, other than the tops and bottoms of chains. 

(lb) is seen immediately by conjugating the transition elements in those chains. The other 
two statements require eliminating a large number of easy cases. 

To show we have the correct number of elements, we proceed by induction. Simple 
counting verifies it for small n. In general, the size of S(m, n) is IL(m, n )1-IL(m, n- 2)1. So, 

This is the sum of a familiar sequence. Indeed, 

IS(4, n )I-IS(4, n -1)1 = (n + 1)2 
• 

Now we examine the changes in the construction between n -1 and n. For all values 
of i and j such that Ci or Dii exists in the construction for n -1, a similarly indexed chain 
exists in the construction for n. Subtracting ranks, the number of elements in Cii is 
4(n- 3i- j) + 1, and the number in Dii is 4(n- 3i- j)- 5. Each of these chains has 4 more 
elements than the similarly indexed chain in S(4, n -1), if that chain exists. We will see 
there is a Cii for every element of the middle rank which begins with 0 and a Dii for every 
such element whose first position is not zero. 

The chains which arise newly when n is reached are those Ci for which 3i +2j = n and 
those Dii for which 3i +2j = n- 3. For each value of i from 0 up to ln/3J or ln/3J-1, 
depending on parities, there will be one new Cii or Dii> but not both. 

Verifying that the construction picks up the proper number of elements reduces to: 

(2a) Computing (and multiplying by 4) the number of chains in the construction for 
S(4, n -1)-that is, the sum of the number of solutions to 3i +2j,;; n -1 and 
3i +2jo;;; n -4. 

(2b) Computing the total number of elements in new chains. 
(2c) Verifying the sum of new elements in (2a) and (2b) is (n + 1)2 

• 

(2b) breaks into cases depending on the parity of n, and (2a) does the same with the parity 
of ln/3J, so (2c) requires 6 cases, depending on the congruence class of n modulo 6. 

DETAILS OF STEP 1. If (la) does not hold, suppose f!_ = c~j = c~l· We have a number 
of cases to consider, depending on which segment contains Q in each of the two chains. Let 
vCi denote segment pin Cii· Equating the descriptions of the segments in Table 1 gives us a 
number of linear relationships between i, j, k, and/. If!!: comes from vci and vckl, equating 
the positions which do not change in that segment implies i = k and j = I in all six cases, by 
straightforward subtraction of equalities. 
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By symmetry we may assume ~occurs in a lower numbered segment in C;i than in Ckt· 
We allow the transition elements between segments to belong to either segment. So, if~ is 
in PCii and qCk1, we may assume Q is not the top element of PC;i nor the bottom element of 
qCkt. else we have a case with smaller q- p. In particular, the rank of the top element in PCii 
must be strictly greater than the rank of the bottom element in qCk1• 

Suppose q = p + 1. In each case, comparing the ranks of transition elements as described 
above yields f(i, j) > f(k, I) for some linear function f. Whenever q = p + 1, two positions in 
the elements remain constant from the bottom of segment p to the top of segment q. This 
expresses two positions of g_ as identical linear functions of (i, j) and (k, 1). In all five cases, 
we readily manipulate these to produce f(i, j) = f(k I) for a contradiction. 

If the first position of Q is non-zero, Q can occur only in segments 5 or 6. If it is zero, Q 
occurs in segment 4 or below. Now we have eliminated all but 3 of the cases which might 
have C~i = C~1 with (i, j) ¥ (k, 1). The remainder we handle individually. 

If Q is in 2 Cii and 4 Ckt, positions 2 and 3 require i = n- 2k -I and n- i- j > n- k -I. 
Adding these gives n - j > 2n - 3k- 21 ~ n. Next suppose ~is in 1Cii and 3 Ckt· Equality of 
the last three positions requires k < i, n - k -I= 2i + j, and n -I~ 3i + j. Substituting fork 
and n -I in the second of these gives 2i + j < 2i + j. Finally, suppose .f! is in 1 C;i and 4 Ckt· 
Comparing the top of 1Cii with the bottom of 4 Ck1 yields n +3i > 3n- 3k- 31 or i > k. On 
the other hand, the middle two positions of Q remain constant in both sections, so 
i = n - 2k -I and 2i + j = n - k -I. Subtraction gives i + j = k or i.;;; k. 

(lc) also breaks into cases depending on the segments. We assume g_= c;i = (Ck[-')*, 
with O<j < (n -3k)/2 and 0< I< (n -3k)/2, and will show this cannot happen. Here the 
arguments do not group together as cleanly. One element of such a conjugate pair occurs at 
least as high as the middle rank in one chain. Call this chain C;i. The reader can easily work 
out the transition elements for the segments in C!t to compare with C;i. Examining the 
bottom ranks of segment 3, we see 2n- 2j and n +3k + 21 are both less than 2n, so g_ lies in 
segment 3, 4, 5 or 6 in both C;i and C!1• Assume Q E (PCii nqCZ1). 

We first notice p .;;; 4 is impossible. The first position of .f! is then 0, but the first position in 
segment 3 or higher of CZt is always greater than 0 when I> 0. We handle the remaining 
cases individually. Again we equate corresponding positions in g_. The requirements on j 
and I figure prominently. For example, i + j.;;; k and i ~ k +I gives us a contradiction, as do 
n-3i- j.;;; I and n- 3k -los; j. There are eight cases; we include three representative ones 
here. The others are handled by similar arguments. 

p=6, q=6. a2~2i+j=2k+l. a3 ~i.s;k. a 1 ~3i+j~3k+l. Subtracting a2 implies 
i ~ k. So (i, j) = (k, 1), and this is the case where the top and bottom element of the chain are 
conjugate. 

p = 5, q =6. a3~ i + j = k. a2~2i + j = 2k +I. Subtracting a3 implies i = k +I, 
requiring j = I =0. 

p=5, q=3. a2~n-2i-j=k+l. a3 ~n-i-j=k+l. Subtracting a2 yields i=k. 
Substituting this in the two previous equations yields n-3i- j =I and n- 3k -I= j. 

This completes the proof of (1). 

DETAILS OF STEP 2. We begin with (2a). The top element of segment 4 in Cii has rank 
3n- 3i- 2j ~ 2n, so every Cii has a 0 in the first position of its middle rank element. The 
bottom rank of segment 3 in Dii is n +3i +2j +2.;;; 2n -1, so Dii has a positive first position 
in its middle rank element. The non-decreasing sequences of length 4 which start with 0, 
end ink, and sum to 2n include from (0, 2n- 2k, k, k) to (0, l(2n- k)/2J' rc2n- k)/21' k) 
when n ~ k ~ r2n/31. So, we want the number of C;/s to be L r2n/3J <>k<>n k
r(2n- k )/21 + 1. Similarly, the middle-rank elements covered by Di/s include from 
(k, k, n- 2k, n) through (k, l(n- k )/2J, rcn- k )/21' n) for los; k.;;; ln/3J, for a total of 
Lt<>k<>ln/3J l(n-k)/2J -k+l. 
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On the other hand, the number of solutions to 3i + 2j ~ n is Lo""i""ln/3J 1 + l(n- 3i)/2J 
and to 3i+2j~n -3 is Lo""i""ln/3J-t1 + lCn -3i-3)/2J. These turn into the summations 
in the preceding paragraph when i is set to n - k in the first case and to k - 1 in the second. 
So, the middle rank elements are covered by the chains. 

We wish to combine the summations. Separating the i = 0 term from the first and 
adjusting the index in the second, the total number f(n) of chains becomes 

/(n)=1+ln/2J+2 L (1+l(n-3i)/2J). 
l,;i,;[n/3J 

To compute the summation, we pair terms for consecutive values of i, with i = ln/3 J left 
over if it is odd. Further algebraic manipulation leads us to a closed form for f(n ). If n = r 
mod 6, 0~ r~ 5, then the total number of chains is 

1; r =0, 1, 2 
f(n)= ln/2J+(n+3)(n-r)/3-(n-r)(n-r+6)/6+ 3; r=3,4

{5; r=5 
Next we consider (2b). If n is even, a new chain C;i occurs for even values of i with 

0 ~ i ~ ln/3J, and a new D;i for odd values of i with 1 ~ i ~ ln/3J -1. Similarly, when n is 
odd we have a new D;i for even i with O~i~ ln/3J -1 and a new Cii for odd i with 
1~i~ ln/3J. 

To sum the number of elements in these chains, we can again pair consecutive terms. For 
the total number g(n) of these elements, we have 

ICo,n/21+ L ID2k-l,(n-6k)/21+1C2k,(n-6k)/21; n even 
l,;k,; [n/6J 

g ( n ) = 
{ L ID2k,(n-6k-3)/21 + jC2k+l.(n-6k-3)/2j; n odd 

Q,;k,; [(n-3)/6J 

Since jC;il = 4(n- 3i-j) + 1 and ID;il = 4(n- 3i- j)- 5, the terms being summed become 
4(n - 6k) + 8 and 4(n - 6k)- 4 for n even and odd, with IC o,n;2 l = 1 + 2n. Further alge
braic manipulation reduces the sum to 

1+2n +2(n +2)(n -r)/3 -(n -r)(n -r+6)/3; r = 0, 2, 4 
g(n)= 2(n-1)(n-r+6)/3-(n-r)(n-r+6)/3; r=3,5{ 

2(n -1)2/3-(n -7)(n -1)/3; r = 1 

For (2c), we need only compute 4/(n -1) + g(n) to find the number by which the size of 
S(m, n) exceeds the size of S(m, n -1). We treat the congruence classes of n modulo 6 
separately. Using the final expressions above for f(n) and g(n ), in all six cases 4f(n -1) + 
g(n) reduces to (n + 1)2

• We leave this as a pleasant exercise for the reader. 
This completes the proof. 
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