

Note

Contents lists available at [ScienceDirect](http://www.elsevier.com/locate/dam)

Discrete Applied Mathematics

journal homepage: www.elsevier.com/locate/dam

On a new code, $[2^n - 1, n, 2^{n-1}]$

M. B[a](#page-0-0)su ª,*, Md.M. Rahaman ª, S. Bagchi ^{[b](#page-0-2)}

^a *Department of Mathematics, University of Kalyani, Kalyani-741235, India* ^b *Department of Mathematics, National Institute of Technology, Durgapur-713209, India*

ARTICLE INFO

Article history: Received 18 February 2008 Received in revised form 17 June 2008 Accepted 18 June 2008 Available online 5 August 2008

Keywords: Linear code Support Design Parity sectioned reduction Sectioned code Non-uniform error correction

A B S T R A C T

A binary linear code in F_2^n with dimension *k* and minimum distance *d* is called an [*n*, *k*, *d*] code. A t - (n, m, λ) design *D* is a set *X* of *n* points together with a collection of *m*-subsets of *X* (called a block) such that every *t*-subset of *X* is contained in exactly λ blocks. A constant length code which corrects different numbers of errors in different code words is called a non-uniform error correcting code. Parity sectioned reduction of a linear code gives a non-uniform error correcting code. In this paper a new code, $[2^n - 1, n, 2^{n-1}]$, is developed. The error correcting capability of this code is $2^{n-2} - 1 = e$. It is shown that this code holds a 2- $(2^n - 1, 2^{n-1}, 2^{n-2})$ design. Also the parity sectioned reduction code after deleting the same $g \leq e$) positions of each code word of this code holds a 1-(2^{*n*} – 1 – *g*, 2^{*n*-1} – *j*, ^{*g*}C_{*j*} .2^{*n*-1-*g*}) design for $n \ge 3$, $g = 1, 2, ..., e$ and $j = 0, 1, ..., g$. © 2008 Elsevier B.V. All rights reserved.

1. Introduction

It is important to define a new code that can be encoded or decoded efficiently with error correcting ability.

A generator matrix for the [n, k, d] linear code C over F_2^n is a $k \times n$ matrix G whose rows are linearly independent of $C = RS(G)$, the row space of *G*.

In this paper, the systematic generator matrix for a new code, [2ⁿ − 1, n, 2^{n−1}], is defined. The different properties of this code are stated and proved.

Let P_n be a matrix of order $2^{n-1} \times n$. The rows of P_n are all binary code words of length *n* except the $\bar{0}$ code word.

In this paper, a systematic generator matrix of the new code is designed via $G_n = [P_n]^t$. Now we consider the square matrix C_n^* of order $2^n - 1$ whose rows are all the code words generated by G_n except the 0 code word.

For example,

∗ Corresponding author. Tel.: +91 9433186058; fax: +91 3325828282.

E-mail addresses: manjusri_basu@yahoo.com (M. Basu), meeza_maths@rediffmail.com (Md.M. Rahaman), satya.bagchi@nitdgp.ac.in (S. Bagchi).

⁰¹⁶⁶⁻²¹⁸X/\$ – see front matter © 2008 Elsevier B.V. All rights reserved. [doi:10.1016/j.dam.2008.06.029](http://dx.doi.org/10.1016/j.dam.2008.06.029)

and so on.

2. Definitions

1. *Support* [\[3\]](#page-3-0): Let \bar{x} be a binary word of length *n*. The set of positions in which \bar{x} has non-zero entries is called the support of \bar{x} .

2. *Design* [\[4\]](#page-3-1): Let *C* be a binary code of length *n*. Let S_w be the set of code words in *C* of weight w. We say that S_w holds a $t-(n, w, \lambda)$ design if the supports of code words in S_w form the blocks of a $t-(n, w, \lambda)$ design, and if for any t -set $T \subset \{1, 2, \ldots, n\}$ there are exactly λ code words of weight w in *C* with 1's in the positions given by *T*.

3. *Parity sectioned reduction* [\[1\]](#page-3-2): Let *C* be a binary *e*-error correcting (*n*, *k*)linear systematic code with parity check matrix $H_{n-k,n} = [A|I_{n-k}]$ and error range inequalities

$$
\sum_{j=1}^n |x_j - c_{i,j}| \le e, \quad i = 1, 2, \ldots, 2^k.
$$

By *g*-parity sectioned reduction of the code *C*, we mean the following operations on the parity check matrix *Hn*−*k*,*ⁿ* and the error range inequalities:

- 1. Select some $g \leq e$) parity check positions for sectioning; if the code is sectioned at the *p*th check position, then delete the *p*th column and row of I_{n-k} . A reduced matrix $H_{n-k-g,n-g} = [A': I_{n-k-g}]$ is obtained.
- 2. In each code word of *C*, delete the *g*-parity check digits; in the error range inequalities, assign values from (0, 1) to the variables corresponding to these *g* positions.

3. Properties

Property 1. The matrix C_n can be rearranged in a manner such that the transpose of this matrix is equal to itself.

Property 2. The Hamming weight (i.e. support) of each code word of C_n is 2^{n-1} .

Property 3. *The code* C_n *is self-orthogonal for* $n > 2$ *.*

 λ $\overline{}$ **Property 4.** *The code* C_n *is not a dual code since the length of the code is odd for all values of n* [\[2\]](#page-3-3)*.*

Property 5. *The code Cⁿ is not perfect.*

Property 6. *The code* C_n *is a* $2^{n-2} - 1$ -error correcting code.

Property 7. The $(g + 1)$ sets $\{C'_{nj}|j = 0, 1, \ldots, g\}$ of the $g \leq 2^{n-2} - 1 = e$)-parity sectioned reduction of C_n contain

$$
\begin{pmatrix} g \\ j \end{pmatrix}.2^{k-g}
$$

code words [\[1\]](#page-3-2)*.*

Property 8. The $(g + 1)$ sets of $\{C'_{nj}|j = 0, 1, ..., g\}$ of the $g \ (\leq 2^{n-2} - 1 = e)$ -parity sectioned reduction of C_n can correct *up to e* − *j errors* [\[1\]](#page-3-2)*.*

Property 9. The $g \leq 2^{n-2} - 1 = e$)-parity sectioned reduction of C_n gives a code C'_n which is a non-uniform error correcting $(2^n - 1 - g, n)$ *linear code* [\[1\]](#page-3-2)*.*

Theorem 1. The minimum weighted code words of $[2^n - 1, n, 2^{n-1}]$ hold a 2- $(2^n - 1, 2^{n-1}, 2^{n-2})$ design, n ≥ 2.

Proof. Every code word of $[2^n - 1, n, 2^{n-1}]$ has constant weight 2^{n-1} [\(Property 2\)](#page-1-0).

Now C_n^* is the code word matrix of the $[2^n-1, n, 2^{n-1}]$ code C_n except the $\overline{0}$ code word. Without any loss of generality C_n^* is taken in such a manner that $C_n^* = C_n^{*t}$ [\(Property 1\)](#page-1-1). Therefore, the *i*th row and *i*th column of C_n^* are identical.

For a 2-design, $2^{n}-1C_2$ combinations of columns of C_n^* are to be considered or, in other words, for a 2-design, $2^{n}-1C_2$ combinations of rows of C_n^* are to be considered.

Now we choose any two rows of C_n^* , i.e. any two distinct code words C_i , C_j (say), $i, j = 1, 2, ..., 2^n - 1$ and $i \neq j$, of $[2^n - 1, n, 2^{n-1}].$

$$
We have [3]
$$

$$
d = \min\{d(C_i, C_j)|i, j = 1, 2, ..., 2^n - 1\}
$$

= $\min\{w(C_i)|i = 1, 2, ..., 2^n - 1\}$
= 2^{n-1} .

Therefore, the number of columns of C_i and C_j which contain $(0,1)^t$ and $(1,0)^t$ is equal to 2^{n-1} , i.e. there are in total 2^{n-1} 1's in the columns of the form $(0, 1)^t$ and $(1, 0)^t$ of the code words C_i and C_j .

Again the total of 1's of the code words C_i and C_j is 2.2ⁿ⁻¹ = 2ⁿ.

So the remaining number of 1's which are of the form $(1, 1)^t$ in C_i and C_j is $2^n - 2^{n-1} = 2^{n-1}$.

Hence the number of columns $(1, 1)^t$ is $2^{n-1}/2 = 2^{n-2}$.

Therefore, the minimum weighted code word of $[2^n - 1, n, 2^{n-1}]$ holds a 2- $(2^n - 1, 2^{n-1}, 2^{n-2})$ design, $n \ge 2$. □

Theorem 2. The minimum weighted code words of $[2^n - 1, n, 2^{n-1}]$ do not hold a 3-design.

Proof. We have

First we choose the first three columns from C_n^* ; then we get at least one row which contains three consecutive 1's, since the sum of the first three rows is a row of C_n^* .

Now we choose the first, second and $(n+1)$ th columns of \mathcal{C}_n^* ; then it is proved that we do not get any row which contains three consecutive 1's.

Theorem 3. The minimum weighted code words of $(g + 1)$ sets { C'_{nj} j $j = 0, 1, \ldots, g$ } of the $g \ (\leq 2^{n-2} - 1)$ -parity sectioned *reduction of C_n hold a* 1-(2ⁿ − 1 − *g*, 2^{n−1} − *j*, ^gC_{*j*}.2^{n−1−g}) *design for n* ≥ 3*.*

Proof. Let C_n be the [2ⁿ -1 , n, 2^{n−1}] code. Then, the length of a g ($\leq 2^{n-2}-1$)-parity sectioned reduction code is 2ⁿ -1 – g. It is obvious that the weight of the parity sectioned reduction code $C_{\textit{nj}}'$ is 2^{n-1-j} .

The total number of code words of the code C_{nj}' is gC_j 2n−g and the number of 1's in each column of the code words of C_{nj}' $i s^{g}C_{j} 2^{n-g}/2 = {}^{g}C_{j} 2^{n-g-1}.$

Hence the theorem. \Box

Note: By [Theorem 2,](#page-2-0) it can be stated that the minimum weighted code word of $(g + 1)$ sets $\{C'_{nj}|j = 0, 1, \ldots, g\}$ of the $g \ (\leq 2^{n-2} - 1)$ -parity sectioned reduction of C_n^* does not hold a 2-design.

Acknowledgements

The authors thank the referee for his/her valuable comments. The second author thanks C.S.I.R. for financial support of his research work.

References

- [1] M.A. Bernard, B.D. Sharma, Linear codes with non-uniform error correcting capability, Designs, Codes and Cryptography 10 (1997) 315–323.
[2] San Ling, Chaoping Xing, A first course of coding theory, National Universit
-
- [3] V.S. Pless, W.C. Huffman, Handbook of Coding Theory, vol. II, North-Holland, 1998.
- [4] S. Roman, Coding and Information Theory, Springer, 1991.