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For Karl Gruenberg on his 65th birthday 

During a conversation that took place in the early seventies, Philip Hall asked 

the first author the following rather innocent-sounding question: 

Which infinite groups are isomorphic to all their non-trivial normal subgroups? 

The obvious examples are the infinite cyclic group Z, simple groups and free 

groups of infinite rank, and it may be that these are the only examples. Certainly, 

the only soluble group of this type is the infinite cyclic group, and one should 

perhaps be able to deduce the same result in the locally soluble case, though we 

have not succeeded in doing this as yet. 

We shall concentrate on the case of finitely generated groups, where Z and 

simple groups ought to be the only examples. In partial confirmation of this, we 

have the following theorem: 

Theorem 1. Let G be a finitely generated infinite group that is isomorphic to all its 

non-trivial normal subgroups. If G contains a proper normal subgroup of fmite 

index, then G s Z. 

Proof. We set d(G) = r, and divide the proof into two essentially different parts. 

Firstly, suppose that G is perfect. By assumption, there is a proper normal 

subgroup M,, of finite index in G such that G/M,, is a finite non-abelian simple 

group, S say. We use the fact that there is a largest positive integer m such that 
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the mth direct power 9” of S is an r-generator [l] to get a contradiction to the 

existence of M,, in this case. Set N,, = G. We shall construct a descending chain 

N,, > N, > . . . > N, > . . . 

of normal subgroups of G and, for each i, a normal subgroup M, of N, such that 

N,IM, g S and N,IN,, , is a direct product of at most m isomorphic copies of S. Set 

N, = Core&M,,). Suppose, for some i 2 1, that No,. . , N,, M,,, . , Mi_, have 

been defined. Choose M, to be any normal subgroup of N, such that N,IM, z S, 

and set N,,, = Core,(M,). Since S is simple, N,/N,+, is a direct product of at 

most m isomorphic copies of S, and the construction of the N, and M, is complete. 

For each i 2 1, the centralizer C, of N,/N,+, in G has index bounded by a number 

k independent of i, since the order of N,/N,+, is bounded in terms of ]SI and m. 

Since G is finitely generated, the intersection C = n:=, C, also has finite index in 

G: there are only finitely many different C,. But C fl N, 5 l-l:=,, N,,, for all i, so 

that C 5 N,, which is a contradiction since C has finite index while the N, descend 

properly. 

Thus G is not perfect, and the argument splits once more. 

Suppose first in this part of the proof that G/G’ is finite, and let p be a prime 

dividing its order. Consider the series 

G = P,, > P, > . . ’ > P, > ’ . . 

of G where, for each i 2 0, P,lP,+, is the abelian p-image of P, of maximal order. 

Then, since the Pi are mutually isomorphic, Pi/Pi+, is a maximal normal abelian 

subgroup of the finite p-group G/P,+ ], which means that it is self-centralizing. It 

follows that the order of G/P,+, is bounded independently of i, and the 

contradiction is again that the P, descend properly. 

Finally, we have to conclude that G/G’ is infinite. Let s be its torsion-free rank. 

Define a series 

G=H,,>H,>...>H,>... 

of characteristic subgroups of G, as follows. For i 2 0, let H,, ,/H,’ be the torsion 

subgroup of H,/H,' . Then H,/H,, , is free abelian of rank s, for each i. Consider 

the action of G on y/H,+, via conjugation. By a theorem of Zassenhaus [3], 

there is an integer n such that the nth term K = G’“’ of the derived series of G 

centralizes H,/H,+, , for each i 2 0. Thus K is nilpotent mod H,, for each i. For 

any i 2 1, let AH,/H, be a maximal normal abelian subgroup of KH,/H,. Then 

AH,/H, is self-centralizing and of torsion-free rank at most s, so again by 

Zassenhaus’s theorem, K has derived length at most II + 1 mod H,. Then, for 

each i, G/H, has derived length at most 2n + 1 and so it has Hirsch length at most 

s(2n + 1). This means that Hz,!+, = 1, so that G is soluble and therefore 

cyclic. 0 
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The situation where G is a finitely generated group with no non-trivial finite 

images has not yielded to attack. Since all powers of G could have the same 

number of generators as G (see [2]), any argument like that at the beginning of 

the proof of Theorem 1 is bound to fail. However, since G is finitely generated, it 

satisfies the maximal condition for normal subgroups, and one would think that it 

cannot be too far from being simple. As a very modest justification for this 

comment, we have the following: 

Theorem 2. Let G be a finitely generated infinite group that is isomorphic to all its 

non-trivial normal subgroups. Then every pair of non-trivial normal subgroups 

intersect non-trivially. 

Proof. Let M and N be non-trivial normal subgroups of G. If M n N = 1, then 

(M, N) = M X N, so that G s G X G. But then G is non-Hopf and so it cannot 

satisfy the maximal condition for normal subgroups. Cl 

Note added in proof. See B.H. Neumann [Compositio Math. 13 (1956) 1281 for a 

result that deals with the case of imperfect G in Theorem 1. 

References 

[l] P. Hall. The Eulerian functions of a group, Quart. J. Math. Oxford 7 (1936) 134-151. 

[2] J. Wiegold and J.S. Wilson, Growth sequences of finitely generated groups, Arch. Math. 30 
(1978) 337-343. 

[3] H. Zassenhaus, Beweis eines Satzes iiber diskrete Gruppen, Abh. Math. Sem. Univ. Hamburg 12 
(1938) 289-312. 


