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In this study the mesoscopic behavior of porous shape memory alloys has been simulated
with particular attention to the mechanical response under cyclic loading conditions. A
recently developed constitutive law, accounting for full martensite reorientation as well
as phase transformation, was implemented into the commercial finite element code ABA-
QUS. Due to stress concentrations in a porous microstructure, the constitutive law was
enhanced to account for the development of permanent inelasticity in the shape memory
matrix. With this simulation method, the complex interaction between porosity, local
phase transformation and macroscale response has been evaluated. The results have impli-
cations for use of porous SMAs in biomedical and structural applications.

� 2008 Elsevier Ltd. All rights reserved.
1. Introduction

In the last two decades shape memory alloys (SMA) have found a large number of potential applications in several indus-
trial fields ranging from aerospace to medical device industries. Recently, porous shape memory alloys have attracted great
interest as low-weight materials with high energy dissipation properties (Zhao et al., 2005, 2006). In the biomedical field,
owing to their biocompatibility and their promise to exhibit high strength and low modulus, NiTi foams have been tested
as bone implant materials, successfully exhibiting a significant amount of bone ingrowth (Ayers et al., 1999; Simske and
Sachdeva, 1995). NiTi foams, compared to the other biocompatible metallic foams, allow the elastic modulus of bone to
be matched at smaller values of porosity (Greiner et al., 2005), resulting in increased fatigue life of the porous implant. Addi-
tionally, open porosity, when present, allows the bone tissue to grow into the implant improving its attachment and assim-
ilation performance (Li et al., 2004; Shen et al., 2006; Spoerke et al., 2005, 2008). Moreover, when properly designed, phase
transformation in the porous NiTi microstructure allows a larger macroscopic strain to be applied on the foam without sig-
nificant permanent deformation via the pseudoelastic effect.

From the structural point of view, non-SMA metallic foams are currently being used for the fabrication of shock absorbing
devices due to their superior energy dissipation capabilities compared to the corresponding dense materials (Degischer and
Kriszt, 2002). Energy dissipation is enhanced by the presence of pores which increase the specific absorption capacity by
scattering the impact shock waves. In a similar manner SMA foams are envisioned to provide an even larger damping capac-
ity due to the dissipation deriving from the phase transformation in the SMA matrix in addition to the one resulting from the
material porosity.

Several experimental techniques have been adopted to produce NiTi foams. Porous NiTi was first obtained by sintering of
elemental Ni and Ti powders without pressure application (Li et al., 1998a,b) or by self-propagating high-temperature syn-
thesis, SHS (Li et al., 2000). However, both these processes resulted in an incomplete reaction with presence of undesirable
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intermetallic phases (Ni3Ti and Ti2Ni) which makes the foams brittle and mildly superelastic. Recently, a technique based on
hot-isostatic pressing (HIP) of mixed elemental Ni and Ti powders in the presence of Ar gas was proposed (Lagoudas and
Vandygriff, 2002). These foams had a porosity of approximately 50% and were able to recover up to 3.5% strain even though
the unwanted phases were not completely eliminated. Oppenheimer et al. (2004) have achieved better results in terms of
composition and recoverable strain by using pre-alloyed NiTi powder producing foams with a porosity up to 25%. NiTi foams
with a porosity of approximately 40% exhibiting shape memory effect have also been obtained by HIP of a mixture of NiTi
and NaF powders and subsequently dissolving the NaF phase (Bansiddhi and Dunand, 2007). This last technique is the only
one to allow for independent control of volume fraction and pore size by changing the amount and the characteristics of the
NaF powder. However, the internal surfaces of the pores are irregular and rough due to the shape of the salt crystals and
sintering of NiTi powder.

From the modeling point of view, metallic cellular materials have been extensively investigated (Gibson and Ashby,
1999). However, this kind of modeling approach was based on beam theory and can only be applied to high porosity foams.
Recently, several authors (Entchev and Lagoudas, 2002, 2004; Nemat-Nasser et al., 2005; Qidwai et al., 2001) have used
micromechanical averaging techniques in order to investigate the mechanical response of porous SMAs. In these analyses,
the porous material is treated as a composite with SMA as the matrix and pores as the inclusions. Both the Mori-Tanaka
and the self-consistent method have been used as averaging schemes for the prediction of the macroscopic response of
the heterogeneous porous material, but in both cases the interaction among pores can only be accounted for in an approx-
imate way.

A different approach that has been adopted to study the behavior of porous materials is based on the assumption of hav-
ing a periodic distribution of pores. In this case symmetry arguments reduce the problem to the numerical analysis of a sin-
gle unit cell on which appropriate boundary conditions need to be applied (Achenbach and Zhu, 1990; Nemat-Nasser and
Hori, 1999; Qidwai et al., 2001). This method gives useful limiting predictions on the material macroscopic response and
the way it is affected by pore volume fraction and pore shape. However, the assumption of a regular distribution of pores
deviates significantly from the irregularity of real microstructures and will overestimate material response.

Extending the numerical unit cell approach, several authors (Benke and Weichert, 2003; DeGiorgi and Qidwai, 2002; Li
et al., 2004; Segurado and Llorca, 2002; Shen and Brinson, 2007; Shen et al., 2006; Sihn and Roy, 2004; Thelen et al.,
2004) have investigated the mechanical behavior of porous materials by simulating an opportunely defined representative
volume element with many interconnected pores. Both 2D and 3D simulations have been adopted and the limitations of
using simplified 2D models have been identified (Shen and Brinson, 2007). While most of the RVE methods for porous metals
have been applied to non-SMA materials, DeGiorgi and Qidwai (2002) have used a simplified 2D model to describe the mes-
oscopic behavior of porous SMAs. Although they were able to capture the dependence of the transformation characteristics
on porosity, their approach is limited in the fact that they only consider two-dimensional simulation cells and their consti-
tutive model does not account for permanent inelasticity or reorientation effects.

In this paper, following this line of work, we perform 3D mesoscale simulations of SMA foams in order to investigate their
material behavior with particular emphasis on the material response under cycling loading conditions and the accumulation
of ‘‘irreversible martensite”, i.e. martensite that cannot be converted back into austenite upon unloading. This is achieved by
utilizing a recent developed SMA constitutive law (Panico and Brinson, 2007) based on the classical framework of thermo-
dynamics of irreversible processes which robustly predicts the effect of multiaxial stress states and non-proportional loading
histories. Moreover, the model is able to account for the evolution of both twinned and detwinned martensite and the reori-
entation process of the product phase according to loading direction. In order to apply this constitutive model to the study of
porous SMAs, it was implemented into ABAQUS by developing a user material subroutine. The paper is organized as follows.
In Section 2 we briefly introduce the constitutive model that we have used for the SMA matrix. We then describe the imple-
mentation of this constitutive law into ABAQUS and present the RVE model of a porous SMA. Section 3 illustrates the main
results of our numerical simulations on the RVE SMA model, while Section 4 draws conclusions of our study.
2. Computational setup

2.1. SMA constitutive model

The SMA constitutive model used in this study has been developed and tested in a previous article (Panico and Brinson,
2007). Here, we will only discuss the main characteristics of this model, its implementation into finite elements, and a new
feature that allows description of the SMA mechanical behavior under cyclic loading conditions. Further details about the
constitutive law formulation can be found in the aforementioned reference.

Several experimental works (Liu et al., 1999; Malecot et al., 2006; Strnadel et al., 1995) have highlighted that shape mem-
ory alloys may develop irreversible strains during a cyclic loading process which appear to reach a saturation condition after
a certain number of cycles. This has been attributed to the development of plastic strains and microstructural defects that
inhibit complete reverse transformation of martensite. Therefore, in a similar fashion to other models existing in literature
(Auricchio et al., 2007; Lagoudas and Entchev, 2004; Malecot et al., 2006), we have extended our previous constitutive model
to account for this type of permanent inelasticity by introducing an additional internal variable which describes the evolu-
tion of irreversible martensite in the material.
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Our SMA constitutive model (Panico and Brinson, 2007) assumes small strains and is developed within the framework of
thermodynamics of irreversible processes. The formulation was specifically intended to capture the effect of reorientation of
martensite variants according to loading direction. Therefore, the total strain rate is decomposed in three contributions,
respectively, deriving from elastic strain, transformation of parent phase and reorientation of previously existing martensite
variants:
1 Self
volume
an appl
transfor
_e ¼ _ee þ _etr þ _ere: ð1Þ
In order to determine the relevant evolution laws, we start from the Helmoltz free energy of the three phase system which
can be written as
wðee; T; zr; zT;hÞ ¼ w0ðee; T; zr; zTÞ þ whðzr; zT;hÞ; ð2Þ
where ee and T are the control variables, elastic strain tensor and absolute temperature while zr, zT and h are the internal
variables, respectively volume fractions of detwinned martensite, twinned martensite1 and irreversible martensite. Similar
to Malecot et al. (2006), in this paper we modify the free energy with an additional contribution to account for the decrease
of free energy due to the development of material permanent inelasticity. Specifically, the following expression is assumed:
whðzr; zT;hÞ ¼ w0
h � zDP0ðhÞ; ð3Þ
where w0
h is a material constant, z = zr + zT is the total martensite volume fraction and DP0(h) is an increasing function of h:
DP0ðhÞ ¼ w0
1hþ 1

2
w0

2h2 ð4Þ
with w0
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2 material parameters. In order to derive the thermodynamic dissipative forces, we use the second law of ther-
modynamics which is written in the form of the Clausius–Duhem inequality as
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with q material density, g system entropy and q heat flux vector. By introducing the expression (2) for the free energy and
considering only the mechanical dissipation potential:
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where r0 is the deviatoric part of the stress tensor; this leads to the two state equations
g ¼ � ow
oT

and r ¼ q
ow
oee ¼ L : ee ð7Þ
with L being the elasticity tensor. Then, taking into account the relationship between _zr and _etr (Panico and Brinson, 2007),
with some manipulations, Eq. (6) can be rewritten as
qDp ¼ Xtr : _etr þ Xre : _ere þ XT _zT þ Xh
_h P 0; ð8Þ
where the Xa (a = tr, re,T,h) are the thermodynamic forces conjugate to the internal variables. The expressions of these forces
and more details on their analytical derivation can be found in Appendix A. At this point the following evolution laws for the
internal variables are assumed:
_etr ¼ _ktrXtr;

_ere ¼ _kre
bI : Xre; ð9Þ

_zT ¼ _kTXT;
where the _ka (a = tr, re,T) are positive Lagrange multipliers and the fourth-order tensor bI is the projection tensor of the total
inelastic strain ensuring that the reorientation strain rate be zero for proportional loading histories. Regarding the internal
variable h we have assumed the same evolution law as Malecot et al. (2006):
_h ¼ m0ðh1 � hÞph _zri: ð10Þ
In (10) h�i indicates the positive part of its argument while m0 and p are material parameters which determine how fast the
asymptotic irreversible volume fraction value h1 is approached. The evolution law (10) was originally chosen in order
to reproduce the experimental observations according to which irreversible strain increases only during forward
-accommodated, or ‘‘twinned”, martensite is formed by simple cooling under no external loading constraints. Then, typically 24 variants of equal
fractions form in a self-accommodated fashion without significant macroscopic strain. In contrast, oriented, or ‘‘detwinned”, martensite is produced by
ied stress and, consequently, the martensitic variants are preferentially oriented by the direction of the external force producing a macroscopic
mation strain.
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transformation and tends to converge to an asymptotic limit value. With this choice of evolution kinetics it is easy to show
that the Clausius–Duhem inequality is always satisfied since Eq. (8) can be written as
Table 1
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Fig. 1.
functio
_ktrXtr : Xtr þ _kreXre : bI : Xre þ _kTXTXT þ Xh
_h P 0: ð11Þ
The first and the third term are clearly non-negative while the second term is non-negative due to the nature of the tensor bI
that is positive semi-definite. Finally, the fourth term is also non-negative since Xh is always greater or equal to zero with an
appropriate choice of the parameters w0

1 and w0
2 while _h is non-negative because of the assumed kinetics (10).

Table 1 summarizes the material parameters that have been adopted in this study, which capture a typical uniaxial response
of shape memory materials. For instance in Fig. 1, we have illustrated the uniaxial mechanical response of a dense SMA simu-
lated by our model with this set of parameters. The sample is subjected to cyclic loading conditions under stress control with a
maximum applied value of 600 MPa for a total number of 15 loading cycles. We can notice a decrease in the onset of forward and
reverse transformation (see Fig. 1a), which is in agreement with experimental observations and is a direct consequence of the
energy decrease expressed by Eq. (3). Fig. 1b displays the increase in residual strain with the loading cycles due to the develop-
ment of irreversible martensite. As a result of the evolution Eq. (10), the rate of increase of irreversible martensite is large in the
first cycles and decreases in later cycles. The volume fraction of irreversible martensite asymptotically approaches h1, which
means that the residual strain converges to h1�c, which is equal to 1% in this situation (see Fig. 1b).

2.2. Finite element implementation

The SMA constitutive model has been implemented into a user subroutine for the commercial code ABAQUS. Partic-
ularly, we have chosen to adopt the explicit version of this finite element code to reduce the computational cost of our
l parameters adopted in the numerical simulations

ter Value Unit

38,000 MPa
0.36 –
0.025 –
12,900 J/kg
47.5 J/kg K
100 J/kg
8000 kg/m3

10 MPa
30 MPa
60 MPa
10 MPa
30 MPa
150 MPa
400 MPa2

1.0 –
1.4 –
0.4 –
400 J/kg
�1000 J/kg

Simulated constitutive response of a dense SMA: (a) stress–strain curves for loading cycle 1 and 15; (b) plot of accumulated residual strain as a
n of loading cycle.
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simulations. In order to implement the constitutive model into finite element, a stress update algorithm is needed. The
numerical algorithm that we have adopted is similar to the return mapping schemes typical of plasticity theories. In
order to define the material elastic regime, two limit functions have been defined respectively corresponding to trans-
formation of parent phase (Ftr = kXtrk � Ytr) and reorientation of martensite variants ðFre ¼ 1

2 Xre : bI : Xre � Y reÞ where Ytr is
a function of zr governing the transformation kinetics, and Yre is a material parameter that determine the onset of the
reorientation process.

Now, we describe the procedure that updates the internal variables and the stress tensor ðein
nþ1; zrnþ1; zTnþ1 ;hnþ1;rnþ1Þ given

the current strain and the values of the internal variables at the previous step ðenþ1; ein
n ; zrn ; zTn ;hnÞ. For simplicity, in this sec-

tion all the quantities without a subscript are intended to be values computed at time step n + 1. First an elastic trial stress is
computed by assuming that the material behaves elastically during the time step ðrtrial ¼ L : ðe � ein

n ÞÞ. Then, based on this
elastic prediction the two limit functions are computed. If the limit functions are both negative then the material response is
elastic and the trial stress (rtrial) is taken as the updated stress. If any of the two limit functions has a positive value then an
inelastic correction for the material response needs to be computed. This is accomplished by using a Newton–Raphson iter-
ation scheme. For brevity, we will only detail this method for the case in which both the limit functions are positive (simul-
taneous transformation and reorientation). The other two situations (pure transformation: Ftr > 0 and Fre < 0; pure
reorientation: Ftr < 0 and Fre > 0) can be easily obtained from the more general case by reducing the number of governing
equations. The residual equations are the following:
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with vector of unknowns {x}={Xtr,Xre,zr,Dktr,Dkre,ein,r}. The solution vector {x*} may be found by means of a Newton iter-
ation. Toward this purpose, the Jacobian matrix is computed:
½D� ¼ ofag
ofxg ð13Þ
and Eq. (12) are linearized as
½D� � fDxg þ fag ¼ f0g: ð14Þ
Then, the increment of the unknowns vector can be computed as
fDxg ¼ �½D��1 � fag: ð15Þ
This procedure can be iterated starting from the initial guess fxg ¼ fXtrn ;Xren ; zrn ;Dktrn ;Dkren ; e
in
n ;rtrialg until Eq. (12) are sat-

isfied within a certain tolerance. After convergence is attained the increment of internal variable h is explicitly computed
cal algorithm for integration of SMA constitutive model
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from the evolution law (10). Finally, the increment of twinned martensite volume fraction zT can be computed from the tem-
perature change and the increment of zr following the procedure illustrated in Table 2, which also summarizes the complete
stress update algorithm. More details on the evolution of the internal variable zT can be found in Panico and Brinson (2007).

2.3. Finite element model

The representative volume element is constructed from a cube with sides of 1 mm. The boundary conditions that we have
applied to the computational domain are schematically illustrated in Fig. 2. The lateral faces of the cube are constrained to
remain planar and normal to one of the coordinate axes. This type of boundary condition is periodic from a mechanical point
of view, but not from a microstructural one which means that pores are not mirrored through opposing faces. As shown by
Shen and Brinson (2006), this boundary constraint allows selection of a smaller size for the representative volume element.
The bottom face is fixed in the loading direction y while a uniform pressure is applied on the top surface that is restricted to
remain planar and normal to the loading axis.

A regular mesh made of 8000 eight-node brick elements is adopted and the porous microstructure is simulated by ran-
domly assigning to some of these elements elastic material properties with negligible stiffness (Epores ffi 10�9ESMA), similar to
what was done for two dimensional finite element models by DeGiorgi and Qidwai (2002). Five different porous samples
have been generated with pore volume fractions respectively of 0.1, 0.15, 0.2, 0.3 and 0.4. Fig. 3 shows the samples with vol-
ume fractions of 0.1 and 0.4 with the porous microstructure represented by the white elements. We have investigated the
convergence of the mesoscopic response of the porous material with mesh refinement. As an example, the sample with the
highest porosity (40%) has been generated with a mesh of 8000 elements and a much finer mesh of 64,000 elements (see
Fig. 4). The two 40% samples have been tested under compression with a maximum applied stress of 400 MPa. The meso-
scopic response is calculated by volume averages of the stress and strain components in the loading direction over the whole
domain. Fig. 4 shows that the two mesoscopic responses are barely distinguishable which validates the use of the coarser
mesh for the purpose of our study.

3. Results

The porous samples have been tested in compression under cyclic loading conditions to a maximum stress of 600 MPA for
a total of 15 loading cycles at a temperature of 293 K, where the material behavior is pseudoelastic. In the following we will
Fig. 2. Schematic of computational domain and applied boundary conditions.

Fig. 3. Representative volume elements and finite element mesh for the samples with pore volume fraction of 0.1 and 0.4 with the porous microstructure
represented by the white elements.



Fig. 4. Convergence study of the average stress strain response of the representative volume element, where N is the number of adopted finite elements.

M. Panico, L.C. Brinson / International Journal of Solids and Structures 45 (2008) 5613–5626 5619
illustrate the main results of our simulations: in Section 3.1 we will focus on the elastic properties of the porous samples; in
Section 3.2 the transformation behavior of the porous material will be investigated; finally, Section 3.3 analyzes the material
response to cyclic loading and the way this response is affected by the amount of porosity.

3.1. Simulation of elastic behavior

The effective elastic modulus for the porous material has been calculated from the mesoscopic stress–strain curve ob-
tained from the finite element simulations and illustrated in Fig. 5a. The elastic modulus has been computed as the slope
of the secant that connects the points at zero stress with the one at 10 MPa applied stress, in which region all the samples
behave elastically. Fig. 5a shows the calculated values of elastic modulus for different pore volume fractions. As expected,
this quantity rapidly decreases with porosity. In the same figure, we have also reported with a dashed line the result that
would be obtained by applying the Gibson and Ashby formula (Eporous = Ebulk (1 � f)2, with Ebulk = 38 GPa) (Gibson and Ashby,
1999). This formula was theoretically derived for the case of high porosity cellular materials but it can be empirically ex-
tended to lower porosities. It predicts that the elastic modulus decreases with the square of the porosity and shows a good
qualitative agreement with our simulations up to porosities of 30%. This slight deviation from the theoretical prediction for
the highest porosities is probably due to the increasing geometrical differences between our computational model and the
assumption in the Gibson and Ashby formula of having a material which can be idealized through a structure of beams.
Fig. 5b displays a plot of the stress concentration factor as a function of the material porosity. The concentration factor
Fig. 5. Elastic properties of the porous samples: (a) effective elastic modulus versus pore volume fraction (the result of the simulations is compared with
analytical predictions from the Gibson & Ashby formula); (b) stress concentration factor as a function of porosity.
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has been calculated in the ‘‘elastic” regime (at an applied stress of approximately 60 MPa) as the ratio of the maximum lon-
gitudinal stress component in the representative volume element to the applied macroscopic stress. As expected, the stress
concentration increases with porosity as a result of the larger pore interaction and inhomogeneity of the stress field. This is a
very important characteristic in porous materials because high stress concentrations will produce a decrease of the material
fatigue strength. Note that the stress concentration factor for a spherical hole is approximately 2, which explains the asymp-
totic limit towards which the stress intensity factor is converging at lower porosities. This elastic analysis demonstrates one
of the advantages of porous SMAs. One main objective of bone implant applications is to match the elastic modulus of the
implant material with the one of human bone (15–20 GPa) so that the so-called ‘‘stress shielding” effect is minimized. In the
case of porous SMA and more specifically porous NiTi, this can be achieved at a relatively low porosity value at which stress
concentration effects are still limited.

3.2. Pseudoelastic response

As previously mentioned, all the samples at different porosities have been subjected to a uniform pressure applied on the
top surface of the representative volume element. Stress control conditions have been chosen rather than displacement con-
trol ones in order to compare the accumulated irreversible strain for the different material porosities under a common load.
Moreover, a stress control condition best represents the typical loading for bone implant materials, one of the main proposed
applications of SMA foams.

Fig. 6a shows the average stress–strain curve for the porous samples with volume fractions of 0.1, 0.2 and 0.4. In contrast
to the sharply defined phase transformation for a fully dense SMA (as in Fig. 1a), a smooth transition between the initial elas-
tic phase and the transformation stage of the material behavior is observed for porous SMA. This result is in agreement with
experimental measurements (Bansiddhi and Dunand, 2007; Greiner et al., 2005) and is due to the inhomogeneity of the
stress field which results in a non-uniform evolution of the phase transformation at increasing levels of applied stress. As
a consequence of this feature, one cannot discern a single stress value at which transformation is initiated. Therefore, in a
similar fashion to metal plasticity, we have defined a critical stress for onset of phase transformation as the stress corre-
sponding to an inelastic strain of 0.2%. Fig. 6b displays a plot of the critical transformation stress as a function of the material
porosity. As expected the value of the critical stress decreases with the pore volume fraction as a consequence of the larger
stress concentrations. Another feature that may be noticed from Fig. 6a is that the hardening rate during phase transforma-
tion is much higher for the case of porous materials compared to the case of dense SMA. This result is again in agreement
with experimental data and is due to the inhomogeneity of the stress field in porous samples which distributes the phase
transformation over a larger range of applied macroscopic stress.

With the finite element simulations, we are able to investigate in more detail the evolution of martensite in the porous
microstructure with increasing macroscopic applied stress. Toward this purpose we have subjected the samples to a larger
maximum stress of 1200 MPa. Fig. 7a is a plot of the average detwinned martensite volume fraction in the SMA matrix as a
function of the applied stress for the samples with porosities of 0.1, 0.2 and 0.4. From this plot, we notice that transformation
starts macroscopically at a much lower stress for the sample with pore volume fraction of 0.4. However, the rate at which
phase transformation evolves is smaller compared to the samples at lower porosities (0.1 and 0.2). Therefore, at a stress of
approximately 600 MPa the situation is reversed and the low porosity samples present a larger value of the average martens-
ite volume fraction. Fig. 7b and c shows the distribution of zr in the microstructure at the maximum applied stress of
1200 MPa, respectively, for material porosities of 0.1 and 0.4. It may be noticed that transformation cannot saturate the
whole microstructure, i.e. there are regions which cannot reach a value of zr equal to 1 even for very high applied stress.
Fig. 6. Transformation behavior of the porous samples: (a) average stress–strain responses for the samples with pore volume fraction of 0.1, 0.2 and 0.4; (b)
macroscopic critical stress for onset of transformation as a function of material porosity.



Fig. 7. Evolution of phase transformation and average detwinned martensite volume fraction in the porous samples: (a) average martensite volume fraction
versus applied stress; (b) contour plot of martensite volume fraction at the maximum applied stress of 1200 MPa for the sample at 0.1 porosity; (c) contour
plot of martensite volume fraction at the maximum applied stress of 1200 MPa for the sample at 0.4 porosity.
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This is more evident for the case of 0.4 pore volume fraction. Thus, for increasing stress the average value of zr in the matrix
approaches an asymptotic value lower than one (see Fig. 7a); moreover, this asymptotic value is smaller in the case of high
porosity materials.

In order to analyze in more detail these results in Fig. 8a and b, we have plotted the probability density functions of the
Mises equivalent stress for the samples with porosities of 0.1 and 0.4. The two figures corresponds to a macroscopic applied
stress, respectively, of 360 and 720 MPa. In the same plots we have indicated with two dotted lines the stresses necessary to
Fig. 8. Probability density functions of the Mises stress for the samples with porosities of 0.1 and 0.4: (a) applied stress of 360 MPa; (b) applied stress of
720 MPa.



5622 M. Panico, L.C. Brinson / International Journal of Solids and Structures 45 (2008) 5613–5626
initiate (rcrit) and saturate (rsat) phase transformation in a non-porous sample. As expected high porosity results in a stress
distribution with larger average value and greater standard deviation, while the stress distribution tends to be uniform in
lower porosity cases. When the macroscopic applied stress is small (Fig. 8a), the material behavior is dominated by the aver-
age value of the stress which dictates the amount of material volume with a stress greater than the critical one rcrit. There-
fore, the sample with porosity 0.4 has a lower macroscopic activation stress and a larger amount of martensite at the low and
intermediate levels of applied stress (see Fig. 7a).

On the other hand, for large values of applied stress, phase transformation is saturated in the highly stressed regions and
the material transformation response is controlled by the areas at lower stress level. This feature can be observed in Fig. 8b,
where the average values of the stress distributions have already overcome the stress required to complete transformation
(rsat) for both porosity values. Therefore, in this condition of large macroscopic applied stress the broader stress distribution
of high porosity sample will result in larger areas at a low stress level under the critical value (see Fig. 8b) and consequently a
smaller total amount of phase transformation. The existence of these two different regimes for the porous transformation
response explains the result in Fig. 7a, where at high stress levels low porosity samples exhibit a larger average martensite
volume fraction than the high porosity one. Moreover, the fact that even for large applied macroscopic stresses there are sig-
nificant regions of the sample with porosity 0.4, where the Mises stress does not reach the critical value makes it very dif-
ficult to saturate the transformation process in high porosity materials, as we had previously noticed from analysis of the
results in Fig. 7a–c.

3.3. Cyclic loading behavior

In this section, we focus on the mechanical response of the porous samples to the cycling loading. In Fig. 9, we show the
average stress–strain response to the 15 loading cycles for the sample with 0.2 pore volume fraction. In each cycle perma-
nent strain accumulates, but the material response rapidly stabilizes towards an asymptotic transformation cycle. Fig. 10a–c
shows the evolution of the volume fraction of irreversible martensite h for the sample with porosity 0.2 respectively at the
end of loading cycles 1, 5 and 15. We notice that irreversible martensite accumulates in the material and at the end of the
loading cycle 15 the asymptotic value h1 has been reached in most of the sample. Fig. 11 displays a plot of the residual mac-
roscopic strain as a function of the loading cycles for the sample with pore volume fractions of 0.1, 0.2 and 0.4 and for the
dense SMA material as well. For the same number of cycles the amount of residual strain is higher for larger porosities. This
is particularly evident in the case of pore volume fractions larger than 0.2. It may also be noticed that for porous materials
the residual macroscopic strain tends to an asymptotic value larger than in the case of the dense material (which is 1% using
the parameters from Table 1). Moreover, the rate at which this asymptotic limit is approached is lower for porous samples.

In order to explain this result we can again consider the plots of Fig. 8 which show the distribution of the equivalent Mises
stress in two porous samples. The higher the porosity of the material the more the stress is non-uniformly distributed in the
microstructure. As a consequence a large number of loading cycles is needed to saturate the production process of irrevers-
ible martensite in the regions where stress concentrations are not present. Regarding the asymptotic limit value of the irre-
versible strain, it is clear that the presence of pores in the microstructure allows a larger macroscopic strain to be
accommodated for the same value of average irreversible strain in the SMA matrix. Therefore, we can conclude that the por-
ous nature of the microstructure enhances the phenomenon of accumulation of permanent inelasticity typical of the dense
material. This is manifested in a higher asymptotic residual strain and in a slower convergence rate and is an important fea-
ture to consider in the design process of a porous SMA.
Fig. 9. Average stress–strain behavior under cyclic loading conditions for the sample with pore volume fraction of 0.2.



Fig. 10. Contour plots of the volume fraction of irreversible martensite at the end of loading cycle 1 (a), cycle 5 (b) and cycle 15 (c).

Fig. 11. Plot of the macroscopic residual strain accumulated in the porous sample as a function of the number of loading cycles for porosities of 0.1, 0.2, 0.4
and the dense SMA material.
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Fig. 12. Contour plot of the norm of the cumulated reorientation strain for the sample with porosity 0.1 at the end of loading cycle 15. It is observed that
reorientation strain is significant for porous materials even under macroscopically proportional loading cases.
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3.4. Reorientation strain

Finally, in this section, we want to highlight the importance to properly account for the effect of martensite reorientation into
our macroscopic phenomenological model. Therefore, we give the following definition of accumulated reorientation strain:
ere ¼
Z t

0
_ere dt; ð16Þ
which is a measure of the amount of reorientation in a particular location at that moment in the simulation. In Fig. 12, we
show a contour plot of the norm of the reorientation strain in Eq. (16) for the sample with porosity 0.1 at the end of the 15
loading cycles. We notice that this quantity has a non-negligible value in most of the sample volume. Thus, for the case of
porous materials even when only a proportional macroscopic loading is applied it is still necessary to account for the strain
contribution deriving from martensite reorientation. Indeed, the strong non-uniformity of the stress field and the scattering
of elastic waves produced by the porous microstructure can locally result in a significant non-proportionality of the loading
condition with the consequent production of reorientation strain.

4. Conclusions

In this work, we have investigated the mechanical response under cyclic loading conditions of porous SMA at different lev-
els of pore volume fraction. Toward this purpose a criterion for accumulation of irreversible martensite was implemented in
our recent SMA constitutive model (Panico and Brinson, 2007). This model was successfully implemented into finite element
method and adopted to test porous representative volume elements under uniform pressure conditions. The effective elastic
modulus of the porous samples was found to decrease with the pore volume fraction. At the same time, the stress concentra-
tion factor increases with porosity due to the enhanced pore interaction. We also found that the macroscopic stress necessary
to initiate phase transformation is strongly affected by porosity due to the inhomogeneity of the stress field leading to highly
stressed regions in the porous microstructure at relatively low level of the macroscopic applied loads. Moreover, we found
that phase transformation cannot be saturated in the sample even for very large values of the applied stress and this feature
is enhanced by the amount of porosity. We investigated the accumulation of permanent strains in the porous material with
the subsequent loading cycles. It was found that permanent strains tend to a limit value which increases with material poros-
ity. We have showed that for porous materials even for the case of macroscopic proportional loadings martensite reorienta-
tion may have a significant impact on the material response and needs to be properly accounted for.

Finally, we want to highlight that in this paper we have used a very simple idealized model based on cubic finite element
cells in order to simulate the mesoscopic response of porous SMA. This approach is very efficient from a computational point
of view, but in some cases may lack of accuracy and present clear limitations related to the idealized pore morphology. Mod-
eling of more realistic porous SMA microstructures and comparing their response to the simplified models adopted here will
be the subject of future work.
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Appendix A

The Helmoltz free energy assumed in our SMA constitutive model has the following expression:
wðee; T; zr; zT;hÞ ¼
1

2q
ee : L : ee þ uA

o � TgA
0 � zTðDu0 � TDg0Þ � zrhDu0 � TDg0i

þ cv ðT � T0Þ � T ln
T
T0

� �� �
þ 1

2
Hrz2

rw0
h � z w0

1hþ 1
2

w0
2h2

� �
; ðA:1Þ
where the following nomenclature is adopted: ee, elastic strain tensor; T, absolute temperature; zr, volume fraction of
detwinned martensite; zT, volume fraction of twinned martensite; h, volume fraction of irreversible martensite; q, material
density; uA

0 , austenite specific energy; gA
0 , austenite specific entropy; uM

0 , martensite specific energy; gM
0 , martensite specific

entropy; Du0 ¼ uA
0 � uM

0 ; Dg0 ¼ gA
0 � gM

0 ; cv: specific heat at constant volume; T0, equilibrium temperature; z = zr + zT, total
martensite volume fraction; Hr,w0

h,w1
0,w0

2, material parameters. The Clausius–Duhem inequality writes as, Eq. (6):
qDp ¼ q � ow
oT
� g

� �
_T þ ðr� q

ow
oeeÞ : _ee þ r0 : _etr þ r0 : _ere � q

ow
ozr

_zr � q
ow
ozT

_zT � q
ow
oh

_h P 0: ðA:2Þ
However, from (Panico and Brinson, 2007)
_zr ¼
ein : _etrffiffiffiffiffiffiffiffi
3=2

p
ckeink

: ðA:3Þ
Then, introducing in Eq. (A.2):
qDp ¼ q � ow
oT
� g

� �
_T þ ðr� q

ow
oeeÞ : _ee þ r0 � q

ow
ozr

einffiffiffiffiffiffiffiffi
3=2

p
ckeink

 !
: _etr þ r0 : _ere � q

ow
ozT

_zT � q
ow
oh

_h P 0: ðA:4Þ
Thus, by adopting the expression (A.1) for the Helmoltz free energy and considering Eq. (8), we obtain
g ¼ � ow
oT
¼ cv ln

T
T0
þ gA

0 � zTDg0 � zrDg0
hDu0 � TDg0i
jDu0 � TDg0j

;

r ¼ q
ow
oee ¼ L : ee;

Xtr ¼ r0 � q
ow
ozr

einffiffiffiffiffiffiffiffi
3=2

p
ckeink

¼ r0 � q hTDg0 � Du0i þ Hrzr � w0
1hþ 1

2
w0

2h2
� �� �

einffiffiffiffiffiffiffiffi
3=2

p
ckeink

; ðA:5Þ

Xre ¼ r0;

XT ¼ � q
ow
ozT
¼ �q ðTDg0 � Du0Þ � w0

1hþ 1
2

w0
2h2

� �� �
;

Xh ¼ � q
ow
oh
¼ qzðw0

1 þ w0
2hÞ:
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