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a b s t r a c t

A binary linear code in F n2 with dimension k and minimum distance d is called an [n, k, d]
code. A t-(n,m, λ) design D is a set X of n points together with a collection of m-subsets
of X (called a block) such that every t-subset of X is contained in exactly λ blocks. A
constant length code which corrects different numbers of errors in different code words
is called a non-uniform error correcting code. Parity sectioned reduction of a linear code
gives a non-uniform error correcting code. In this paper a new code, [2n − 1, n, 2n−1],
is developed. The error correcting capability of this code is 2n−2 − 1 = e. It is shown
that this code holds a 2-(2n − 1, 2n−1, 2n−2) design. Also the parity sectioned reduction
code after deleting the same g (≤ e) positions of each code word of this code holds a
1-(2n− 1− g, 2n−1− j, gCj .2n−1−g ) design for n ≥ 3, g = 1, 2, . . . , e and j = 0, 1, . . . , g .

© 2008 Elsevier B.V. All rights reserved.

1. Introduction

It is important to define a new code that can be encoded or decoded efficiently with error correcting ability.
A generator matrix for the [n, k, d] linear code C over F n2 is a k × n matrix G whose rows are linearly independent of

C = RS(G), the row space of G.
In this paper, the systematic generator matrix for a new code, [2n−1, n, 2n−1], is defined. The different properties of this

code are stated and proved.
Let Pn be a matrix of order 2n−1 × n. The rows of Pn are all binary code words of length n except the 0̄ code word.
In this paper, a systematic generator matrix of the new code is designed via Gn = [Pn]t . Now we consider the square

matrix C∗n of order 2
n
− 1 whose rows are all the code words generated by Gn except the 0̄ code word.

For example,

P3 =



1 0 0
0 1 0
0 0 1
1 1 0
1 0 1
0 1 1
1 1 1

 , G3 =

(1 0 0 1 1 0 1
0 1 0 1 0 1 1
0 0 1 0 1 1 1

)
, C∗3 =



1 0 0 1 1 0 1
0 1 0 1 0 1 1
0 0 1 0 1 1 1
1 1 0 0 1 1 0
1 0 1 1 0 1 0
0 1 1 1 1 0 0
1 1 1 0 0 0 1


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P4 =



1 0 0 0
0 1 0 0
0 0 1 0
0 0 0 1
1 1 0 0
1 0 1 0
1 0 0 1
0 1 1 0
0 1 0 1
0 0 1 1
1 1 1 0
1 1 0 1
1 0 1 1
0 1 1 1
1 1 1 1



, G4 =

1 0 0 0 1 1 1 0 0 0 1 1 1 0 1
0 1 0 0 1 0 0 1 1 0 1 1 0 1 1
0 0 1 0 0 1 0 1 0 1 1 0 1 1 1
0 0 0 1 0 0 1 0 1 1 0 1 1 1 1



C∗4 =



1 0 0 0 1 1 1 0 0 0 1 1 1 0 1
0 1 0 0 1 0 0 1 1 0 1 1 0 1 1
0 0 1 0 0 1 0 1 0 1 1 0 1 1 1
0 0 0 1 0 0 1 0 1 1 0 1 1 1 1
1 1 0 0 0 1 1 1 1 0 0 0 1 1 0
1 0 1 0 1 0 1 1 0 1 0 1 0 1 0
1 0 0 1 1 1 0 0 1 1 1 0 0 1 0
0 1 1 0 1 1 0 0 1 1 0 1 1 0 0
0 1 0 1 1 0 1 1 0 1 1 0 1 0 0
0 0 1 1 0 1 1 1 1 0 1 1 0 0 0
1 1 1 0 0 0 1 0 1 1 1 0 0 0 1
1 1 0 1 0 1 0 1 0 1 0 1 0 0 1
1 0 1 1 1 0 0 1 1 0 0 0 1 0 1
0 1 1 1 1 1 1 0 0 0 0 0 0 1 1
1 1 1 1 0 0 0 0 0 0 1 1 1 1 0


and so on.

2. Definitions

1. Support [3]: Let x̄ be a binary word of length n. The set of positions in which x̄ has non-zero entries is called the support
of x̄.
2. Design [4]: Let C be a binary code of length n. Let Sw be the set of code words in C of weight w. We say that Sw

holds a t-(n, w, λ) design if the supports of code words in Sw form the blocks of a t-(n, w, λ) design, and if for any t-set
T ⊂ {1, 2, . . . , n} there are exactly λ code words of weightw in C with 1’s in the positions given by T .
3. Parity sectioned reduction [1]: Let C be a binary e-error correcting (n, k) linear systematic codewith parity checkmatrix

Hn−k,n = [A|In−k] and error range inequalities
n∑
j=1

|xj − ci,j| ≤ e, i = 1, 2, . . . ., 2k.

By g-parity sectioned reduction of the code C , we mean the following operations on the parity check matrix Hn−k,n and
the error range inequalities:

1. Select some g (≤ e) parity check positions for sectioning; if the code is sectioned at the pth check position, then delete
the pth column and row of In−k. A reduced matrix Hn−k−g,n−g = [A′ : In−k−g ] is obtained.

2. In each code word of C , delete the g-parity check digits; in the error range inequalities, assign values from (0, 1) to the
variables corresponding to these g positions.

3. Properties

Property 1. The matrix C∗n can be rearranged in a manner such that the transpose of this matrix is equal to itself.

Property 2. The Hamming weight (i.e. support) of each code word of Cn is 2n−1.

Property 3. The code Cn is self-orthogonal for n > 2.
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Property 4. The code Cn is not a dual code since the length of the code is odd for all values of n [2].

Property 5. The code Cn is not perfect.

Property 6. The code Cn is a 2n−2 − 1-error correcting code.

Property 7. The (g + 1) sets {C ′nj|j = 0, 1, . . . , g} of the g (≤ 2
n−2
− 1 = e)-parity sectioned reduction of Cn contain(

g
j

)
.2k−g

code words [1].

Property 8. The (g + 1) sets of {C ′nj|j = 0, 1, . . . , g} of the g (≤ 2
n−2
− 1 = e)-parity sectioned reduction of Cn can correct

up to e− j errors [1].

Property 9. The g (≤ 2n−2 − 1 = e)-parity sectioned reduction of Cn gives a code C ′n which is a non-uniform error correcting
(2n − 1− g, n) linear code [1].

Theorem 1. The minimum weighted code words of [2n − 1, n, 2n−1] hold a 2-(2n − 1, 2n−1, 2n−2) design, n ≥ 2.

Proof. Every code word of [2n − 1, n, 2n−1] has constant weight 2n−1 (Property 2).
Now C∗n is the code word matrix of the [2

n
− 1, n, 2n−1] code Cn except the 0̄ code word. Without any loss of generality

C∗n is taken in such a manner that C
∗
n = C

∗t
n (Property 1). Therefore, the ith row and ith column of C

∗
n are identical.

For a 2-design, 2
n
−1C2 combinations of columns of C∗n are to be considered or, in other words, for a 2-design,

2n−1C2
combinations of rows of C∗n are to be considered.
Now we choose any two rows of C∗n , i.e. any two distinct code words Ci, Cj (say), i, j = 1, 2, . . . , 2

n
− 1 and i 6= j, of

[2n − 1, n, 2n−1].
We have [3]

d = min{d(Ci, Cj)|i, j = 1, 2, . . . , 2n − 1}
= min{w(Ci)|i = 1, 2, . . . , 2n − 1}
= 2n−1.

Therefore, the number of columns of Ci and Cj which contain (0, 1)t and (1, 0)t is equal to 2n−1, i.e. there are in total 2n−1
1’s in the columns of the form (0, 1)t and (1, 0)t of the code words Ci and Cj.
Again the total of 1’s of the code words Ci and Cj is 2.2n−1 = 2n.
So the remaining number of 1’s which are of the form (1, 1)t in Ci and Cj is 2n − 2n−1 = 2n−1.
Hence the number of columns (1, 1)t is 2n−1/2 = 2n−2.
Therefore, the minimum weighted code word of [2n − 1, n, 2n−1] holds a 2-(2n − 1, 2n−1, 2n−2) design, n ≥ 2. �

Theorem 2. The minimum weighted code words of [2n − 1, n, 2n−1] do not hold a 3-design.

Proof. We have

Gn =



1 0 · · · 0
... 1 · · ·

0 1 · · · 0
... 1 · · ·

0 0 · · · 0
... 0 · · ·

· · · · · · · · · · · ·
... · · · · · ·

0 0 · · · 1
... 0 · · ·


.

First we choose the first three columns from C∗n ; then we get at least one row which contains three consecutive 1’s, since
the sum of the first three rows is a row of C∗n .
Nowwe choose the first, second and (n+1)th columns of C∗n ; then it is proved that we do not get any rowwhich contains

three consecutive 1’s. �

Theorem 3. The minimum weighted code words of (g + 1) sets {C ′nj|j = 0, 1, . . . , g} of the g (≤ 2
n−2
− 1)-parity sectioned

reduction of Cn hold a 1-(2n − 1− g, 2n−1 − j,
gC j .2

n−1−g) design for n ≥ 3.
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Proof. Let Cn be the [2n−1, n, 2n−1] code. Then, the length of a g (≤ 2n−2−1)-parity sectioned reduction code is 2n−1−g .
It is obvious that the weight of the parity sectioned reduction code C ′nj is 2

n−1−j.
The total number of code words of the code C ′nj is

gC j 2
n−g and the number of 1’s in each column of the code words of C ′nj

is gC j 2
n−g/2 = gC j 2

n−g−1.
Hence the theorem. �

Note: By Theorem 2, it can be stated that the minimum weighted code word of (g + 1) sets {C ′nj|j = 0, 1, . . . , g} of the
g (≤ 2n−2 − 1)-parity sectioned reduction of C∗n does not hold a 2-design.
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