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The energy of a graph is the sum of the moduli of the eigenval-

ues of its adjacency matrix. Integral circulant graphs can be charac-

terised by their order n and a set D of positive divisors of n in such

a way that they have vertex set Z/nZ and edge set {(a, b) : a, b ∈
Z/nZ, gcd(a−b, n) ∈ D}. Among integral circulant graphs of fixed

prime power order ps , those having minimal energy Emin(p
s) or

maximal energyEmax(p
s), respectively, are known.We study the en-

ergy of integral circulant graphs of arbitrary order n with so-called

multiplicative divisor sets. This leads to goodbounds forEmin(n) and
Emax(n) aswell as conjectures concerning the true value of Emin(n).

© 2012 Elsevier Inc. All rights reserved.

1. Introduction

The class of integral circulant graphs, i.e. graphs having a circulant adjacency matrix with integral

eigenvalues, is an object comprising algebraic, arithmetic and combinatorial features. In 2007 Klotz

and T. Sander [13] generalised the concept of unitary Cayley graphs to what they called gcd graphs: For

a given integer n > 1 and a setD of positive divisors of n they defined the corresponding graph to have

vertex set Z/nZ and edge set {(a, b) : a, b ∈ Z/nZ, gcd(a − b, n) ∈ D}, where Z/nZ denotes the

additive group of residue classes mod n. Thework of So [23] implies that the class of gcd graphs can be
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identified with the class of integral circulant graphs. Therefore, these graphs were labelled ICG(n,D)
for suitable n ∈ N and D ⊆ D(n) := {d > 0 : d|n}. Since ICG(n,D) has loops in case n ∈ D,

it is usually assumed that D ⊆ D∗(n) := D(n)\{n}. Quite a lot of interesting results on this class

of graphs have been obtained in recent years (see [18] for references). In particular, the examination

of the spectra of integral circulant graphs attracted a lot of attention (cf. [1,2,12,20,22]), where the

spectrum Spec(G) of a graph G is the set of eigenvalues of its adjacency matrix.

The eigenvalues of circulant matrices can be evaluated explicitly as exponential sums, i.e. sums

of powers of primitive roots of unity (cf. [7, Theorem 3.2.2]). Klotz and T. Sander [13, Theorem 16],

deduced from this that the eigenvalues λk(n,D) (1 � k � n) of the integral circulant graph ICG(n,D)
are given by

λk(n,D) = ∑
d∈D

c

(
k,

n

d

)
(1 � k � n), (1)

where

c(k, n) := ∑
j mod n

(j,n)=1

exp

(
2π i kj

n

)

is the well-known Ramanujan sum (cf. [3, Chapter 8.3–8.4]). Recently, the authors [14] observed that

λk(n,D) = (1 ∗D c(k, ·))(n) (1 � k � n), (2)

where 1 is the constant function and ∗D denotes the so-called D-convolution of arithmetic functions

introduced by Narkiewicz [17], which is a generalisation of the classical Dirichlet convolution. This

representation of the eigenvalues will be of great importance for our purpose.

In general, given non-empty sets A(n) ⊆ D(n) for all positive integers n, the (arithmetical) convolu-

tion A or the A-convolution of two arithmetic functions f , g ∈ CN is defined as

(f ∗A g)(n) = ∑
d∈A(n)

f (d)g

(
n

d

)
.

All convolutions considered in the literature are required to be regular, a property which basically

guarantees that f ∗A g is multiplicative for multiplicative functions f and g, and the inverse of 1 with

respect to ∗A, i.e. an analogue of the Möbius function μ exists. Narkiewicz [17] proved that regularity

of an A-convolution is, besides some minor technical requirements, essentially equivalent with the

following two conditions:

(α) A is multiplicative, i.e. A(mn) = A(m)A(n) := {ab : a ∈ A(m), b ∈ A(n)} for all coprime

m, n ∈ N.

(β) A is semi-regular, i.e. for every prime power ps with s � 1 there exists a divisor t = tA(p
s) of s,

called the type of ps, such that A(ps) = {1, pt, p2t, . . . , pjt} with j = s
t
.

Both of these properties will occur in a natural fashion along our way, but for our purposes concerning

the eigenvalues of ICG(n,D) the multiplicativity of the divisor sets D will be the guiding feature.

In 1978 Gutman [10] established the mathematical concept of the energy

E(G) := ∑
λ∈Spec(G)

|λ|

of a graph G, but it is rooted in chemistry way back in the 1930s (see [15] for connections between

Hückel molecular orbital theory and graph spectral analysis, and [5] for a mathematical survey). We
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abbreviate the energy of an integral circulant graph by setting

E(n,D) := E(ICG(n,D)) = ∑
λ∈Spec(ICG(n,D))

|λ| =
n∑

k=1

|λk(n,D)|. (3)

It is of particular interest to determine for any fixed positive integer n the extremal energies

Emin(n) := min{E(n,D) : D ⊆ D∗(n)}

and

Emax(n) := max{E(n,D) : D ⊆ D∗(n)}
as well as the divisor sets producing these energies. For prime powers n = ps this problem was

completely settled by the second author and T. Sander in [18, Theorem 3.1] and [19, Theorem 1.1],

respectively. The basis of these results was an explicit formula evaluating E(ps,D) (cf. [18, Theorem

2.1]). Due to the lack of a comparable energy formula for arbitrary n, it seems much more difficult to

deal with Emin(n) and Emax(n) in general. So far a crucial obstacle was that the energy revealed no

signs of multiplicativity with respect to n. In this note we shall overcome that deficiency by using the

theory of multiplicative divisor sets [14], which is closely linked with the eigenvalue representation

in (2). This will at least provide us with good bounds for Emin(n) and Emax(n) as well as divisor sets

producing the corresponding energies. In case of theminimal energy,we even conjecture to have found

Emin(n) and its associated divisor sets for all n.

The final section of this article addresses perspectives on further research, providing open problems

and conjectures. As a motivation for the reader, we prove a simple formula for the energy of some

integral circulant graphs whose divisor sets are not multiplicative (cf. Theorem 6.1).

2. Terminology and statement of results

The product of non-empty sets A1, . . . , At of integers is defined as

t∏
i=1

Ai := {a1 · . . . · at : ai ∈ Ai (1 � i � t)}.

For infinitely many such sets A1, A2, . . ., we require that Ai = {1} for all but finitely many i and define

∞∏
i=1

Ai :=
∞∏
i=1

Ai �={1}

Ai.

Let us call a set A of positive integers a multiplicative set if it is the product of non-empty finite sets

Ai ⊂ {1, pi, p2i , p3i , . . .}, 1 � i � t say, with pairwise distinct primes p1, . . . , pt . In other words, a

given setA is multiplicative if and only ifA = ∏
p∈P Ap, whereAp := {pep(a) : a ∈ A} for each prime

p, and ep(a) denotes the order of the prime p in a. Observe that Ap �= {1} only for those finitely many

primes dividing at least one of the a ∈ A.

Byuseof (2), theauthorsproved in [14, Theorem4.2] that givenamultiplicativedivisor setD ⊆ D(n)
we have for the energy of ICG(n,D) as defined in (3)

E(n,D) = ∏
p∈P, p|n

E(pep(n),Dp). (4)
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We shall investigate minimal and maximal energies of integral circulant graphs with respect to mul-

tiplicative divisor sets. To this end, we define

Ẽmin(n) := min{E(n,D) : D ⊆ D∗(n) multiplicative}

and

Ẽmax(n) := max{E(n,D) : D ⊆ D∗(n) multiplicative}.
Clearly,

Emin(n) � Ẽmin(n) � Ẽmax(n) � Emax(n) (5)

for all positive integers n. Moreover, for prime powers ps any divisor set D ⊆ D(ps) is trivially multi-

plicative, hence Ẽmin(p
s) = Emin(p

s) and Ẽmax(p
s) = Emax(p

s).

Theorem 2.1. Let n � 2 be an integer with prime factorisation n = p
s1
1 · . . . · pstt . Then

Ẽmax(n) =
t∏

i=1

θ(p
si
i ),

where for any prime power ps

θ(ps) :=
⎧⎨
⎩

1

(p+1)2

(
(s + 1)(p2 − 1)ps + 2(ps+1 − 1)

)
if 2 � s,

1

(p+1)2

(
s(p2 − 1)ps + 2(2ps+1 − ps−1 + p2 − p − 1)

)
if 2|s.

Moreover, for multiplicative sets D ⊆ D∗(n), we have E(n,D) = Ẽmax(n) if and only if D = ∏t
i=1 D(i)

with

D(i) =

⎧⎪⎪⎪⎨
⎪⎪⎪⎩

{1, p2i , p4i , . . . , psi−3
i , p

si−1
i } if 2 � si, pi � 3,

{1, 22, 24, . . . , 2si−3, 2si−1} or {1, 2, 23, . . . , 2si−4, 2si−2, 2si−1} if 2 � si, pi = 2,

{1, p2i , p4i , . . . , psi−4
i , p

si−2
i , p

si−1
i } or {1, pi, p3i , . . . , psi−3

i , p
si−1
i } if 2|si.

It should be observed that the maximising factor divisor sets D(i) are (almost) semi-regular (cf. (β) in

Section 1).

In order to describe the multiplicative divisor sets minimising the energy, let us agree to call D ⊆
D(ps) for a prime power ps uni-regular, if D = {pu, pu+1, . . . , pv−1, pv} for some integers 0 � u �
v � s, which is a special case of semi-regularity as defined in (β) if u = 0 and v = s.

Theorem2.2. Let n � 2 be an integerwith prime factorisation n = p
s1
1 ·. . .·pstt and p1 < p2 < · · · < pt .

Then

Ẽmin(n) = 2n

(
1 − 1

p1

)
.

Moreover, for multiplicative sets D ⊆ D∗(n), we have E(n,D) = Ẽmin(n) if and only if D = ∏t
i=1 D(i)

with D(1) = {pu1} for some u ∈ {0, 1, . . . , s1 − 1} and arbitrary uni-regular sets D(i) with p
si
i ∈ D(i) for

2 � i � t.
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Remarks 2.1.

(i) ItwasobservedbySo [23] that ICG(n,D) is connected if andonly if theelementsofD arecoprime.

Assuming connectivity in Theorem 2.2, minimising sets D = ∏t
i=1 D(i) then necessarily have

D(1) = {1} and D(i) = {1, pi, p2i , . . . , psii } for 2 � i � t, i.e. all D(i) with 2 � i � t have to be

semi-regular sets of type 1 (cf. (β) in Section 1).

(ii) The proof of Theorem 2.2 reveals that for D ⊆ D(n), i.e. possibly n ∈ D, we would have

Ẽmin(n) = n with minimising sets D = ∏t
i=1 D(i), where each D(i) is an arbitrary uni-regular

set containing p
si
i .

(iii) One could prove Theorem 2.2 by referring to the energy formula for ICG(ps,D) containing loops
(cf. [14, Proposition 5.1]). Instead we shall take a closer look at the second largest |λ| with

λ ∈ Spec(ICG(n,D)). This provides more insight into the underlying structure.

As a consequence of (5), we immediately obtain from Theorems 2.1 and 2.2 the desired bounds for

the extremal energies of integral circulant graphs with arbitrary divisor sets.

Corollary 2.1. Let n � 2 be an integerwith prime factorisation n = p
s1
1 ·. . .·pstt and p1 < p2 < · · · < pt .

Then

(i) Emax(n) � Ẽmax(n) = ∏t
i=1 θ(p

si
i );

(ii) Emin(n) � Ẽmin(n) = 2n
(
1 − 1

p1

)
.

Examples show that, while equality between Emax(n) and Ẽmax(n) does occur occasionally, we

usually have Emax(n) > Ẽmax(n) (cf. Example 3.1). This phenomenon is due to the fact that max-

imising divisor sets normally are not multiplicative. Yet Ẽmax(n) falls short of Emax(n) by less than a

comparatively small factor. To state this result, we denote by ϕ Euler’s totient function and by τ(n)
the number of positive divisors of n, whileω(n) is the number of distinct prime factors of n. As before,

ep(n) denotes the order of the prime p in n.

Theorem 2.3. Let n be a positive integer. Then

(i) Emax(n) � n
∑
d|n

ϕ(d)τ (d)

d
= n

∏
p∈P, p|n

(
1
2

(
1 − 1

p

)
(ep(n) + 1)(ep(n) + 2) + 1

p

)
;

(ii) Emax(n) <
(
3
4

)ω(n)
n τ(n)2;

(iii) Emax(n) � Ẽmax(n) τ (n).

The proof of Theorem 2.3 (ii) will show that

(
1
4

)ω(n)
τ (n)2 <

∑
d|n

ϕ(d)τ (d)

d
<

(
3
4

)ω(n)
τ (n)2, (6)

and (ii) is deduced from (i) by use of the upper bound in (6). We like to point out that the constants
1
4
and 3

4
in the lower and upper bound of (6), respectively, cannot be improved for all n, although we

expect
∑

d|n ϕ(d)τ (d)
d

≈
(
1
2

)ω(n)
τ (n)2 for most n. Yet, each of the bounds is sharp for integers with

certain arithmetic properties (cf. Remark 3.1).

As far as the magnitude of Emax(n) is concerned, it is well known that τ(n) = O(nε) for any

real ε > 0. In fact the true maximal order of τ(n) is approximately n
log 2

log log n . On average, τ(n) is of

order log n, but for almost all n it is considerably smaller, because the normal order of τ(n) is roughly
(log n)log 2 ≈ (log n)0.693. For all these results as well as for average and normal order of ω(n) the

reader is referred to [11, §§ 18.1–18.2, § 22.13 and § 22.11].
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As opposed to sets maximising the energy of integral circulant graphs, numerical calculations sug-

gest that divisor sets minimising the energy are always multiplicative. According to that, equality in

Corollary 2.1(ii) should hold for all n. We shall specify this observation in two conjectures at the end

of the paper.

3. Maximal energies for multiplicative divisor sets

In [14] the authors restricted the study of integral circulant graphs to multiplicative divisor sets. By

use of this concept, it is quite easy to determine Ẽmax(n).

Proof of Theorem 2.1. Let n = p
s1
1 · . . . · pstt be fixed, and let D ⊆ D∗(n) be a multiplicative set

satisfying E(n,D) = Ẽmax(n). By (4) (cf. [14, Theorem 4.2]), it follows that

Ẽmax(n) = E(n,D) = ∏
p∈P, p|n

E(pep(n),Dp) =
t∏

i=1

E(p
si
i ,Dpi).

This implies that E(psi ,Dpi) = Emax(p
si
i ) for 1 � i � t. From [19, Theorem 1.1] we conclude that

Emax(p
si
i ) = θ(p

si
i ) for all i, and the only corresponding divisor sets D(i) are just the ones listed in our

assertion. �

While equality between Emax(n) and Ẽmax(n) does occur occasionally, we usually have Emax(n) >

Ẽmax(n). This is illustrated by:

Example 3.1. We have θ(p) = 2(p − 1) for each prime p. By use of Theorem 2.1, we easily obtain

Ẽmax(6) = θ(2) ·θ(3) = 8, Ẽmax(105) = θ(3) ·θ(5) ·θ(7) = 384 and Ẽmax(21) = θ(3) ·θ(7) = 48.

Numerical evaluation of (3) yields Emax(6) = 10, Emax(105) = 520, but Emax(21) = 48 = Ẽmax(21).

In order to be able to compare Emax(n) and Ẽmax(n) and finally prove Theorem 2.3 completely, we

start by establishing an upper bound for Emax(n).

Proof of Theorem 2.3 (i) and (ii). (i) By (3), (2) and the well-known Hölder identity for Ramanujan

sums (cf. [3, Chapter 8.3–8.4]), we have for any n and any divisor set D ⊆ D(n)

E(n,D) =
n∑

k=1

∣∣∣∣∣∣
∑
d∈D

μ

(
n

(n, kd)

)
ϕ( n

d
)

ϕ
(

n
(n,kd)

)
∣∣∣∣∣∣ ,

where μ denotes the Möbius function. Let n/D := { n
d

: d ∈ D} ⊆ D(n) be the set of complementary

divisors of all d ∈ D with respect to n. Then

E(n,D) =
n∑

k=1

∣∣∣∣∣∣
∑

d∈n/D
μ

(
d

(d, k)

)
ϕ(d)

ϕ
(

d
(d,k)

)
∣∣∣∣∣∣

�
n∑

k=1

∑
d∈n/D

ϕ(d)

ϕ
(

d
(d,k)

) = ∑
d∈n/D

ϕ(d)
∑
g|d

1

ϕ( d
g
)

n∑
k=1

(k,d)=g

1 .

Since

n∑
k=1

(k,d)=g

1 = n

d

d∑
r=1

(r,d)=g

1 = n

d

d
g∑

r=1

(r, d
g
)=1

1 = n

d
· ϕ

(
d

g

)
,
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we conclude that

E(n,D) � n
∑

d∈n/D

ϕ(d)τ (d)

d
� n

∑
d|n

ϕ(d)τ (d)

d
.

Since this holds for all n, the inequality in (i) follows. By the fact that ϕ, τ and the identity function id

are all multiplicative, this property is carried over to
ϕ·τ
id

and its summatory function

f (n) := ∑
d|n

ϕ(d)τ (d)

d
(n ∈ N). (7)

Given a prime power ps, we obviously have

f (ps) =
s∑

j=0

ϕ(pj) · τ(pj)

pj
= 1 +

s∑
j=1

(pj − pj−1)(j + 1)

pj

= 1

2

(
1 − 1

p

)
(s + 1)(s + 2) + 1

p
.

(8)

This completes the proof of (i).

(ii) With regard to (i) it suffices to prove the upper bound in (6), but in order to justify the remark

following Theorem 2.3 we shall verify the lower bound as well. By (8), we have for all primes p and all

positive integers s that

1

4
� 1

2

(
1 − 1

p

)
<

f (ps)

(s + 1)2
� 3

4

(
1 − 2

3p

)
<

3

4
, (9)

thus 1
4
τ(ps)2 < f (ps) < 3

4
τ(ps)2. By the multiplicativity of τ(n) and the additivity of ω(n), which

implies the multiplicativity of cω(n) for any positive constant c, this proves (6). �

Remark 3.1. It is easy to see that
f (ps)

(s+1)2
comes close to the lower bound 1

4
in (9) for p = 2 and large

s and close to the upper bound 3
4
for large p and s = 1. Hence the lower bound in (6) is approximated

for integers n that are high powers of 2, while the upper bound is approached for squarefree integers

n having large prime factors.

Proposition 3.1. Let p be a prime, and let s be a positive integer. Then

g(ps) := psf (ps)

Ẽmax(ps)
�

⎧⎨
⎩

p+1

2p
(s + 2) for 2 � s,

p+1

2p
· (s+1)(s+2)

s
for 2|s

for the function f defined in (7).More precisely,wehave in particular g(2) = 2, g(p2) � 3andg(24) = 64
17
.

Proof. By [19, Theorem 1.1] we know that Ẽmax(p
s) = Emax(p

s) = θ(ps) as defined in Theorem 2.1.
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Case 1: 2 � s.
By use of (8) we obtain

g(ps) �

(
1
2

(
1 − 1

p

)
(s + 1)(s + 2) + 1

p

)
(p + 1)2

(s + 1)(p2 − 1) + 2p − 2
ps

�

(
1 − 1

p

)
(s + 1)(s + 2)(p + 1)2

2(s + 1)(p2 − 1)
= p + 1

2p
(s + 2).

Observe that the second inequality is an identity for p = 2 and s = 1.

Case 2: 2|s.
Applying again (8), we conclude

g(ps) �

(
1
2

(
1 − 1

p

)
(s + 1)(s + 2) + 1

p

)
(p + 1)2

s(p2 − 1) + 4p − 2
p

+ 2

ps−2 − 2

ps−1 − 2
ps

�

(
1 − 1

p

)
(s + 1)(s + 2)(p + 1)2

2s(p2 − 1)
= p + 1

2p
· (s + 1)(s + 2)

s
.

The special values for g(ps) are the results of straightforward computations. �

Corollary 3.1. Let n be a positive integer with prime factorisation n = p
s1
1 · . . . · pstt . Then we have

Emax(n)

Ẽmax(n)
� τ(n)

t∏
i=1

pi + 1

2pi

t∏
i=1

2�si

(
1 + 1

si + 1

) t∏
i=1

2|si

(
1 + 2

si

)
.

Proof. We have by Theorem 2.3 (i), Theorem 2.1 and Proposition 3.1 that

Emax(n)

Ẽmax(n)
� nf (n)

Ẽmax(n)
=

t∏
i=1

g(p
si
i )

�
t∏

i=1

pi + 1

2pi

t∏
i=1

2�si

(si + 2)
t∏

i=1

2|si

(si + 1)(si + 2)

si
.

(10)

Since τ(n) = ∏t
i=1(si + 1), the corollary follows. �

Proof of Theorem 2.3 (iii). We cannot use Corollary 3.1 directly, but by (10) we know that

Emax(n)

Ẽmax(n)
�

∏
p∈P, p|n

g(pep(n)).

Since τ(n) = ∏
p∈P, p|n(ep(n) + 1), it suffices to show that g(ps) � s+ 1 for any prime power ps. This

will be verified by use of the different bounds obtained in Proposition 3.1.

Case 1: 2 � s.

We have g(ps) � p+1

2p
(s + 2) � s + 1 for all p and s except for p = 2, s = 1, but g(2) = 2 closes the

gap.

Case 2: s = 2.

This case is settled by the fact that g(p2) � 3.
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Case 3: 2|s and s � 4.

Here we have g(ps) � p+1

2p
· (s+1)(s+2)

s
� s + 1 for all p and s except for p = 2, s = 4, but we know

that g(24) = 64
17

� 5. �

4. Spectral properties of integral circulant graphs

Before we prove some more intriguing results on eigenvalues of integral circulant graphs, which

will be applied in the subsequent section, let us state without proof some more or less obvious facts.

• An integral circulant graph ICG(n,D) is apparently regular, more precisely �(n,D)-regular,
where

�(n,D) := (
1 ∗D ϕ

)
(n) = ∑

d∈D
ϕ

(
n

d

)
(11)

is the nth eigenvalue λn(n,D) of ICG(n,D) as defined in (1). This can easily be deduced from the

Perron–Frobenius theorem (cf. [9, Chapter 8.8]) and the fact that c(n, n) = ϕ(n).
• By the observation of So [23] that ICG(n,D) withD = {d1, . . . , dr}, say, is connected if and only if

gcd(d1, . . . , dr) = 1, connectivity can readily be checked. If ICG(n,D) is connected, then �(n,D)
is the largest eigenvalue of ICG(n,D), the so-called spectral radius of the graph, and it occurs with

multiplicity 1 (cf. [4, Proposition 3.1]).
• Given a prime power ps �= 2 and any divisor set D ⊆ D(ps), it is easily seen that −�(ps,D) is not

an eigenvalue of ICG(ps,D). Consequently we conclude by [9, Theorem 8.8.2] that ICG(ps,D) is not
bipartite and hence the spectrum of ICG(ps,D) is not symmetric about 0.

Besides multiplicativity, our proofs concerning Emin(n) will be based on knowledge about the

second largest modulus of the eigenvalues of ICG(n,D) (cf. Remark 2.1 (iii)), i.e. about

�(n,D) := max{|λ| : λ ∈ Spec(ICG(n,D)), |λ| < �(n,D)}, (12)

which we only define if ICG(n,D) has eigenvalues differing in modulus. It will be crucial for us to

gather some facts about �(n,D). The first step is

Lemma 4.1. Let n be a positive integer and D ⊆ D(n) with n ∈ D.

(i) Then E(n,D) � n.

(ii) ICG(n,D) has a negative eigenvalue if and only if E(n,D) > n.

Proof. Thanks to linear algebra we know that
∑n

k=1 λk(n,D) equals the trace of the adjacencymatrix

of ICG(n,D). Since n ∈ D by hypothesis, ICG(n,D) has a loop at every vertex, i.e. all diagonal entries

of its adjacency matrix are 1. Hence
∑n

k=1 λk(n,D) = n, and consequently

E(n,D) =
n∑

k=1

|λk(n,D)| �
∣∣∣ n∑
k=1

λk(n,D)
∣∣∣ = n, (13)

whichproves (i). Equality in (13) onlyholds if allλk(n,D)have the samesign.Weknowthatλn(n,D) =
�(n,D) > 0, and this implies (ii). �
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Lemma 4.2. Let ps be a prime power and D = {pa1 , pa2 , . . . , par−1 , par } with integers 0 � a1 < a2 <
· · · < ar−1 < ar � s. Then

λk(p
s,D) =

r∑
i=1

ai�s−j

ϕ(ps−ai) −
r∑

i=1

ai=s−j−1

ps−ai−1 (14)

for k ∈ {1, 2, . . . , ps}, where j := ep(k).

Proof. We have for k ∈ {1, 2, . . . , ps} that

λk(p
s,D) = ∑

d∈D
c

(
k,

ps

d

)
=

r∑
i=1

c(k, ps−ai). (15)

Weuse twowell-knownpropertiesofRamanujansums(cf. [3]or [21]), namely c(k, n) = c(gcd(k, n), n)
for all k and n, and

c(pu, pv) =

⎧⎪⎪⎪⎨
⎪⎪⎪⎩

ϕ(pv) if u � v,

−pv−1 if u = v − 1,

0 if u � v − 2

for primes p and non-negative integers u and v. On setting m := k

pj
, i.e. k = pjm with 0 � j � s and

m � 1, p � m, it follows that

c(k, ps−ai) = c(pjm, ps−ai) = c(pmin{j,s−ai}, ps−ai) =

⎧⎪⎪⎪⎨
⎪⎪⎪⎩

ϕ(ps−ai) if j � s − ai,

−ps−ai−1 if j = s − ai − 1,

0 if j � s − ai − 2.

Inserting this into (15), we obtain (14). �

Proposition 4.1. Let ps be a prime power and D ⊆ D(ps) with ps ∈ D, and set r := |D|.
(i) For r = 1, i.e. D = {ps}, we have Spec(ICG(ps,D)) = {1}.
(ii) Let r � 2. Then D is uni-regular if and only if �(ps,D) = 0. In this case the maximal eigenvalue

�(ps,D) = ps−a1 = pr−1 has multiplicity pa1 where pa1 is the smallest element in D.

(iii) If r � 2 and D is not uni-regular, then E(ps,D) > ps.

Proof. Let D = {pa1 , pa2 , . . . , par−1 , par } with 0 � a1 < a2 < · · · < ar−1 < ar = s. Hence in case

r = 1, that is D = {ps}, we trivially have λk(p
s,D) = c(k, 1) = 1 for all k, which proves (i).

As from now we assume r � 2. On setting j := ep(k), we apply Lemma 4.2 and distinguish two

cases.

Case 1: s − a � j � s − a−1 − 2 for some 1 �  � r, where a0 := −2.

Using the notation D(x) := {d ∈ D : d � x}, we obtain from Lemma 4.2 that

λk(p
s,D) =

r∑
i=1

ai�a

ϕ(ps−ai) = �(ps,D(pa )) (16)

with �(n,D) as defined in (11).
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Case 2: j = s − a − 1 for some 1 �  � r − 1.

Now Lemma 4.2 yields

λk(p
s,D) =

r∑
i=1

ai�a+1

ϕ(ps−ai) − ps−a−1 = �(ps,D(pa+1)) − ps−a−1. (17)

In order to prove (ii), we first assume that D = {ps−r+1, ps−r+2, . . . , ps−1, ps} is uni-regular. We

observe that for a = a−1 + 1 (2 �  � s) the corresponding interval considered in Case 1 is empty.

Hence Case 1 occurs only if  = 1, i.e. for s − a1 � j � s, and then

λk(p
s,D) = �(ps,D(pa1)) = �(ps,D) = λps(p

s,D), (18)

which is the largest eigenvalue. This reflects the phenomenon that the largest eigenvalue has multi-

plicity greater than 1 if a1 > 0, that is, the elements of D are not coprime or, equivalently, ICG(n,D)
is disconnected (see Remark 2.1 (i)). More precisely, we have for each j = s − u, 0 � u � a1, exactly

ϕ(pu) integers k = pjm with p � m and 1 � k � ps. Hence the multiplicity of the largest eigenvalue

�(ps,D) is precisely
∑a1

u=0 ϕ(pu) = pa1 . By (18) we know that �(ps,D) = �(ps,D(pa1)), and since

a1 = s−r+1 inD = {ps−r+1, ps−r+2, . . . , ps−1, ps}, the asserted formulas for�(ps,D) in (ii) follow.

By the argument above, eigenvalues other than the largest one can only appear in Case 2. For

D = {ps−r+1, ps−r+2, . . . , ps−1, ps} and j = r −  − 1 (1 �  � r), we obtain by (17)

λk(p
s,D) = �(ps,D(ps−r++1)) − pr−−1 =

r−−1∑
i=0

ϕ(pi) − pr−−1 = 0.

This proves �(ps,D) = 0.

To complete the proof of (ii), it remains to show that �(ps,D) �= 0 for any non-regular set D. Such

a divisor set can be written as D = {pa1 , . . . , pa , pa+1 , . . . , par } with 0 � a1 < a2 < · · · < ar = s,

a+1 − a � 2 and ai+1 − ai = 1 for some 1 �  � r − 1 and all i =  + 1, . . . , r − 1. Then for all

k = ps−a−1m, p � m, i.e. j = s − a − 1, we have by (17) in Case 2

λk(p
s,D) = �(ps,D(pa+1)) − ps−a−1 =

r∑
i=+1

ϕ(ps−ai) − ps−a−1 < 0, (19)

hence �(ps,D) �= 0.

It remains to verify (iii). SinceD is not uni-regular,wehavenegative eigenvalues by (19), and Lemma

4.1 (ii) proves E(ps,D) > ps. �

5. Minimal energies for multiplicative divisor sets

It was shown in [18, Theorem 3.1] that for a prime power ps

Emin(p
s) = 2ps

(
1 − 1

p

)
. (20)

Observe that the minimum is extended over divisor sets D ⊆ D∗(ps), i.e. over loopless graphs.

Moreover, the ps-minimal divisor sets were identified precisely as the singleton sets D = {pj} with

0 ≤ j � s−1. For our purposewe shall require a corresponding result for graphs ICG(ps,D) containing
loops, that is with ps ∈ D.
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Proposition 5.1. Let ps be a prime power. Then

Êmin(p
s) := min{E(ps,D) : ps ∈ D ⊆ D(ps)} = ps, (21)

where the minimising divisor sets are exactly the uni-regular ones.

The reader might notice that (20) implies Êmin(p
s)�Emin(p

s), where equality only holds in case p=2.

Proof of Proposition 5.1. For r = 1, the assertion follows immediately from Proposition 4.1(i). Hence

assume that r � 2. By Proposition 4.1(iii) it suffices to show that we have E(ps,D) = ps for each uni-

regular divisor set D = {pa1 , pa1+1, . . . , ps−1, ps}. We know from Proposition 4.1(ii) that ICG(n,D)
hasonly twodifferent eigenvalues, namely�(ps,D) = ps−a1 withmultiplicitypa1 and0 (consequently

with multiplicity ps − pa1 ). Therefore, E(ps,D) = pa1 · ps−a1 = ps, as required. �

Proof of Theorem 2.2. Let D ⊆ D∗(n) be a multiplicative set such that E(n,D) = Ẽmin(n). Then

D = ∏t
i=1 D(i) for certain divisor sets D(i) ⊆ D(p

si
i ) (1 � i � t), and Ẽmin(n) = ∏t

i=1 E(p
si
i ,D(i)) by

[14,Corollary4.1(ii)]. By theminimalityofE(n,D) it follows from[18, Theorem3.1] andourProposition

5.1 that for 1 � i � t

E(p
si
i ,D(i)) =

⎧⎨
⎩ 2p

si
i (1 − 1

pi
) if p

si
i /∈ D(i),

p
si
i if p

si
i ∈ D(i),

where D(i) is either a singleton set {puii } for some 0 � ui � si − 1 or a uni-regular set containing p
si
i ,

respectively. This yields

Ẽmin(n) = n

t∏
i=1

p
si
i /∈D(i)

2

(
1 − 1

pi

)
, (22)

and our assumption n /∈ D implies that p
si
i /∈ D(i) for at least one i. Under this restriction, and since p1

is the smallest of the primes involved, it is easily seen that the righthand side of (22) becomesminimal

if p
s1
1 /∈ D(1) and p

si
i ∈ D(i) for 2 � i � t with the corresponding divisor sets D(i) just mentioned. �

6. Concluding remarks, problems and conjectures

It would be most desirable to have an explicit formula for E(n,D) in case of arbitrary positive

integers n and arbitrary divisor sets D, comparable with the one available for prime powers n = ps in

[18]. Such a formula is missing thanks to the lack of amultiplicative behaviour of E(n,D)with respect

to n. In order to make good this deficit, we developed the concept of multiplicative divisor sets. This

enabled us to obtain a closed formula for E(n,D) at least for multiplicative sets D. The next result

shows that we can even go a little beyond multiplicative divisor sets.

We denote the complement of someD ⊆ D(n) byD := D(n)\D. Apparently, eitherD orD contains

n, hence either ICG(n,D) or ICG(n,D) has loops. This, however, collides with the standard notion of

graph complements. We overcome this minor obstacle by considering for divisor sets D ⊆ D(n) the

set D∗ := D\{n} ⊆ D∗(n). Then, assuming n ∈ D ⊆ D(n) and thus n /∈ D, the graph complement

ICG(n,D∗) of ICG(n,D∗) satisfies ICG(n,D∗) = ICG(n,D). Observe that for a multiplicative divisor

set D � D(n) with n ∈ D, the set D is not multiplicative if n is not a prime power.

Theorem 6.1. Let n be a positive integer, and let D � D(n) be multiplicative with n ∈ D. Then

E(n,D) = ∏
p∈P, p|n

E(pep(n),Dp) + n − 2�(n,D) (23)

with Dp as defined in Section 2.
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Proof. Obviously, we have for 1 � k � n that

λk(n,D) = λk(n,D∗) + c(k, 1) = λk(n,D∗) + 1. (24)

It is well known [9, Lemma 8.5.1] that

−1 − λ1(n,D∗), −1 − λ2(n,D∗), . . . , −1 − λn−1(n,D∗), n − 1 − �(n,D∗)

are the eigenvalues of ICG(n,D∗) = ICG(n,D). Thus, by (24), ICG(n,D)has the eigenvalues−λk(n,D)
(1 � k � n − 1) and n − 1 − �(n,D∗) = n − �(n,D). The application of [14, Theorem 4.2] (with

g = 1) yields

E(n,D) =
n−1∑
k=1

|λk(n,D)| + |λn(n,D)|

=
n−1∑
k=1

|λk(n,D)| + (n − �(n,D))

= E(n,D) − |λn(n,D)| + (n − �(n,D))

= ∏
p∈P, p|n

E(pep(n),Dp) + n − 2�(n,D). �

Using [18, Theorem 2.1] or [14, Theorem 5.1] in (23) immediately implies the desired explicit for-

mula. Itwouldbeverydesirable toenlarge this classof integral circulantgraphswithnon-multiplicative

divisor sets and obtain formulae for their energies.

We confined our study of the energies of integral circulant graphs to the rather restricted class

having multiplicative divisor sets. Yet, somewhat unexpectedly, this led to good bounds for Emin(n)
and Emax(n). On top of that, the results obtained by the study of multiplicative divisor sets, combined

with some numerical evidence, encourage us to make the following two conjectures.

Conjecture 6.1. For each integer n � 2, we have Emin(n) = 2n
(
1 − 1

p1

)
, where p1 denotes the smallest

prime factor of n.

Conjecture 6.2. Let n � 2 be an arbitrary integer. Then E(n,D) = Emin(n) implies that D is a multi-

plicative divisor set.

Observe that Conjecture 6.1 is a consequence of Conjecture 6.2 by Theorem 2.2.

In 2005 it was conjectured by So that, given a positive integer n, two graphs ICG(n,D1) and

ICG(n,D2) are cospectral, that is Spec(ICG(n,D1)) = Spec(ICG(n,D2)), if and only if D1 = D2. For

n = ps this follows immediately from (11) by straightforward comparison of the largest eigenvalues

�(ps,D1) and �(ps,D2) of the two graphs. So’s conjecture was also confirmed for the slightly more

general case n = psqt with primes p �= q and t ∈ {0, 1} (cf. [6] for details), but its proof required

the study of eigenvalues other than the largest one as well as their multiplicities. For arbitrary posi-

tive integers n and arbitrary divisor sets the problem is still open. Therefore, we suggest to study the

following weaker conjecture, which might be more accessible.

Conjecture6.3. Letnbeapositive integer, and letD1,D2 ⊆ D∗(n)be twomultiplicative sets. If ICG(n,D1)
and ICG(n,D2) are cospectral, then D1 = D2.

Considering the second largest modulus of the eigenvalues of ICG(n,D) was the key tool in the

proof of Propositions 4.1 and 5.1, and thus Theorem 2.2. Incidentally, the second largest eigenvalue

is the decisive parameter for the Ramanujan property of graphs (cf. [16]). As a by-product to our

investigations on minimal energies, we would be able to characterise Ramanujan integral circulant

graphs of prime power order, thus complementing a result of Droll [8] for Ramanujan unitary Cayley
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graphs, i.e. graphs of type ICG(n, {1}). In principle, our method would even suffice to characterise the

Ramanujan ICG(n,D) for arbitrary n in case of multiplicativeD, but harsh technical complications are

to be expected along the way. Therefore, this will be dealt with in a separate publication.
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