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1. Introduction

Amatrix A = (a;7) € R™"is called an M-matrixifa; > 0,i € N; a;; < 0,1 # j, i, j € N, Ais nonsingular
andA-! > 0, where N = {1,2,...,n} (see [1]).

If A is an M-matrix, then there exists a positive eigenvalue of A equal to (4) = [p(A~ )]~ !, where
(A1) is the Perron eigenvalue of the nonnegative matrixA~!, (A) = min{|A| : A € o (A)}, o (A) denotes
the spectrum of A (see [2]).

* This work was supported by National Natural Science Foundation of China (30770500) and the Natural Science Foundation
of Yunnan Province (2007A020M).
* Corresponding author.
E-mail address: liyaotang@ynu.edu.cn (Y.-T. Li)

0024-3795/$ - see front matter © 2008 Elsevier Inc. All rights reserved.
doi:10.1016/j.1aa.2008.11.002


https://core.ac.uk/display/82803634?utm_source=pdf&utm_medium=banner&utm_campaign=pdf-decoration-v1
http://www.sciencedirect.com/science/journal/00243795
mailto:liyaotang@ynu.edu.cn

1424 Y-T. Lietal. / Linear Algebra and its Applications 430 (2009) 1423-1431

For two matricesA = (a;7) € R™"and B = (b;;) € R™", the Hadamard product of Aand Bis the matrix
Ao B = (ajby). If A and B are M-matrices, then it was proved in [2] that Ao B~1is again an M-matrix.

Let A = (a;) € R™" be an M-matrix. It was proved in [3] that (A oA ) K 1.

Subsequently, Fiedler and Markham in [2] proved that t(AcA~1) > % and conjectured that (Ao
AhH> % Yong [4], Song [5] and Chen [6] have independently proved this conjecture.

Liin[7]improved the conjecturet(Ao A~1) > % of Fiedler and Markham, and obtained the following
result:

i — SARA
tAoA™ )y > min{ 2+ 1L b
~ 1+ Zj#isji
which depends only on the entries of matrix A, instead of the dimension of matrix A, where s;; =

1|+ i1 Gjic | e
e re—

Recently, Huang in [8] proved the following inequality

‘L'(AOB_]) > 1 _p(]A)p(]B) min %v
14 (o(p)? 1<i<n bji
where A and B are M-matrices and p(J4), o(Jg) is the spectral radius of J4 and Jg. When A = B, the

inequality provided another lower bound of 7(A 0 A~1), that is

1— (p(a))?
1+ (p(a)?

The bound (1.1) is a theoretical formula and it is difficult to calculate the lower bound of (Ao A~1)
by using this formula because of the difficulty of calculating the spectral radius of the Jacobi iterative
matrix p(J4) when the order of A is large.

In this paper, we present some new lower bounds for (A o A~1). These bounds improve the results
of Li in [7] and their calculations are easier than Huang'’s formula (1.1).

For any i, k, | € N, denote

JJ#1,j € N;and s; = max;; {si}, Ri = X il aitl, dy = L%l g e N,

[Tk

TAcA™ ) > (1.1)

|ay! . .
Ni=——e——— l#i r=max{r}, ieN.
lapl = > kerilCl 1
Cjj = L, I 7& i; Ci = max{ci,}, ieN.
lanl = > kzrilar] I

2. Some lemmas and notations

In this section, we give some lemmas that involve inequalities for the entries of A=1. They will be
useful in the following proofs.

Lemma 2.1 [4]. (@) IfA = (ay) € R™" is a strictly row diagonally dominant matrix, that is, |a;;| > 3;_;1aj|
foreveryic N, thenA~1 = (by) exists, and

> ki1l

b;|, forallj +i.
jaj] [Dji J#

Ibjil <
(b) IfA = (a;) € R™" is astrictly column diagonally dominant matrix, that is, |a;;| > 3_;.;1a;| for every

i eN,thenA~! = (by) exists, and
payenl

byl <
! lajj]

|bji|, forallj #i.

Lemma 2.2. (a) LetA = (a;;) € R™" be astrictly row diagonally dominant M-matrix. Then, forA-1 = (by),
we have
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1ajil + > ksl kT b

< i forallj#i.

i S 4jj
(b) Let A = (a;) € R™™ be a strictly column diagonally dominant M-matrix. Then, for A l= (by), we
have

o o+ > kil OkICi

by < ———=7-— by, forallj+i.
aj
Proof. (a) For i € N, let ri(e) = max;; {#Lj‘%} Since A is strictly diagonally dominant, then

#ﬁlﬂ% < 1. Hence, there exists ¢ > 0 such that 0 < rj(e) < 1. Let R;(¢) = diag(r;(e),...,ri(e), 1,

ri(e), ..., 1i(8)).
For a given i € N, one checks that the matrix AR;(¢) is again a strictly row diagonally dominant
M-matrix. In fact, for j # i, we have

|ajil

ri(e) > ——=——, j#1i, jeN.
: @ij — D kil ik

So

\ajil +1i(e) Y lal < ri@)lagl,  j#i, jeN. (1)
k#j,i
While, for j = i, we have
Z lagTi(e) < Z [Gik| < . (2.2)
ki ket

From (2.1) and (2.2) we have proved that AR;(¢) is strictly row diagonally dominant, so it is also an
M-matrix. By Lemma 2.1 (a), we derive the following inequality:

a5l + D kil Gk ITi (8) Lo
- r.(;];,‘]( “bi, j#i, jeN.
1 )

7 (e)by <

ie.,

1ajil + > kil iklriCe) b

by <
ji S ;
aj

i J#1IL jeN.

Let ¢ — 0 to obtain

o il + 2 kil kT

bji < bi, forallj#1, jeN.

aj
(b) For matrix Cj(e)A, where Cj(e) = diag(ci(e), .. ., ¢i(e), 1,¢i(2), ..., Ci(e)), i € N and
|aj| + ¢ ;
Ci(e) =max| ———————— 1, ieN,
: I { A — D gzl A }

by Lemma 2.1 (b) and the same technique as in the above proof (a), Lemma 2.2 (b) is obtained. []

In the following, we need the notations
Gl + D kil ilri
ajj

i . j#i,jeN;  mj=max{my}, ieN.
J#

Lemma 2.3. Let A = (a;) € R™" be a strictly row diagonally dominant M-matrix. Then, for Al= (b,
we have
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1 1
?ﬁgbii<

— forallieN.
= — Y jilagim

Proof. (1) Let B = A~!. Since A is an M-matrix, then B > 0. Since AB = I, we have

n
1= Za,-jbﬁ = ajibj; — Z \a,j|bjl-, forallieN.
Jj=1 J#i
Hence
a;ib;j > 1, forallie N, thatis, al < by, forallieN.
ii

(2) By Lemma 2.2 (a), for all i € N,

1 = a;b; — X laylb; = ajby — Y- |aij\wbii
J# J# v
= | @i — X lagimj; ) by
i
ie.,
1 .
b; < , forallieN. O

i — 3 j4ilaglm;i
Remark 2.1. Example 4.1 shows that Lemmas 2.2 and 2.3 are improvements of Theorems 2.1 and 2.3
of [7].

Lemma 2.4 [9]. Let A = (a;) € C"™" and let sq,Sy, - - -, Sn be positive real numbers. Then all the eigenvalues
of A lie in the region

n

1
U Z€C1|Z—aii|<5iZ;\aji| .
i=1 j#i T

Lemma 2.5 [2]. If P is an irreducible M-matrix, and if Pz > kz for a nonnegative nonzero vector z, then
k < t(P).

Lemma 2.6 [10]. IfA~1 is a doubly stochastic matrix, then Ae = e,ATe = e, wheree = (1,1,..., 1)T.

3. Main results

In this section, we exhibit a new lower bound for (A o A=1), which improves the result of Li et al.
in [7] and the conjecture of Fiedler and Markham.
Theorem 3.1. Let A = (a;;) € R™" be an M-matrix, and suppose Al= (byj) is doubly stochastic. Then
1

b;j > ———, ieN.
T am;i

Proof. Since A~! is doubly stochastic and A is an M-matrix, by Lemma 2.6, we have

aiiZZ‘aiI<|+1=Z|aki|+1. ieN and b,‘i+Zbﬁ=], ieN.
ki k#i J#i
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The matrix A is strictly row diagonally dominant. Then, by Lemma 2.2 (a), for i € N, we have

1= b+ bjl < b+ Zj#:l 19kt % b;i

J# K
_ (1 'y \ﬂ],IJrZZZj,i ajk|ri> bii
J#
1+ Xmﬁ
J#

ie,b ieN. U

1
ii = Wv
Theorem 3.2. Let A = (a;) € R™" be an M-matrix, and letA-1 = (by) be doubly stochastic. Then

Qi mR
TAcA ) > mm [ s s B
1+Z]:;&1m]l

Proof. (1) First, we assume that A is irreducible. Since A~! is doubly stochastic, we obtain from Lemma
2.6 that
aﬁ:2|a,-j|+1 :Z\a]ﬂ-i-] and a; > 1, ieN.
j#i j#i
Let
Ri =3 "laglr, j#i, ieN.
k#j
Then, foranyje N,j #i
R = Z lajilr; < lajil + Z |ajklr; < Rj = Z lajk| < ajj.
kej ket i ke#j
Therefore, there exists a real number g;;(0 < g;; < 1), such that

aji| + Z |ajklr; = BiRj + (1 — ﬂ]l)R
k#j,i
Hence
BiiRj + (1 — Bjp)R;
ajj '
Let g; = max;;{g;i}, 0 < B; < 1 (if 8; = 0, then A is reducible, which is a contradiction). Let
BiRi+ (1 —BRT
m; = max{mﬂ} =———, jeN.
i# ajj
Since A is irreducible, then R; > 0, Rr > 0and 0 < m; < 1. Thus, by Lemma 2.4, there exists iy € N such
that

m;; =

1
A = Gigigbigio | < Mjg > = 1Giig bjig |
Jj#io

1
I = @igigbigiy — Mig Y Emjiobﬁo'
J#io
19jig | + > kio GjkTio
bioio

aj;
> aloloblolo m;, Z B R Ta- B; )Rr |aji | ajj
J#io
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WV

Qigig Digiy — Mig ) 1o bigiy
J#io

= (@iyiy — MjyRiy)b

Gigip — Mg Ri

142 jio Mii

min | _%i = miRi
i 1+ Zj;&i m;i

ipip

WV

WV

(2) When A is reducible, without loss of generality, we can assume that A has the block upper
triangular form

An A ... Ags
A= Ay ... Ay
Ass

with irreducible diagonal blocks A;;,i = 1,2,...,S. Then A~ is again block upper triangular with irre-
ducible diagonal blocks Ai;l. Observing that 7(A o A~1) = miny t(Ay o A,:k]) concludes the proof. []

Theorem 3.3. Let A = (a;) € R**" be an M-matrix with ayy = dy = - - - = dnn, and suppose Al = (by) is
doubly stochastic. Then

Proof. Since A1 is doubly stochastic, by Lemma 2.6, we have

i =y _lagl+ 1= layl+1.

ki ki
Then for every i € N,
aj aj; max;|a;
rj = max || :max{ |a) }: I#1| Jil )
| Ayl = il |14 Jay) 1+ maxlay|
Since f(x) = 1"? is an increasing function on (0, +o0), we have
. MaXy |djl < 2kpilthil  _ Dkil®hil _ DgeilGikl _d;, ieN.
1+ maxplagl — 1+ Xkl aji aji
Since A is an M-matrix withay; = ay =--- =agmand A1 = (byj) is doubly stochastic, we have
di=dj, j#i, =) lagl+1=> lapl+1=a;
ki kj

Sor; < dy, i,k € N. Then, we obtain

1G5+ e il il di - lail + 2 kil kT
- =

g ajj 4jj =M I
So
s; = max({s;} > max{m;) =m;, ieN.
J#i J#i
Therefore
1 1

a;; — S;R; < a;; — m;R; and .
1 ™M =< Y " 1_’_2]#1511 X l_"_zj#lmﬂ
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Thus, for any i € N, we have

m' {a — miRi }>m1n{a” S‘R'} O

Remark 3.1. Theorem 3.3 shows that the result of Theorem 3.2 is better than the result t(AoA~1) >

min; 1""2#} of Theorem 3.1 of [7]. So, the result of Theorem of 3.1 is improved.

Theorem 3.4. Let A = (a;;) € R™" be an M-matrix. Then

T(AcA ) > mm[ Z |a],m],’ .

b

Proof. If Ais anirreducible M-matrix, then A~ is positive and A o A~! is again irreducible. By a result of
Sinkhorn [11], there exist diagonal matrices D; and D, with positive diagonal entries such that D;A~1D,
isdoubly stochastic. The matrix B = D2‘1AD1‘1 isagain an M-matrix and satisfies t (Ao A1) = t(Bo B 1),

for BoB~! = (D;'AD; ") 0 (D1A7'D2) = (D1D;)(A o A-1)(D1D; 1)1,
So, for convenience and without loss of generality, we may assume that A is irreducible and A-1 =
(bjj) is doubly stochastic.

Since A~! = (by) is doubly stochastic, then, by Lemma 2.6, for every i € N,

aj = Z|GU|+1—Z\aﬂ|+1

Jj#i Jj#i
Note that

tAocA ) =1((Ao A HT) = AT 0 (A1) ).
Let
AT o AN he = (q1.q2,....qn)",

where e = (1,1,...,1)T. Without loss of generality, let q; = min;{q;}. Then, by Lemma 2.2, we have

n
q1 = Y _apbjy =anbun —)_ laj11bj

=1 A1
@11+ > ki 1GjklT
> anby - ) laj| ! b
' a
j#1 y
= (an -3 |aj1|mj1) b;1  (by Lemma2.3)
j#1
an — 21 1611mjp
> 7 2 T
an
1
=1-— Z|aj1|mj1.
ag <
1

Therefore, by Lemma 2.5, we have

tAcA ) =t AT o (A 1) > mm{l —Zaﬂ|mﬂ} O
j#i
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Remark 3.2. From the proof of Theorem 3.3, we know that s;; > m;;, j # i. So, we have

1 1
1-— > lailmy =1 o > lajilsji-
i Ut

This shows that the result of Theorem 3.4 is better than the result t(AocA~1) >
min; {1 - aiﬁzj#”aﬁ\sﬁ} in Theorem 3.5 of [7].

4. Example

Consider the following M-matrix

4 -1 -1 -1
-2 5 -1 -1
A=lo 2 4 -1
-1 -1 -1 4
Since Ae = e and ATe = e, A~1 is doubly stochastic. By calculations we have
0.4 0.2 02 02
A1 0.2333 03667 02 0.2
~10.1667 0.2333 04 02
0.2 0.2 02 04
(1) Upper bounds for entries of A=, First, by Lemma 2.1 (a), we obtain
r1 075 075 075 bii by  bsz  baa
A,] < 0.8 1 0.8 0.8 o b]] bzz b33 b44
=1075 075 1 0.75 bi1 by b3z by
010.75 075 0.75 1 bi1 by b3z by
If we apply Theorem 2.1 (a) of [7], we have
ro1 0.625 0.6375 0.6375 bi1 by b3z by
A1 < 0.7 1 0.65 0.65 bi1 by b3z by
NS (o)
0.5875 0.6875 1 0.65 bi1 byy b3z by
10.6375 0.625 0.5 1 bi1 by b3z by
If we apply Corollary 2.5 (2.7) of [7], we have
1 0.6667 0.5 0.5 bi1 by b3z by
Al < 0.6667 1 0.5 0.5 bi1 by b3z by
= 10.6667 0.6667 1 0.5 bi1 by b33 by
|0.6667 0.6667 0.6667 1 bi1 by b3z by
Combining Theorem 2.1 (a) of [7] and Corollary 2.5 (2.7) of [ 7], we have
ro1 0.625 05 057 [by1 by b3z  byg]
Al < 0.6667 1 0.5 05 . bi1 by b3z by
=~ 105875 06667 1 0.5 bi1 byy b3z by
106375 0625 05 1| [byy by b3z by
Now if we apply Lemma 2.2 (a), we have
ro1 0583 05 057 [by1 by b3z  byg]
0.6667 1 05 05 b b b b
-1 1 22 33 44
ATS| 05 06667 1 05|° by by by bag (41)
| 0.583 0583 05 1| |by1 by b3z by

Comparing the result of Lemma 2.2 (a) with the other results, we see that the result of Lemma 2.2

(a) is the best.
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Theorem 2.3 of [7] and Lemma 3.2 of [7] give the following bounds for the diagonal entries of A=1:

0.3419 < by < 0.5882; 0.3404 < by, < 0.5128,
0.3419 < b3 < 0.6061; 0.3404 < byy < 0.5882.

If we apply Theorem 3.1 and Lemma 2.3, we obtain better bounds:

0.3637 < by; < 0.4430; 0.3530 < by, < 0.3870,
04 < b33 <04; 04< by <04
(2) Lower bounds for r(Ac A~ 1).
If we apply the conjecture of Fiedler and Markham, we have

2 1
If we apply Theorem 3.1 of [7] we have
T(AoA™1) > 0.6624.

T(AcA ) >

If we apply Theorem 9 of [8] with A = B, we have
TAoA"1) > 0.2614.
The bound in our Theorem 3.2 is better:

(Ao A™1) > 0.7999.
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