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1. Introduction

Amatrix A = (aij) ∈ Rn×n is called anM-matrix if aii > 0, i ∈ N; aij � 0, i /= j, i, j ∈ N, A is nonsingular

and A−1 � 0, where N = {1, 2, . . .,n} (see [1]).

If A is an M-matrix, then there exists a positive eigenvalue of A equal to τ(A) ≡ [ρ(A−1)]−1, where

ρ(A−1) is the Perron eigenvalue of the nonnegativematrix A−1, τ(A) = min{|λ| : λ ∈ σ(A)}, σ(A) denotes

the spectrum of A (see [2]).
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For twomatricesA = (aij) ∈ Rn×n andB = (bij) ∈ Rn×n, theHadamardproduct ofA andB is thematrix

A ◦ B = (aijbij). If A and B areM-matrices, then it was proved in [2] that A ◦ B−1 is again anM-matrix.

Let A = (aij) ∈ Rn×n be anM-matrix. It was proved in [3] that τ(A ◦ A−1) � 1.

Subsequently, Fiedler and Markham in [2] proved that τ(A ◦ A−1) � 1
n , and conjectured that τ(A ◦

A−1) � 2
n . Yong [4], Song [5] and Chen [6] have independently proved this conjecture.

Li in [7] improved theconjecture τ(A ◦ A−1) � 2
n of Fiedler andMarkham,andobtained the following

result:

τ(A ◦ A−1) � min
i

{
aii − siRi

1 +∑
j /=isji

}
,

which depends only on the entries of matrix A, instead of the dimension of matrix A, where sji =
|aji|+

∑
k /=j,i|ajk |dk
ajj

, j /= i, j ∈ N; and si = maxj /=i {sij}, Ri = ∑
k /=i|aik|, dk =

∑
j /=k |akj |
|akk | , i, k ∈ N.

Recently, Huang in [8] proved the following inequality

τ(A ◦ B−1) � 1 − ρ(JA)ρ(JB)

1 + (ρ(JB))2
min
1�i�n

aii
bii

,

where A and B are M-matrices and ρ(JA), ρ(JB) is the spectral radius of JA and JB. When A = B, the

inequality provided another lower bound of τ(A ◦ A−1), that is

τ(A ◦ A−1) � 1 − (ρ(JA))2

1 + (ρ(JA))2
. (1.1)

The bound (1.1) is a theoretical formula and it is difficult to calculate the lower bound of τ(A ◦ A−1)

by using this formula because of the difficulty of calculating the spectral radius of the Jacobi iterative

matrix ρ(JA) when the order of A is large.

In this paper, we present some new lower bounds for τ(A ◦ A−1). These bounds improve the results

of Li in [7] and their calculations are easier than Huang’s formula (1.1).

For any i, k, l ∈ N, denote

rli = |ali|
|all| −∑

k /=l,i|alk|
, l /= i; ri = max

l /=i
{rli}, i ∈ N.

cil = |ail|
|all| −∑

k /=l,i|akl|
, l /= i; ci = max

l /=i
{cil}, i ∈ N.

2. Some lemmas and notations

In this section, we give some lemmas that involve inequalities for the entries of A−1. They will be

useful in the following proofs.

Lemma 2.1 [4]. (a) If A = (aij) ∈ Rn×n is a strictly row diagonally dominant matrix, that is, |aii| >
∑

j /=i|aij|
for every i ∈ N, then A−1 = (bij) exists, and

|bji| �
∑

k /=j|ajk|
|ajj|

|bii|, for all j /= i.

(b) If A = (aij) ∈ Rn×n is a strictly column diagonally dominant matrix, that is, |aii| >
∑

j /=i|aji| for every
i ∈ N, then A−1 = (bij) exists, and

|bij| �
∑

k /=j|akj|
|ajj|

|bii|, for all j /= i.

Lemma 2.2. (a) Let A = (aij) ∈ Rn×n be a strictly row diagonally dominantM-matrix. Then, for A−1 = (bij),

we have
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bji �
|aji| +∑

k /=j,i|ajk|ri
ajj

bii, for all j /= i.

(b) Let A = (aij) ∈ Rn×n be a strictly column diagonally dominant M-matrix. Then, for A−1 = (bij), we

have

bij �
|aij| +∑

k /=j,i|akj|ci
ajj

bii, for all j /= i.

Proof. (a) For i ∈ N, let ri(ε) = maxl /=i

{ |ali|+ε

all−
∑

k /=l,j |alk |
}
. Since A is strictly diagonally dominant, then

|ali|
all−

∑
k /=l,j |alk | < 1. Hence, there exists ε > 0 such that 0 < ri(ε) < 1. Let Ri(ε) = diag(ri(ε), . . . , ri(ε), 1,

ri(ε), . . . , ri(ε)).

For a given i ∈ N, one checks that the matrix ARi(ε) is again a strictly row diagonally dominant

M-matrix. In fact, for j /= i, we have

ri(ε) >
|aji|

ajj −∑
k /=j,i|ajk|

, j /= i, j ∈ N.

So

|aji| + ri(ε)
∑
k /=j,i

|ajk| < ri(ε)|ajj|, j /= i, j ∈ N. (2.1)

While, for j = i, we have∑
k /=i

|aik|ri(ε) <
∑
k /=i

|aik| < aii. (2.2)

From (2.1) and (2.2) we have proved that ARi(ε) is strictly row diagonally dominant, so it is also an

M-matrix. By Lemma 2.1 (a), we derive the following inequality:

r−1
i

(ε)bji �
|aji| +∑

k /=j,i|ajk|ri(ε)
ri(ε)ajj

bii, j /= i, j ∈ N.

i.e.,

bji �
|aji| +∑

k /=j,i|ajk|ri(ε)
ajj

bii, j /= i, j ∈ N.

Let ε → 0 to obtain

bji �
|aji| +∑

k /=j,i|ajk|ri
ajj

bii, for all j /= i, j ∈ N.

(b) For matrix Ci(ε)A, where Ci(ε) = diag(ci(ε), . . . , ci(ε), 1, ci(ε), . . . , ci(ε)), i ∈ N and

ci(ε) = max
l /=i

{
|ail| + ε

all −
∑

k /=l,i|akl|

}
, i ∈ N,

by Lemma 2.1 (b) and the same technique as in the above proof (a), Lemma 2.2 (b) is obtained. �

In the following, we need the notations

mji = |aji| +∑
k /=j,i|ajk|ri
ajj

, j /= i, j ∈ N; mi = max
j /=i

{mij}, i ∈ N.

Lemma 2.3. Let A = (aij) ∈ Rn×n be a strictly row diagonally dominant M-matrix. Then, for A−1 = (bij),

we have
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1

aii
� bii �

1

aii −
∑

j /=i|aij|mji
, for all i ∈ N.

Proof. (1) Let B = A−1. Since A is an M-matrix, then B � 0. Since AB = I, we have

1 =
n∑

j=1

aijbji = aiibii −
∑
j /=i

|aij|bji, for all i ∈ N.

Hence

aiibii � 1, for all i ∈ N, that is,
1

aii
� bii, for all i ∈ N.

(2) By Lemma 2.2 (a), for all i ∈ N,

1 = aiibii −
∑
j /=i

|aij|bji � aiibii −
∑
j /=i

|aij| |aji|+
∑

k /=j,i |ajk |ri
ajj

bii

=
(
aii −

∑
j /=i

|aij|mji

)
bii

i.e.,

bii �
1

aii −
∑

j /=i|aij|mji
, for all i ∈ N. �

Remark 2.1. Example 4.1 shows that Lemmas 2.2 and 2.3 are improvements of Theorems 2.1 and 2.3

of [7].

Lemma 2.4 [9]. Let A = (aij) ∈ Cn×n and let s1, s2, · · · , sn be positive real numbers. Then all the eigenvalues

of A lie in the region

n⋃
i=1

⎧⎨
⎩Z ∈ C : |Z − aii| � si

∑
j /=i

1

sj
|aji|

⎫⎬
⎭ .

Lemma 2.5 [2]. If P is an irreducible M-matrix, and if Pz � kz for a nonnegative nonzero vector z, then

k � τ(P).

Lemma 2.6 [10]. If A−1 is a doubly stochastic matrix, then Ae = e,ATe = e, where e = (1, 1, . . . , 1)T .

3. Main results

In this section, we exhibit a new lower bound for τ(A ◦ A−1), which improves the result of Li et al.

in [7] and the conjecture of Fiedler and Markham.

Theorem 3.1. Let A = (aij) ∈ Rn×n be an M-matrix, and suppose A−1 = (bij) is doubly stochastic. Then

bii �
1

1 +∑
j /=imji

, i ∈ N.

Proof. Since A−1 is doubly stochastic and A is an M-matrix, by Lemma 2.6, we have

aii =
∑
k /=i

|aik| + 1 =
∑
k /=i

|aki| + 1, i ∈ N and bii +
∑
j /=i

bji = 1, i ∈ N.
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The matrix A is strictly row diagonally dominant. Then, by Lemma 2.2 (a), for i ∈ N, we have

1 = bii +
∑
j /=i

bji � bii +
∑

j /=i

|aji|+
∑

k /=j,i |ajk |ri
ajj

bii

=
(
1 +∑

j /=i

|aji|+
∑

k /=j,i |ajk |ri
ajj

)
bii

=
(
1 +∑

j /=i

mji

)
bii.

i.e., bii � 1
1+∑j /=imji

, i ∈ N. �

Theorem 3.2. Let A = (aij) ∈ Rn×n be an M-matrix, and let A−1 = (bij) be doubly stochastic. Then

τ(A ◦ A−1) � min
i

{
aii − miRi

1 +∑
j /=imji

}
.

Proof. (1) First, we assume that A is irreducible. Since A−1 is doubly stochastic, we obtain from Lemma

2.6 that

aii =
∑
j /=i

|aij| + 1 =
∑
j /=i

|aji| + 1 and aii > 1, i ∈ N.

Let

Rrj =
∑
k /=j

|ajk|ri, j /= i, i ∈ N.

Then, for any j ∈ N, j /= i

Rrj =
∑
k /=j

|ajk|ri � |aji| +
∑
k /=j,i

|ajk|ri � Rj =
∑
k /=j

|ajk| � ajj.

Therefore, there exists a real number βji(0 � βji � 1), such that

|aji| +
∑
k /=j,i

|ajk|ri = βjiRj + (1 − βji)R
r
j .

Hence

mji =
βjiRj + (1 − βji)R

r
j

ajj
.

Let βj = maxi /=j{βji}, 0 < βj � 1 (if βj = 0, then A is reducible, which is a contradiction). Let

mj = max
i /=j

{mji} =
βjRj + (1 − βj)R

r
j

ajj
, j ∈ N.

Since A is irreducible, then Rj > 0, Rr
j

> 0 and 0 < mj � 1. Thus, by Lemma 2.4, there exists i0 ∈ N such

that

|λ − ai0i0bi0i0 | � mi0

∑
j /=i0

1

mj
|aji0bji0 |.

i.e.,

|λ| � ai0i0bi0i0 − mi0

∑
j /=i0

1

mj
|aji0bji0 |

� ai0i0bi0i0 − mi0

∑
j /=i0

ajj

βjRj + (1 − βj)R
r
j

|aji0 |
|aji0 | +∑

k /=j,i0
ajkri0

ajj
bi0i0
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� ai0i0bi0i0 − mi0

∑
j /=i0

|aij0 |bi0i0

= (ai0i0 − mi0
Ri0 )bi0i0

� ai0i0 − mi0
Ri0

1 +∑
j /=i0

mji0

� min
i

{
aii − miRi

1 +∑
j /=i mji

}
.

(2) When A is reducible, without loss of generality, we can assume that A has the block upper

triangular form

A =

⎡
⎢⎢⎣
A11 A12 . . . A1S

A22 . . . A2S

. . . . . .

ASS

⎤
⎥⎥⎦

with irreducible diagonal blocks Aii, i = 1, 2, . . . , S. Then A−1 is again block upper triangular with irre-

ducible diagonal blocks A−1
ii

. Observing that τ(A ◦ A−1) = mink τ(Akk ◦ A−1
kk

) concludes the proof. �

Theorem 3.3. Let A = (aij) ∈ Rn×n be an M-matrix with a11 = a22 = · · · = ann, and suppose A−1 = (bij) is

doubly stochastic. Then

min
i

{
aii − miRi

1 +∑
j /=imji

}
� min

i

{
aii − siRi

1 +∑
j /=isji

}
.

Proof. Since A−1 is doubly stochastic, by Lemma 2.6, we have

aii =
∑
k /=i

|aik| + 1 =
∑
k /=i

|aki| + 1.

Then for every i ∈ N,

ri = max
l /=i

{
|ali|

|all| −∑
k /=l,i|alk|

}
= max

l /=i

{ |ali|
1 + |ali|

}
= maxl /=i|ali|

1 + maxl /=i|ali|
.

Since f (x) = x
1+x

is an increasing function on (0,+∞), we have

ri = maxl /=i |ali|
1 + maxl /=i |ali|

�
∑

k /=i|aki|
1 +∑

k /=i|aki|
=
∑

k /=i|aki|
aii

=
∑

k /=i|aik|
aii

= di, i ∈ N.

Since A is anM-matrix with a11 = a22 = · · · = ann and A−1 = (bij) is doubly stochastic, we have

di = dj , j /= i, aii =
∑
k /=i

|aik| + 1 =
∑
k /=j

|ajk| + 1 = ajj.

So ri � dk , i, k ∈ N. Then, we obtain

sji = |aji| +∑
k /=j,i|ajk|dk
ajj

� |aji| +∑
k /=j,i|ajk|ri
ajj

= mji, j /= i.

So

si = max{sij}
j /=i

� max{mij}
j /=i

= mi, i ∈ N.

Therefore

aii − siRi � aii − miRi and
1

1 +∑
j /=isji

� 1

1 +∑
j /=imji

.
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Thus, for any i ∈ N, we have

min
i

{
aii − miRi

1 +∑
j /=imji

}
� min

i

{
aii − siRi

1 +∑
j /=isji

}
. �

Remark 3.1. Theorem 3.3 shows that the result of Theorem 3.2 is better than the result τ(A ◦ A−1) �
mini

{
aii−siRi

1+∑j /=isji

}
of Theorem 3.1 of [7]. So, the result of Theorem of 3.1 is improved.

Theorem 3.4. Let A = (aij) ∈ Rn×n be an M-matrix. Then

τ(A ◦ A−1) � min
i

⎧⎨
⎩1 − 1

aii

∑
j /=i

|aji|mji

⎫⎬
⎭ .

Proof. IfA is an irreducibleM-matrix, thenA−1 is positive andA ◦ A−1 is again irreducible. By a result of

Sinkhorn [11], there exist diagonalmatricesD1 andD2 withpositivediagonal entries such thatD1A
−1D2

isdoubly stochastic. ThematrixB = D−1
2

AD−1
1

is againanM-matrixandsatisfies τ(A ◦ A−1) = τ(B ◦ B−1),

for B ◦ B−1 = (D−1
2

AD−1
1

) ◦ (D1A
−1D2) = (D1D

−1
2

)(A ◦ A−1)(D1D
−1
2

)−1.

So, for convenience and without loss of generality, we may assume that A is irreducible and A−1 =
(bij) is doubly stochastic.

Since A−1 = (bij) is doubly stochastic, then, by Lemma 2.6, for every i ∈ N,

aii =
∑
j /=i

|aij| + 1 =
∑
j /=i

|aji| + 1.

Note that

τ(A ◦ A−1) = τ((A ◦ A−1)T ) = τ(AT ◦ (AT )−1).

Let

(AT ◦ (AT )−1)e = (q1, q2, . . . , qn)
T ,

where e = (1, 1, . . . , 1)T . Without loss of generality, let q1 = mini{qi}. Then, by Lemma 2.2, we have

q1 =
n∑

j=1

aj1bj1 = a11b11 −
∑
j /=1

|aj1|bj1

� a11b11 −
∑
j /=1

|aj1|
|aj1| +∑

k /=j,1 |ajk|r1
ajj

b11

=
⎛
⎝a11 −

∑
j /=1

|aj1|mj1

⎞
⎠ b11 (by Lemma 2.3)

� a11 −∑
j /=1 |aj1|mj1

a11

= 1 − 1

a11

∑
j /=1

|aj1|mj1.

Therefore, by Lemma 2.5, we have

τ(A ◦ A−1) = τ(AT ◦ (AT )−1) � min
i

⎧⎨
⎩1 − 1

aii

∑
j /=i

|aji|mji

⎫⎬
⎭ . �
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Remark 3.2. From the proof of Theorem 3.3, we know that sji � mji, j /= i. So, we have

1 − 1

aii

∑
j /=i

|aji|mji � 1 − 1

aii

∑
j /=i

|aji|sji.

This shows that the result of Theorem 3.4 is better than the result τ(A ◦ A−1) �
mini

{
1 − 1

aii

∑
j /=i|aji|sji

}
in Theorem 3.5 of [7].

4. Example

Consider the following M-matrix

A =

⎡
⎢⎢⎣

4 −1 −1 −1

−2 5 −1 −1

0 −2 4 −1

−1 −1 −1 4

⎤
⎥⎥⎦ .

Since Ae = e and ATe = e, A−1 is doubly stochastic. By calculations we have

A−1 =

⎡
⎢⎢⎣

0.4 0.2 0.2 0.2

0.2333 0.3667 0.2 0.2

0.1667 0.2333 0.4 0.2

0.2 0.2 0.2 0.4

⎤
⎥⎥⎦ .

(1) Upper bounds for entries of A−1. First, by Lemma 2.1 (a), we obtain

A−1 �

⎡
⎢⎢⎣

1 0.75 0.75 0.75

0.8 1 0.8 0.8

0.75 0.75 1 0.75

0.75 0.75 0.75 1

⎤
⎥⎥⎦ ◦

⎡
⎢⎢⎣
b11 b22 b33 b44
b11 b22 b33 b44
b11 b22 b33 b44
b11 b22 b33 b44

⎤
⎥⎥⎦ .

If we apply Theorem 2.1 (a) of [7], we have

A−1 �

⎡
⎢⎢⎣

1 0.625 0.6375 0.6375

0.7 1 0.65 0.65

0.5875 0.6875 1 0.65

0.6375 0.625 0.5 1

⎤
⎥⎥⎦ ◦

⎡
⎢⎢⎣
b11 b22 b33 b44
b11 b22 b33 b44
b11 b22 b33 b44
b11 b22 b33 b44

⎤
⎥⎥⎦ .

If we apply Corollary 2.5 (2.7) of [7], we have

A−1 �

⎡
⎢⎢⎣

1 0.6667 0.5 0.5

0.6667 1 0.5 0.5

0.6667 0.6667 1 0.5

0.6667 0.6667 0.6667 1

⎤
⎥⎥⎦ ◦

⎡
⎢⎢⎣
b11 b22 b33 b44
b11 b22 b33 b44
b11 b22 b33 b44
b11 b22 b33 b44

⎤
⎥⎥⎦ .

Combining Theorem 2.1 (a) of [7] and Corollary 2.5 (2.7) of [7], we have

A−1 �

⎡
⎢⎢⎣

1 0.625 0.5 0.5

0.6667 1 0.5 0.5

0.5875 0.6667 1 0.5

0.6375 0.625 0.5 1

⎤
⎥⎥⎦ ◦

⎡
⎢⎢⎣
b11 b22 b33 b44
b11 b22 b33 b44
b11 b22 b33 b44
b11 b22 b33 b44

⎤
⎥⎥⎦ .

Now if we apply Lemma 2.2 (a), we have

A−1 �

⎡
⎢⎢⎣

1 0.583 0.5 0.5

0.6667 1 0.5 0.5

0.5 0.6667 1 0.5

0.583 0.583 0.5 1

⎤
⎥⎥⎦ ◦

⎡
⎢⎢⎣
b11 b22 b33 b44
b11 b22 b33 b44
b11 b22 b33 b44
b11 b22 b33 b44

⎤
⎥⎥⎦ . (4.1)

Comparing the result of Lemma 2.2 (a) with the other results, we see that the result of Lemma 2.2

(a) is the best.
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Theorem 2.3 of [7] and Lemma 3.2 of [7] give the following bounds for the diagonal entries of A−1:

0.3419 � b11 � 0.5882; 0.3404 � b22 � 0.5128,

0.3419 � b33 � 0.6061; 0.3404 � b44 � 0.5882.

If we apply Theorem 3.1 and Lemma 2.3, we obtain better bounds:

0.3637 � b11 � 0.4430; 0.3530 � b22 � 0.3870,

0.4 � b33 � 0.4; 0.4 � b44 � 0.4.

(2) Lower bounds for τ(A ◦ A−1).

If we apply the conjecture of Fiedler and Markham, we have

τ(A ◦ A−1) � 2

n
= 1

2
= 0.5.

If we apply Theorem 3.1 of [7] we have

τ(A ◦ A−1) � 0.6624.

If we apply Theorem 9 of [8] with A = B, we have

τ(A ◦ A−1) � 0.2614.

The bound in our Theorem 3.2 is better:

τ(A ◦ A−1) � 0.7999.
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