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A B S T R A C T  

The classical Newton's method for determining a real factor of a polynomial is shown to be one 
member of  a family of similar algorithms found by considering the roots of a class of  rational 
functions. These algorithms are variants of the Birge Vieta method for solving polynomial equa- 
tions. Methods for selecting an appropriate member of the family for a general problem are com- 
pare& Third order possibilities are shown to exist and results for a particular case are reported. 

1. INTRODUCTION 

Methods for solving polynomial equations e.g. Grant 
and I-litchins [6] which always converge, are to be 
preferred to those methods which depend for success 
upon a good initial approximation. However, at the 
same time, the relative rates of convergence of meth- 
ods can be an important practical consideration, and 
the computational efficiency of a method depends 
upon the number of function evaluations (and deriva- 
tive calculations in methods such as Newton-Raph- 
son). Methods for solving non-linear equations are 
well documented in the classic works of Traub [14] 
and Ostrowski [10] and a purposeful review has been 
given by Jarratt [8]. 
Central to the discussion of a method are the con- 
cepts of order, p, and asymptotic error constant, C, 
and in the neighbourhood of a root the speed of con- 
vergence will depend upon both these, being most 
rapid when p is large and C is small. It is likely that 
C and hence the rate of " with convergence can vary 
the choice of iteration function. In this respect, 
Brodlie [5] has shown that Bairstow's method [2] is 
one member of a family of algorithms for determin- 
ing a quadratic factor of  a polynomial and he demon- 
strated by experimentation that superior rates of con- 
vergence were possible through the purposeful choice 
of error terms. As Bairstow's method is an extension 
of Newton's method for finding a simple real root or 
real linear factor of a polynomial with real coeffi- 
dents, Brodlie [5] suggested that a similar approach 
may lead to a superior algorithm for the calculation 
of real linear factors and hence real roots. 
Consider, therefore 

f(x) = an xn + an_l xn-1 + ...+ a lx  + a 0, (1.17 

an :/: 0 
a real polynomial of degree n in x. A simple real root, 

a, of f(x) = 0, is found by determining the linear factor 
(x - a) such that 

f i  x) = (x-  a) (bn_l xn-1 + bn_2xn-2 + . . .+ blX+ b 0) 

(1.2) 
On equating coefficients of x through (1.1) and (1.2), 
(n + 17 equations are obtained in the n unknowns 
bn_l, b n_ 2 .. . . .  b l ,  b 0 and the system of equations 
is therefore overdetermined. The equations are con- 
sistent if a is a root and otherwise they can be made 
so by the addition of an arbitrary remainder term 

Ur xr, 0 g r < n, to the right hand side of (1.2). 

Thus for any value of a 

fi x) = i x -a)(b n _1 xn-1 + bn_2xn-2 + . . .  blX + b 0) + urxr 

(1.3) 
With exact computation 

Ur(a ) = f(a) , a :/: O. (1.4) 
a r 

Hence a root of  f ix ) will also be a root of the rational 
functions Ur(X), r e  { 0, 1, 2 ... . .  n}. These (n+ 17 
rational functions provide a set of alternative func- 
tions for solving the polynomial f(x) =0, through any 
iteration formula. It is reasonable to suppose that for 
a particular method, the asymptotic error constant 
associated with the function Ur (x), will depend uponr. 
In this paper this effect is studied in respect of New- 
ton's method, the classical Newton-Raphson formula 
arising when r = 0. 

2. ANALYSIS 

Suppose that f(x) has a zero, a, of multiplicity p, then 

f(x) = (x-a) p g(x), g(a) 4 = 0 (2.1) 

(*) D. B. Clegg, Department of Mathematics, Liverpool Polytechnic, Liverpool, England. 
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The Newton-Raphson method 
f!xj) 

XJ+l = xJ f" (xj------y-; x0 given' J = 0'  1 '2  . . . .  (2.2) 

can be modified [13] so that  it still has quadratic con- 
vergence for a root o f  mult ipl idty p by writing 

f(xj) 
xj + 1 = xj - p ~ .  (2.3) 

d 

Hence substituting (1.4) for function f and following 
Bodewig [4], the general formula may be set as 

u r (xj) (2.4) Xj+l= xj-a , 
u r (xj) 

i.e. 
f (xj) 

xj + 1 =  x j - a  , x j ¢ O  (2.5 7 
r f,(xj)- xj f(xj) 

with a, a real constant to be determined after examin- 
ing the character o f  convergence of  the sequence 
x O, x 1, x 2 .. . .  which is assumed to tend to a root  of  

multiplicity p. Assuming necessary conditions on dif- 
ferentiability, g(xj) in (2.1) can be expanded about 
x = a through 2 

e .  

= g[a+ (xj -a)]= g(a) + ejg'(a)+-~ g"(a)+ g(xj) o t  • 

with ej= xj-a e;2 t~:~/ 

Also g'(xj) = g'(a)  + ejg " (a) + t g "  Ca) +"" (2.8) 

Substituting (2.1) into (2.57 applying (2.6) and (2~) ,  
assuming that ej is suff ident ly small and subtracting 

a from both sides o f  (2.5) produces the equation 

= _a 2 
(1-p)ej p2 g(a) :]j r 

e j+l 

a ~rg'(a) + 1 ]  1 (i r +g' (a) ( l+p) ]  
+ - - f )  g (a) 
g'(a) ( l a_~)  _ 1 g'(a) r 2 3 g(a) - r  ~-[(p-r)  g--~+(1-~) ]}ej +... + 

(2.9) 
Hence we have the following results : 

i) I ra  = p, then in the neighbourhood of  a root o f  
multiplidty p, formula 2.5 will yield a sequence 
which converges quadratically to the root (ff it 
converges a t  all). 

ii) If a = p and g" (a) r-s- = 0 (2.10) - - ~ - a  (a) 
the method will be at least third order. 

Using (2.1) it is readily shown that 

g(a)= f(P)(a) (2.11) 
p~ 

g'Ca ) = 1 f(P + 1)(a) (2.12) 
(p+l)! 

where f(P)(a) = dp f  Ca). 

Thus for cubic convergence it is necessary that 

1 f(P +1) (a) r 
- - - =  0 .  ( 2 . 1 3 )  

If we now consider simple roots, p = 1 = a then the 
method is third order if 

f "  (a) _ r__ = 0. (2.14) 
2f '(a) a 

Addit ionally when the method is second order, a con- 
vergent sequence will have asymptotic error constant 
C given by 

C =  f"(a) --.r" (2.15) 
• 2f ' (a )  a 

Hence the constant is seen to be dependent upon r and 
thus an optimum value of  r may be possible to minimise 
the modulus o f  C. 

iii) When (2.10) is satisfied, the third order term in 
(2.9) reduces to 

a [r2 (1 + p) + 2r  ( p _ l )  + p _ l ] e  3 (2.16) 
a2p 

This term only equals zero if 

r =  

(p +1) 

When p = 1, then r = 0 and the conditions for the 
standard Newton-Raphson method apply. 
If p > i the solutions will be complex and hence 
as r is an integer, the formula (2.5) can be third 
order at best for simple roots. 

Let us now turn to the possibilities of  computational 
advantages to be gained using (2.5) with a = 1, r =~ 0, 
in preference to the standard Newton-Raphson formula. 
The fundamental problem is the selection of  r. Peters 
and Wilkinson [11] have commented that there is no 
reason to believe that there is any advantage to be 
gained in using Ur(a ), 1 < r < n over u0(a), provided 
that a is calculated with such precision as one is pre- 
pared to employ, and that for subsequent roots, com- 
posite deflation is made. This assertion appears to 
neglect the possible advantages to be associated with a 
minimum absolute value of  the asymptotic error con- 
stant for the '%est" value of  r. However, the selection 
of  r is not straightforward as initially a is not known 
and at best only estimations of  C can be obtained 
with a replaced by xj, j ~ ( 0,1,  2 .... ). Ur(Xj) and 

Ur(Xj) can be determined through a combination of  

forward and backward division o f  the polynomial by 
a linear factor as in composite deflation by Peters and 
Wilkinson [12]. Hence these are a family of  methods 
which are variants of  the Birge Vieta method [3], i.e. 
Newton iteration to find a root of  a polynomial with 
f and f" calculated via the Homer scheme. The addi- 
tional computation associated with the selection of  r, 
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may possibly counterbalance any advantage of 
superior convergence. Results with numerical ex- 
periments which appear later in the paper, exhibit 
this tendency. 

3. CALCULATION OF u r AND u r 

When dividing f(x) by (x -  a) with forward division, 
the coefficients bn_l ,  bn_ 2 . . . . .  b 1, b 0 in (1.2) are 

found through the equations 

bn - 1  = an 

bi= ai+ 1 +abi~ 1" i= n - 2 ,  n - 3  . . . . .  0, -1 

with b l = u 0 

With full backward division of f(x) by (x - a )  we would 
have 

f(x) = unxn + (x -a )  (Cn_lxn-l+ Cn_2xn-2 

+ ... + c l x  + Co) • (3.2) 

The coeffidents being calculated through 

( -a)  

(ai - c i - 1 )  i = 1 , 2 , 3  . . . . .  n-1 (3 .3)  c i -  (-a) 

Cn = an - Cn -1 = Un 

The remainder term urxr can generally be found 

through a mixture of  backward and forward division 
from 

f(x) = (x -a )  ( b n _ l x n - l +  ... + br xr) + urxr 

+ (x-a)(Cr_l xr-1 + Cr_2 xr-2 + . . .  + ClX + c 0) 

(3.4) 

The resulting equations found by equating coefficients 
}f x are 

bn-1 = an 

b i=  a i + l + a b i + l  i = n - 2  .. . . .  r + l , r , r - 1  

a o (3.5) 
c ° -  ( -a )  

(ai - c i -1 )  i= 1,2,3 .. . . .  r -1  c i -  ( -a)  

m d u  r = b  r _ l - c r _ l  0 < r < n .  

In order to calculate u r the above equations are differ- 
entiated with respect to a, and without loss of gener- 
ality it can be assumed that a n = 1 always. 
Differentiating (3.5) with respect to a and writing 

dbi  _d i ,  dci _ 
da  da  e i we have 

d n _ l  = 0 

d i = b i + l  + ad i+  1 i=  n-2,  n -1  .... , r, r -1  (3.6) 

a 0 c o 
e0-  a 2 - (-a)  

ci - e l - 1  i = 1,2, 3 . . . . .  r , 1  
e i -  C_a) 

u r = d r - l - e r - 1  O < r < n  

Also u 0 is found through u 0 = d_l 
(3.7) 

and u n through Un = - e n - 1  

4. SELECTION OF r 

In considering the choice of  r, it should be noted that 
r need not be fixed initially but may be varied with 
each value of x:, j = 0 ,1 ,2  .... dear ly  additional com- 

J g6 ~9 putation will be necessary in order that the best 
value o f t  is chosen and in any practically useful algo- 
rithm, the computational effort must be accounted 
for. InitiaUy we neglect this problem and consider the 
options upon the selection o f r .  
Rearranging (3.4) we have : 

( x -  a)(bn_l xn-1 + bn_2 xn-2 + . . .  + br xr 

+ Cr_lxr-1 + Cr_2xr-2 + ... + ClX + c 0) 

= an xn + an_l xn-1 + ... + Car-Ur)xr + ... + a lx  + a 0 

(4.1) 

The right hand side of (4.1) may be regarded as a per- 
turbation of the original polynomial. Hence thinking 
o f u  r as a perturbation on ar, r could be selected in 

order that , 0 ~ r ~ n, is a minimum. 

This is the identical requirement spedfied by Peters 
and Wilkinson [10] for sati.~factory composite defla- 
tion. When ct is obtained to machine accuracy say, 
there is the possibility of  immediately deflating the 
polynomial using the value of  r as selected, to also 
calculate the deflated polynomial. 
Another possible variant for the choice of  r is to select 
r such that [Ur{ , 0 g r g n is a minimum. Intuitivdy 
one would expect this to be an inferior choice to the 
one described above, as no attempt is made to relate 
u r with the assodated perturbed polynomial. For ill- 
conditioned polynomials this could be a dangerous 
criterion to apply. 
A third variant on the choice of  r is suggested through 
the coefficient of el2 in (2.9). In other words we use 

a criterion which seeks the minimum modulus of the 
. J  

asymptotic error constant of  the formula (2.5), re- 
membering that a = p = 1. 
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For the standard Newton-Raphson method, the 
asymptotic error constant is given by 

f"(a) . Hence improvement in the rate of  con- 
2f'(a) 
vergence can be anticipated whenever 

2f'(a) 2f" (a) 

If ~ equals zero, no improvement will be 
2f'(a) 

possible. For functions satisfying such a condition, 
the standard Newton-Raphson method will yield a 
third order solution. 
Two other cases need considering, depending upon 

the sign of  f ' _ ' -~ .  
"(a) 

i) f " (a)  > 0 .  
f ' ( a )  

For this condition, (4.2) rearranges to 

0 < ___r < f" (a)  1 ¢ r ¢ n. (4.3) 
a f ' ( a )  ' 

Hence a value of r > 0 is only possible when a is 
a positive zero of  the polynomial (1.1) 

ii) f"(a)  < 0 .  
f ' ( a )  

For which condition (4.2) rearranges to 

f ' ( a )  < r_L _ < 0  (4.4) 
f" (a) a 

Consequently a value of  r > 0 can only possibly be 
preferred if a is a negative zero of the polynomial. 

Given that the conditions (4.3) and (4.4) are possible, 
r should be selected so as to minimize the left hand 
side of  (4.2). 
The practical difficulty with each of the proposed 
variants, is that a, a root, needs to be known i f r  is 
to be correctly determined. Initially a is approximated 
by a guess value x 0 and this value may be applied to 
indicate the optimum value of  r. For the first two 
variants, the values Ur(X0), 0 ~ r < n are calculated 
through equations (3.1), (3.3) and (3.5) as appropriate; 
with x 0 replacing a. For the third variant, we require 
to evaluate u~(x0) and u~(x0), u~(x0) is readily 

found with d l calculated from (3.6) and x 0 repladng 

a. With an additional synthetic division, the second 
derivative 

u(~ (Xo) = 2 f - l '  (4.5) 

where fn-3 = dn-2 (4.6) 

f i = e i + l + a f i + l  , i = n - 4  . . . . .  0 , -1  • 

Now consider the computational effort required to 
calculate Ur(X: ). Once the value r is selected, the total 

J 
number of arithmetic operations to evaluate the next 
iterate from equation (2.4), will be identical to that 
necessary for the A~_mical Newton-Raphson formula. 
Some relevant operation counts are listed in the table 

below : 

TABLE 1. Operation counts 

Function calculated Multi- Divi- Addi- Sub- 
plica- don tions trac- 
tions tions 

Ur(a ), 0 g  r<  n n - r  r n - r  r 

n - r  r n - r  r 

M1 
Ur(a) ;  r = 0 , 1 , 2  ..... n n n n n - 1  

MI 
U r ( a )  

; r =0,1,2,...,n, n 2n n n-1  

ar=~0 

The computational effort may be defined through a com- 
bination of the number of operations and the execution 
time associated with each. These times vary through 
computer installations but for the sake of simplicity, ff 
approximately equal computation times are assumed 
for multiplication and division and different but equal 
times for addition and subtraction, the table values 
show that twice the computational effort will be re- 
quired to calculate all values of Ur(a ), r = 0,1 . . . . .  n, 
compared with that needed for a selected value ofr .  
Also approximately three times the effort is required 

for calculating (Urn(a)), r = 0,1 . . . . .  n. Finally for large 

n, the calculation ro f ' ( a )  requires approximately • - f  2f ' (a)  
one and a half times the effort for calculating 

f (a) " 
Consequently in order that any of the proposed variants 
should be preferred to the standard Newton-Raphson 
method the overhead of the initial computation to 
select r must be compensated by a corresponding de- 
crease in the required "numbers of  iterations. Addition- 
ally the performance determined by the percentage 
of  successful calculations must be at least as good as 
that obtained through the use of  the standard methods. 

5. ERROR BOUNDS FOR Ur(a ) 

The stopping criterion associated with Adams [1] can 
be applied to determine ur(a ) to the Limit of machine 
accuracy. Peters and Wilkinson [12] have given a de- 
tailed account for calculating a realistic error bound 
for f(a) i.e. u0(a ). Their analysis can be extended to 
compute a running error bound on the calculation of 
Ur(a ). Wkh forwards division of  f(x) by (x -a ) ,  a con- 
venient form for the bound on uo(a ) has been given by 
Kahan [9]. For the sake of compIeteness and under- 
standing a summary of the assumptions and results al- 
ready derived are given. 
The exact process for forward and backward division 
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of  f(x) by ( x - a )  are given by equations (3.1), (3.3) 
and (3.5). Following Wilkinson [15] the following 
assumptions are made about floating point arithmetic 
operations for binary arithmetic with a t digit man- 
tissa. 
f £ ( x + y )  = ( x + y ) / ( l +  e), [e[< 2 -t 

f ~ ( x * y )  = ( x . y )  (1+ e), l e l ~ 2  -t (5.1) 

f ~ ( x / y )  = x ( l + e ) / y ,  l e l , ~2  -t 

The computational processes used are given by the 
equations : 

Sn_ 1 = an, s i= f~(tzsi+ 1 + a i + l ) ;  (5.2) 

i=  n -  2 , n - 3  . . . . .  0,-1 

t o =  f t [ a0 / ( - a ) ] ,  t i =  fE [ ( a i - t i _ l ) / ( - a ) ] ;  

i=  1,2, . . . .  n -1  

C t n = f9~ (a n - t n -1) (5.3) 

v[!) = a_l 

v i =  f~ ( s i_  1 - t i _ l ) ;  0 < i <  n (5.4) 

n = t n 

Now we define the errors in s i, t i and v i respectively 
through 

si b i +  gi; i=n-l,n-2 . . . . .  0,-i 

t i =  c i +  hi; i=  0 ,1 ,2  . . . .  , n  (5.5) 

u i +  ki; i=  0 ,1 ,2  . . . . .  n. 

Combining (5.2) with (5.1) we find 

si = [asi  + 1 (1 + ei) + a i + 1]/(1 + Hi); (5.6) 

i=  n - l , n - 2  . . . . .  0 , -1  

l ~ l i l , l e i l  ~ 2 -t 

Hence s i= czSi+l ( l+  ei) + a i+  1 -s iT/ i  . (5.7) 

Substituting for s i from (5.5) yields 

gi = g i + l  + a S i + l  e l -  siwi' (5.8) 

from which it is readily shown that 

lgn-r]" (I ar-lsn-ll + 2 lar-2sn-21 

+ . . .  + 2 l a S n _  r + 1l + ISn_r{) 2 - t  = Gn_r2  - t ,  
(5.9) 

r -  2, 3 ,4  . . . . .  n , n + l  

Using backwards division of  f~x) by (x-ct) and com- 
bining (5.3) with (5.1) we find : 

a 0 t o = --i- (1 + %),  1 7 0 1  ~ 2 - t  (5.10) 

Substituting for h 0 from (5.5) gives 

70-- 0 t o (5.11) 
ho - I + 70 

Also from (5.3) and (5.1) we have 

t i - ( a  i - t i _ l )  ( 1 + 8 i )  
(1 + ~i) (-ct) ; i = 1 , 2  . . . . .  n -1  (5.12) 

I~il, I~il g 2 -t 

Proceeding as above with substituting for t i in terms 
of hi,  then 

hi = h i -1  + t i  (5i - ~i) (5.13) 
a (1 + ai)  

from which it can be deduced that 

a r 1-2 -t 

2-t 
= H r ~ r = 1,2 . . . . .  n - 1  (5.14) 

1 - 2  "t 
Finally 

an - tn -1 
tn=  1 + ~n (5.15)  

Hence substituting t n = c n + h n, 

hn = - h n  -1 - ~n tn (5.16) 

Consequently 

[hn [ 'g [hn-1 [ + [tn [ 2-t ~ [Hn-1 + [tn[ (1-2-t)]  2-t 
1-2 -t 

2-t 
= Hn (5.17) 

1 - 2  -t 

Following Kahan [9 ] the most convenient form for 
calculating G r and H r, r = n - 1, h - 2, . .  :, 0, -1 is through 

1 
Kn-1 = -~-{ S.n-11 

K r = l a l K r + l +  Isrl; r = n - 2 ,  n - 3  . . . . .  0,-1 (5.18) 

G r = 2K r -  Isrl ; r = n - l , n - 2  . . . . .  0,-1 

• 11 0 I L O = 2 -  -d'- ; 

Lr = / ~  1 + JtrJ; r =  1,2 ,n -1  
(5.19) 

Hr= 2Lr; r=  1 ,2 ,3  . . . . .  n-1 

n = H n _  1 + ItnI ( 1 - 2 - t ) .  

Finally, we obtain a bound on the computed value for 
u r, 0 < r < n .  By (5.4) 

Vr = f~  (Sr-1 - t r -1)  (520) 

= (Sr_ 1 - t r _ 1 ) / ( 1 +  Or), 10rl g 2 - t  (5.21) 

Hence v r = st_ 1 - t r_l  - Vr0r " (5.22) 

Substituting v r -- u r + k r, and also for Sr_ 1 and tr_ 1 
from (5.5) 

kr = gr-1 - hr-1 - Vr0r (5.23) 

• Ikrl g Igr_ll + Ihr_l{ + IVrl2-t (5.24) 

Journal of  Computational and Applied Mathematics, volume 7, no. 2, 1981. 97 



[ k r l g G r _  1+  Hr_ 1+ Ivrl2-t;  0 < r < n  (5.25) 

Thus the error bounds on the computed values of  
u r (a) are given by 

f 
[u 0 - v  0 [ . g G  1 

[Ur-Vr[ ~ Gr-1 + Hr-1 + [Vr[ 2-t (5.26) 

[u n - v  n] < Hn_ 1 • r = 1,2 .. . . .  n-t  

For the practical computation of Hn_ 1 and G_I , 
we take a ~ xj, and hence obtain bounds on Un(Xj) 

and u 0 (xj). 

It should be noted that the sequence 

{Gr; r= n-2 . . . . .  0,-1} is non decreasing ff la[ ~ 1 
- T '  

and the sequence {Hr; r = 0, 1 . . . . .  n -1} may be a 

decreasing sequence ff ]a[ ~ 2. Thus if  [a[ ~ 2, the 
bound on u0(a ) i.e. G 1 ,  is calculated through a 

non decreasing sequence whilst that for Un(a ) i.e. 

Hn_ 1, is found using a possibly decreasing sequence. 

Under such conditions, the bound on Un(a ) may be 

much smaller than that of u0(a ) and hence when the 

convergence criterion is satisfied, a better estimate 
for a may be possible using full backward division. 

The converse of this applies when [a{ < 1 ,  and for 

< [al 2, the situation is indefinite. As 
l . I  

< always n o  

firm conclusion can be drawn from these observations, 
common sense would suggest that an extra iteration 
be made after the relevant convergence criterion has 
been satisfied for the computed value of Ur(a ), 
re {0, 1 ..... n}. 

6. NUMERICAL RESULTS 

In this section, the relative performance of the three 
methods described in section 4 are compared with 
each other and also against the standard Newton- 
Raphson method. For ease of reference the following 
descriptions will be used : 

METHOD 1 - Classical Newton-Raphson method, 
r ~ 0 .  

METHOD 2 - r is selected so that I Ur (x0) [ is a - -  
minimum, ar 

METHOD 3- r is selected so that ~.r (x0) [" is a minimum. 

METHOD 4 - r is selected so that -f~(x0) x0 

is a minimum. 

In view of the computation overheads in selecting r, 
with methods 2, 3, and 4, algorithms used selected r 
on the basis of  the initial guess value x0, and r as Rxed 
thereafter. A method was assumed to have failed ff con- 
vergence was not achieved in 12 iterations, all calcula- 

tions being made to the limit of machine accuracy on 
Ur(Xj). 
For experimentation, twenty eight polynomials were 
used. Twenty seven of these are a subset of the poly- 
nomhh used by Henrici and Watkins [7], the selection 
being determined by the existence of real and fairly 
well separated roots, i.e. polynomials 1, 2, 3, 5, 6, 7, 9, 
10, 11, 13, 14, 16, 17, 18, 19, 20, 21, 22, 23, 24, 25, 
26, 27, 28, 29, 30, 32. Polynomial twenty eight was 
found in the paper by Peters and Wilkinson [12], this 
being chosen because of  the wide separation of the 
roots and the reported large differences in deflated 
polynomials through combinations of forward and 
backward division of the polynomial. 
All methods were used to determine roots of the poly- 
nomials using four different initial guesses, these being 
+ 5 Z and + 10 Z from the known roots. In total seventy 
one test cases were attempted with the real roots of 
the identified polynomials. The results are summarized 
in the foUowing table where information is found on : 

i) the number of problems successfully solved by the 
method used. 

ii) the number of problems for which the method con- 
verged to a root not being the closest to the initial 
guess, these figures appear in parentheses. 

iii) the average number of  iterations taken to achieve 
convergence. 

TABLE 2. Number of iteratious for solved problems 

Error 
m ini- 
tial 
guess 

+57. 
-57. 
+107. 
-107. 

Number of problems 
solved 

METHOD 

1 2 3 4  

71 71 71 71 
70 71 71 70 
70 71:6671 
62(5) 71 71 61(57 

i 

Average number of  
iterations 

METHOD 

1 2 3 4 

4.04 3.77 4.48 3.14 
4.26 3.49 3~7 3.24 
4.59 4.23 4.73 3.55 
4.60 4.03 4.41 3.54 

The results show that : 

i) Method 2 has the highest likelihood of convergence 
from a given initial guess; 100 7. success being 
achieved with the chosen test data. 

ii) When successful, method 4 has the lowest average 
number of  iterations, this being one less than for 
method 1, i.e. the standard Newton-Raphson method. 

iii) Method 4 is not very reliable when used with poor 
initial guesses, (when r was selected at each stage, 
100 7o success was obtained for all the chosen test 
data). 

iv) Method 3 is the least preferred, exhibiting the high- 
est number of iterations on average. 

In order to assess any advantage in the computational 
effort required by the various methods, it is necessary 
to evaluate the overheads associated with the selection 
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of r. Defining a Homer [10] as the number of  multi- 
plications and divisions required in the computation 
of  both Ur(X0) and Ur(X0), 0 ~ r g n, then the num- 
ber of  non recoverable Homer units for each method, 
are as follows : 

Method 1 - Nil 
Method 2 - 1 
Method 3 - 0.5 
Method 4 - between 0.5 and 1.5, say i on average. 
Using the data of table 2, the average number of 
Homers associated with the test data are shown in 
table 3. 

TABLE 3. Average number of Horners required for 
each method 

Error in 
initial 
guess 

+ 5 Z  
-5Z 

+ 107o 
- lOg 

Method 1 

4 . 0 4  
4.26 
4.59 
4.60 

Method 2 

4.77 
4.49 
5.23 
5.03 

Method 3 

4.98 
4.37 
5.23 
4.91 

Method 4 

4.14 
4.24 
4.55 
4.54 

Hence in general the three proposed variants do not 
offer any advantage in saving computational effort. 
This confirms the general statement made by Peters 
and Wilkinson [11] and is in contrast to the findings 
of Brodlie [5]. In spedfic cases where r can be pre- 
chosen, there are computational advantages, particu- 
larly for dose approximations to the root. Such pos- 
sibilities are indicated through a particular polynomial 
quoted by Peters & Wilkinson [12] i.e. 

f(x) = x 3 + 0.981318 x 104 x 2 + 0.857108 x 104x 
+ 0.781736 = 0 (6.1) 

with roots 

x I = -0.912157 x 10 -4, x 2 = -0.873412, 

x 3 = - 0.981231 x 104. 

The table below shows the number of  iterations re- 
quired by the four methods used. 

TABLE 4. (All results were calculated on an ICL 
1903A) 

EiTor  i n  

,initial 
iguess 

+57o 

5Z 

+ 10g 
10Z 

Calculation 
o f x  1 

METHOD 

1 2 3 4  

2 2 2 2  
2 2 2 2  
2 2 2 2  
2 2 2 2  

Calculation 
o f x  2 

METHOD 

1 2 3 4 

3 3 3 2  
4 2 4 2  
4 4 4 2  
4 2 4 2  

Calculation 
of x 3 

METHOD 

1 2 3 4  

4 4 4 2  
4 2 4 2  
4 4 4 2  
5 2 4 2  

Finally as method 4 offers the possibility of becom- 
ing a third order method when (2.15) becomes zero, 

it is reasonable to suppose that there are classes of  
polynomials for which the method will have consider- 
able advantages over the standard method and also 
methods 2 and 3. Only one of  the test polynomials 
used was found to satisfy the required condition (num- 
ber 19, reference [7]). This problem is further examined 
in the next section. 

7. THIRD ORDER SOLUTIONS 

The analysis of section 2 showed that method 4 be- 
comes third order ff 

f " (a )  - L - - 0 ,  0 ~  r E  n. (7.1) 

Classes of polynomials which will have third order solu- 
tions, must satisfy (7.1), together with the conditions 
f(a) = 0, f" (a) =# 0 (if roots are simple). 
By writing f(x) = ( x -  a) h(x) (7 2.) 
with h(x) a polynomial of degree (n-1)  in x, it is readily 
deduced that 

h ' ( a )  = ! (7.3) 
h Ca) a 

where h(a) = f ' (a)  4: 0. 
With h(x) further expressed as 

h(x) = (x - a) s (x) + 18 (7.4) 

and s(x) a polynomial of degree (n -2) in x, fl 4: 0, it 
can be deduced that 

h(x) = ( x - a )  s(x) + as (a) (7.5) 
r 

.'. f(x)= ( x - a ) [ ( x - a ) s ( x )  + as(a) )], (7.6) 
r 

l ~ r 4 n  

This form for a polynomial is dearly very restrictive 
and can at best only be applicable to special cases. 
However, a class of Polynomials can be obtained by 
treating the differential condition (7.1) which is true 
for a a root off(x) ,  as a differential equation. Solving 
(7.1) yields 

f ( x )  = Ax 2 r+1  + B (7.7) 

where A and B are constants. Without loss of generality 
(7.7) can be written in the form 

f(x) = x 2r+1 + a 0 (7.8) 

with a 0 a real constant, other than zero. These poly- 
nomials have one real root with sign opposite to that 
o fa  0. The third order property is simply illustrated 
through 

a0 (7.9) Ur(X ) = x r + 1 + x - - V -  

and the iteration formula becomes 

rx?  r + l  - ( r + l )  a 0 

xj +1 = 2r+1 xj 
(r + l )x j  - r a  0 

(7.10) 
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The standard Newton-Raphson formula is 

1 (2rxj- a-~-0r) 
xj +1 = (2r +1) x.2 

J 

Comparative results are shown below for the case 
r = 2, a 0 = - 2 ,  beginning in each case with x 0 = 1. 

Newton-Raphson Method 

j xj 

1 1.2 
2 1.152 901 234 507 9 
3 1.183 346 933 780 931 
4 1.150 668 840 675 584 
5 1.148 705 092 244 385 
6 1.148 698 355 076 062 
7 1.148 698 354 997 034 
8 1.148 698 354 997 034 

New Method 

j xj 

1 1.142 857 142 857 142 
2 1.148 698 050 614 295 
3 1.148 698 354 997 033 
4 1.148 698 354 997 033 

8. CONCLUSIONS 

Investigations with a class o f  rational functions for 
solving polynomial equations and Newton's method 
have shown that in general there is little advantage 
in using a chosen rational function unless the asymp- 
totic behaviour o f  the iteration method can be pre- 
dicted in advance. Newton's method which is a second 
order method has been shown to have third order con- 
vergence properties for the equation 

x2 r + l  
+ a 0 = 0  r = 0 , 1 , 2  . . . .  (8.1) 

X r 

Finally it should be noted that the same computational 
possibilities exist with other methods for both real and 
complex roots. These possibilities remain to be ex- 
plored. 
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