

Note

Contents lists available at ScienceDirect

Discrete Applied Mathematics

journal homepage: www.elsevier.com/locate/dam

On a new code, $[2^n - 1, n, 2^{n-1}]$

M. Basu^{a,*}, Md.M. Rahaman^a, S. Bagchi^b

^a Department of Mathematics, University of Kalyani, Kalyani-741235, India ^b Department of Mathematics, National Institute of Technology, Durgapur-713209, India

ARTICLE INFO

Article history: Received 18 February 2008 Received in revised form 17 June 2008 Accepted 18 June 2008 Available online 5 August 2008

Keywords: Linear code Support Design Parity sectioned reduction Sectioned code Non-uniform error correction

ABSTRACT

A binary linear code in F_2^n with dimension k and minimum distance d is called an [n, k, d] code. A t- (n, m, λ) design D is a set X of n points together with a collection of m-subsets of X (called a block) such that every t-subset of X is contained in exactly λ blocks. A constant length code which corrects different numbers of errors in different code words is called a non-uniform error correcting code. Parity sectioned reduction of a linear code gives a non-uniform error correcting capability of this code is $2^{n-2} - 1 = e$. It is shown that this code holds a $2 - (2^n - 1, 2^{n-1}, 2^{n-2})$ design. Also the parity sectioned reduction code after deleting the same $g (\leq e)$ positions of each code word of this code holds a $1 - (2^n - 1 - g, 2^{n-1} - j, {}^gC_j . 2^{n-1-g})$ design for $n \geq 3, g = 1, 2, \ldots, e$ and $j = 0, 1, \ldots, g$. © 2008 Elsevier B.V. All rights reserved.

1. Introduction

It is important to define a new code that can be encoded or decoded efficiently with error correcting ability.

A generator matrix for the [n, k, d] linear code C over F_2^n is a $k \times n$ matrix G whose rows are linearly independent of $C = \mathbf{RS}(G)$, the row space of G.

In this paper, the systematic generator matrix for a new code, $[2^n - 1, n, 2^{n-1}]$, is defined. The different properties of this code are stated and proved.

Let P_n be a matrix of order $2^{n-1} \times n$. The rows of P_n are all binary code words of length n except the $\overline{0}$ code word.

In this paper, a systematic generator matrix of the new code is designed via $G_n = [P_n]^t$. Now we consider the square matrix C_n^* of order $2^n - 1$ whose rows are all the code words generated by G_n except the $\overline{0}$ code word.

For example,

$P_3 =$	$\begin{pmatrix} 1 \\ 0 \\ 0 \\ 1 \\ 1 \\ 0 \\ 1 \end{pmatrix}$	0 1 0 1 0 1	0 0 1 0 1 1	,	G ₃ =	$\begin{pmatrix} 1\\0\\0 \end{pmatrix}$	0 1 0	0 0 1	1 1 0	1 0 1	0 1 1	$\begin{pmatrix} 1\\1\\1 \end{pmatrix}$,	$C_{3}^{*} =$	$\begin{pmatrix} 1 \\ 0 \\ 0 \\ 1 \\ 1 \\ 0 \\ 1 \end{pmatrix}$	0 1 0 1 0 1	0 0 1 0 1 1	1 1 0 0 1 1	1 0 1 1 0 1	0 1 1 1 1 0	1 1 1 0 0 0	
	$\backslash 1$	1	1/	/										\backslash_1	1	1	0	0	0	1/	

* Corresponding author. Tel.: +91 9433186058; fax: +91 3325828282. E-mail addresses: manjusri_basu@yahoo.com (M. Basu), meeza_maths@rediffmail.com (Md.M. Rahaman), satya.bagchi@nitdgp.ac.in (S. Bagchi).

⁰¹⁶⁶⁻²¹⁸X/\$ – see front matter 0 2008 Elsevier B.V. All rights reserved. doi:10.1016/j.dam.2008.06.029

$P_{4} =$	$\begin{pmatrix} 1 \\ 0 \\ 0 \\ 0 \\ 1 \\ 1 \\ 1 \\ 0 \\ 0 \\ 1 \\ 1$	0 1 0 1 0 1 1 0 1 1 0 1 1 0 1 1	0 0 1 0 1 0 1 0 1 1 0 1 1 1 1	0 0 1 0 0 1 0 1 1 0 1 1 1 1 1 1	,	G	4 =	$\begin{pmatrix} 1\\0\\0\\0 \end{pmatrix}$	0 1 0 0	0 0 1 0	0 0 0 1	1 1 0 0	1 0 1 0	1 0 0 1	0 1 1 0	0 1 0 1	0 0 1 1	1 1 1 0	1 1 0 1	1 0 1 1	0 1 1 1	
<i>C</i> ₄ [*] =	$ \begin{pmatrix} 1 \\ 0 \\ 0 \\ 1 \\ 1 \\ 1 \\ 0 \\ 0 \\ 0 \\ 1 \\ 1$	0 1 0 1 0 1 1 0 1 1 1 0	0 0 1 0 1 0 1 0 1 1 0	0 0 1 0 1 0 1 1 0 1 1 1 1	1 1 0 0 1 1 1 1 0 0 0 1 1	1 0 1 0 1 0 1 0 1 0 1 0	1 0 1 1 0 0 1 1 1 0	0 1 0 1 1 0 0 1 1 0 1	0 1 0 1 1 0 1 1 0 1 1 0	0 1 1 0 1 1 1 1 0 1 1	1 1 0 0 0 1 0 1 1 1 0	1 1 0 1 0 1 0 1 0 1 0 1	1 0 1 1 0 0 1 1 0 0 0	0 1 1 1 1 1 1 0 0 0 0 0 0	1 1 1 0 0 0 0 0 0 1 1							
	$\begin{pmatrix} 1\\0\\1 \end{pmatrix}$	0 1 1	1 1 1	1 1 1	1 1 0	0 1 0	0 1 0	1 0 0	1 0 0	0 0 0	0 0 1	0 0 1	1 0 1	0 1 1	1 1 0							

and so on.

2. Definitions

1. Support [3]: Let \bar{x} be a binary word of length *n*. The set of positions in which \bar{x} has non-zero entries is called the support of \bar{x} .

2. Design [4]: Let C be a binary code of length n. Let S_w be the set of code words in C of weight w. We say that S_w holds a $t-(n, w, \lambda)$ design if the supports of code words in S_w form the blocks of a $t-(n, w, \lambda)$ design, and if for any t-set $T \subset \{1, 2, ..., n\}$ there are exactly λ code words of weight w in C with 1's in the positions given by T.

3. Parity sectioned reduction [1]: Let C be a binary e-error correcting (n, k) linear systematic code with parity check matrix $H_{n-k,n} = [A|I_{n-k}]$ and error range inequalities

$$\sum_{j=1}^{n} |x_j - c_{i,j}| \le e, \quad i = 1, 2, \ldots, 2^k.$$

By *g*-parity sectioned reduction of the code *C*, we mean the following operations on the parity check matrix $H_{n-k,n}$ and the error range inequalities:

- 1. Select some $g (\leq e)$ parity check positions for sectioning; if the code is sectioned at the *p*th check position, then delete the *p*th column and row of I_{n-k} . A reduced matrix $H_{n-k-g,n-g} = [A' : I_{n-k-g}]$ is obtained.
- 2. In each code word of C, delete the g-parity check digits; in the error range inequalities, assign values from (0, 1) to the variables corresponding to these g positions.

3. Properties

Property 1. The matrix C_n^* can be rearranged in a manner such that the transpose of this matrix is equal to itself.

Property 2. The Hamming weight (i.e. support) of each code word of C_n is 2^{n-1} .

Property 3. The code C_n is self-orthogonal for n > 2.

1 1 **Property 4.** The code C_n is not a dual code since the length of the code is odd for all values of n [2].

Property 5. The code C_n is not perfect.

Property 6. The code C_n is a $2^{n-2} - 1$ -error correcting code.

Property 7. The (g + 1) sets $\{C'_{ni} | j = 0, 1, ..., g\}$ of the $g (\leq 2^{n-2} - 1 = e)$ -parity sectioned reduction of C_n contain

$$\begin{pmatrix} g \\ j \end{pmatrix} . 2^{k-g}$$

code words [1].

Property 8. The (g + 1) sets of $\{C'_{nj} | j = 0, 1, ..., g\}$ of the $g (\leq 2^{n-2} - 1 = e)$ -parity sectioned reduction of C_n can correct up to e - j errors [1].

Property 9. The $g (\leq 2^{n-2} - 1 = e)$ -parity sectioned reduction of C_n gives a code C'_n which is a non-uniform error correcting $(2^n - 1 - g, n)$ linear code [1].

Theorem 1. The minimum weighted code words of $[2^n - 1, n, 2^{n-1}]$ hold a 2- $(2^n - 1, 2^{n-1}, 2^{n-2})$ design, $n \ge 2$.

Proof. Every code word of $[2^n - 1, n, 2^{n-1}]$ has constant weight 2^{n-1} (Property 2).

Now C_n^* is the code word matrix of the $[2^n - 1, n, 2^{n-1}]$ code C_n except the $\overline{0}$ code word. Without any loss of generality C_n^* is taken in such a manner that $C_n^* = C_n^{*t}$ (Property 1). Therefore, the *i*th row and *i*th column of C_n^* are identical.

For a 2-design, $2^{n-1}C_2$ combinations of columns of C_n^* are to be considered or, in other words, for a 2-design, $2^{n-1}C_2$ combinations of rows of C_n^* are to be considered.

Now we choose any two rows of C_n^* , i.e. any two distinct code words C_i , C_j (say), $i, j = 1, 2, ..., 2^n - 1$ and $i \neq j$, of $[2^n - 1, n, 2^{n-1}]$.

$$d = \min\{d(C_i, C_j) | i, j = 1, 2, \dots, 2^n - 1\}$$

= min{w(C_i) | i = 1, 2, \dots, 2^n - 1}
= 2^{n-1}.

Therefore, the number of columns of C_i and C_j which contain $(0, 1)^t$ and $(1, 0)^t$ is equal to 2^{n-1} , i.e. there are in total 2^{n-1} 1's in the columns of the form $(0, 1)^t$ and $(1, 0)^t$ of the code words C_i and C_j .

Again the total of 1's of the code words C_i and C_j is $2 \cdot 2^{n-1} = 2^n$.

So the remaining number of 1's which are of the form $(1, 1)^t$ in C_i and C_j is $2^n - 2^{n-1} = 2^{n-1}$.

Hence the number of columns $(1, 1)^t$ is $2^{n-1}/2 = 2^{n-2}$.

Therefore, the minimum weighted code word of $[2^n - 1, n, 2^{n-1}]$ holds a 2- $(2^n - 1, 2^{n-1}, 2^{n-2})$ design, $n \ge 2$. \Box

Theorem 2. The minimum weighted code words of $[2^n - 1, n, 2^{n-1}]$ do not hold a 3-design.

Proof. We have

	1	0	 0	÷	1)
	0	1	 0	÷	1	···· ····
$G_n =$	0	0	 0	÷	0	
			 	÷		
	0 /	0	 1	÷	0)

First we choose the first three columns from C_n^* ; then we get at least one row which contains three consecutive 1's, since the sum of the first three rows is a row of C_n^* .

Now we choose the first, second and (n+1)th columns of C_n^* ; then it is proved that we do not get any row which contains three consecutive 1's. \Box

Theorem 3. The minimum weighted code words of (g + 1) sets $\{C'_n | j = 0, 1, ..., g\}$ of the $g (\leq 2^{n-2} - 1)$ -parity sectioned reduction of C_n hold a $1 - (2^n - 1 - g, 2^{n-1} - j, {}^gC_j, 2^{n-1-g})$ design for $n \geq 3$.

- **Proof.** Let C_n be the $[2^n 1, n, 2^{n-1}]$ code. Then, the length of a $g (\leq 2^{n-2} 1)$ -parity sectioned reduction code is $2^n 1 g$. It is obvious that the weight of the parity sectioned reduction code C'_{nj} is 2^{n-1-j} .
- The total number of code words of the code C'_{nj} is ${}^{g}C_{j}2^{n-g}$ and the number of 1's in each column of the code words of C'_{nj} is ${}^{g}C_{j}2^{n-g}/2 = {}^{g}C_{j}2^{n-g-1}$.

Hence the theorem. \Box

Note: By Theorem 2, it can be stated that the minimum weighted code word of (g + 1) sets $\{C'_{nj}|j = 0, 1, ..., g\}$ of the $g (\leq 2^{n-2} - 1)$ -parity sectioned reduction of C_n^* does not hold a 2-design.

Acknowledgements

The authors thank the referee for his/her valuable comments. The second author thanks C.S.I.R. for financial support of his research work.

References

- [1] M.A. Bernard, B.D. Sharma, Linear codes with non-uniform error correcting capability, Designs, Codes and Cryptography 10 (1997) 315–323.
- [2] San Ling, Chaoping Xing, A first course of coding theory, National University of Singapore, 2004.
- [3] V.S. Pless, W.C. Huffman, Handbook of Coding Theory, vol. II, North-Holland, 1998.
- [4] S. Roman, Coding and Information Theory, Springer, 1991.