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1. Introduction

Let A = k[x1, . . . , xn] be the polynomial ring in n variables x = x1, . . . , xn over a field k, n � 2. Set
m = (x), the maximal ideal generated by the xi . Let ai, j ∈ N, i, j = 1, . . . ,n, with ai,i = ∑

j �=i ai, j , and
let L be the n × n integer matrix defined as follows:

L =

⎛
⎜⎜⎜⎝

a1,1 −a1,2 . . . −a1,n

−a2,1 a2,2 . . . −a2,n

...
... . . .

...

−an,1 −an,2 . . . an,n

⎞
⎟⎟⎟⎠ ,

where the sum of the entries of each row is zero. (Here N denotes the set of positive integers.) For
ease of reference, L will be called a positive critical binomial matrix (PCB matrix, for short). Set d ∈N to
be the greatest common divisor of the (n − 1) × (n − 1) minors of L. (We shall see below that these
minors are non-zero.) Let f = f1, . . . , fn be the binomials defined by the columns of L:

f1 = x
a1,1
1 − x

a2,1
2 · · · x

an,1
n , f2 = x

a2,2
2 − x

a1,2
1 x

a3,2
3 · · · x

an,2
n , . . . , fn = x

an,n
n − x

a1,n
1 · · · x

an−1,n
n−1 .

Let I = ( f ) be the binomial ideal generated by the f j . We will call I the positive critical binomial ideal
(PCB ideal, for short) associated to L.

The purpose of this paper is to investigate the primary decomposition of PCB ideals and to con-
trast this theory with analogous results in [OP2] concerning ideals of Herzog–Northcott type, which
comprise the case n = 3. We first prove that, if n � 4 (respectively, n � 3), I has at most d + 1 (re-
spectively, d) primary components. This answers a question posed in [OP2, Remark 8.6].

We will observe that I is contained in a unique toric ideal pm associated to the monomial curve
Γm = {(λm1 , . . . , λmn ) ∈ An

k | λ ∈ k}, where m = (m1, . . . ,mn) = m(I) ∈ Nn is determined by I . That is,
pm (referred to as the Herzog ideal associated to m) is the kernel of the natural homomorphism
A → k[t], t a variable over k, that sends each xi to tmi .

In somewhat more detail, if k contains the d-th roots of unity and the characteristic of k, char(k),
is zero or char(k) = p, p a prime with p � d, we give a full description of a minimal primary decom-
position of I . Namely, the intersection of the isolated primary components of I , Hull(I), is equal to
the intersection of d prime toric ideals of “monomial curves with coefficients”, i.e., kernels of natu-
ral homomorphisms A → k[t] that send each xi to λitmi , λi ∈ k. This will explain the “intrinsic” role
of the Herzog ideal pm(I) among the other minimal primes of I as the instance where each of the
“coefficients” λi equals 1.

Furthermore, if n � 3, I is unmixed and I = Hull(I). But if n � 4, I has one irredundant embedded
m-primary component. This provides a very striking contrast between the cases n � 3 and n � 4. In
each case we give a concrete description of these primary components (cf. Theorems 4.10 and 7.1).

We now recall briefly from [OP2] some relevant parts of the theory of ideals of Herzog–Northcott
type (or HN ideals, as they are referred to). The study of HN ideals had their origin in work of Herzog
[Her] on the defining ideals pm of monomial space curves Γm , m ∈ N3, gcd(m) = 1. The ideals pm ,
which are Cohen–Macaulay almost complete intersection ideals of height two, proved useful in work
of the authors in settling a long-standing open question on an aspect of the uniform Artin–Rees
property (cf. [OP1]); this work built on the observation that these ideals pm were a particular case of
a class of ideals studied by Northcott [Nor].

In [OP2] we defined an HN ideal I as the determinantal ideal generated by the 2 × 2 minors of
a certain matrix. One can easily check that HN ideals and PCB ideals are two notions that coincide
when A = k[x] with n = 3. In [OP2, Definition 7.1 and Remark 7.2] we introduced an integer vector
m(I) = (m1,m2,m3) ∈ N3 associated to I . We showed that I is prime if and only if the greatest
common divisor of m(I) is equal to 1 [OP2, Theorem 7.8]. Further, using techniques from the theory
of multiplicities, we gave upper bounds for the number of prime components of I in terms of the mi
and gcd(m(I)). Finally, using a Jacobian criterion, we showed that I is radical if the characteristic of k
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is zero or sufficiently large. More particularly, in [OP2, Remark 8.6] we posed the open question as to
whether the number of prime components of I was at most gcd(m(I)).

We now return to these matters using the Eisenbud–Sturmfels theory of binomial ideals (see [ES]),
and in particular their investigation of so-called Laurent binomial ideals, to obtain a detailed positive
answer to this conjecture. The Eisenbud–Sturmfels theory used here provides a more transparent
approach that works for general n, and not just when n = 3. Note that, since a PCB ideal I is binomial,
so also are its isolated primary components, their intersection Hull(I) and, for n � 4, even for a
suitable choice for its m-primary irredundant embedded component. This approach also enables us to
give an analogous criterion for Hull(I) of a general PCB ideal I to be prime. Observe that when n � 4,
I cannot be radical since it is not even unmixed. However, we show that, for suitable coefficient
fields k, Hull(I) is radical; as stated above, recall that when n � 3, Hull(I) coincides with I , since I is
then unmixed.

Notice also that for n = 4, I is somewhat related to the notion of an “ideal generated by a full set of
critical binomials” introduced by Alcántar and Villarreal in [AV, §3, p. 3039], although the definitions
have essential differences.

For further background and recent related work from a similar perspective to ours, see [Wal,Eto]
and especially [Gas], and also [Oje] and [KO].

For an alternative combinatorial approach, see the recent paper [LV] (and Remark 5.8 below) and
the survey papers [KM] and [Mil]. Specifically, at the end of Section 3 of [Mil], a general programme
is set out whereby binomial primary decompositions can be calculated. Substantial difficulties could
present themselves as to how this programme plays out as regards particular binomial ideals and es-
pecially as regards abstractly defined classes of binomial ideals. Our point of view in the present paper
is to use constructive Commutative Algebra to give explicit, concrete descriptions of binomial primary
decompositions of PCB ideals. In particular, we present in the case of PCB ideals an explicit solution
to the ‘problem’ mentioned in [DMM, Remark 3.5], in that Theorem 4.10 below provides a concrete
description of the single embedded component of an irredundant binomial primary decomposition of
a PCB ideal in the case n � 4 where this ideal is not unmixed.

The paper is organized as follows. In Section 2 we first observe that all the rows of adj(L), the
adjoint matrix of L, are equal and lie in Nn . Then we define the integer vector m(I) ∈Nn associated to
a PCB binomial I as the last row of adj(L) (see Definition 2.2). We see that this definition extends the
one given in [OP2, Definition 7.1 and Remark 7.2]. Moreover, this vector m(I) helps define a grading
on A in which I becomes homogeneous.

In Section 3, we recover and extend properties of HN ideals, namely we show in Propositions 3.3
and 3.5 that a PCB ideal I is contained in a unique Herzog ideal, specifically pm(I) , and that, if n � 3,
I is an almost complete intersection. Section 4 is devoted to study the (un)mixedness property of PCB
ideals. The result, stated above, is surprising: while for n � 3, I is unmixed and I = Hull(I), for n � 4
we find that I is never unmixed (see Remark 4.7 and Proposition 4.8). We also provide an explicit,
concrete description of Hull(I) and, when n � 4 (in which case I is never unmixed), of a choice
for the irredundant embedded component of I , each of these descriptions being independent of the
characteristic of k (cf. Proposition 4.4 and Theorem 4.10). This gives a comprehensive and concrete
solution to [ES, Problem 6.3] in the case of our binomial ideals.

In Section 5, we review the normal decomposition of an integer matrix (also called the Smith
Normal Form). This will lead, on the one hand, to a change of variables that will greatly simplify the
description of I . On the other hand, it relates the greatest common divisor of m(I) (i.e., d, the greatest
common divisor of the entries of adj(L)) with the cardinality of the torsion group of the abelian group
generated by the columns of L (Proposition 5.6).

In Section 6 we pass to the Laurent polynomial ring, apply the change of variables given by the
normal decomposition of L, get a better description of I in the Laurent ring, and then contract back
to the original polynomial ring (cf. Theorem 6.5). This approach also enables us in Corollary 6.6 to
characterize when Hull(I) is prime. In turn, we can use Corollary 6.6 to show that the class of PCB
ideals has minimal overlap with the class of binomial ideals, namely so-called lattice basis ideals for
saturated lattices, considered by Hoşten and Shapiro in [HS] (cf. Proposition 6.7).

Finally, in the last section, we use the expression obtained in Theorem 6.5 to prove the main result
of the paper: Theorem 7.1. We end by giving some illustrative examples.
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Throughout the paper we will use the following notations: A = k[x] = k[x1, . . . , xn] will be the
polynomial ring in n variables x = x1, . . . , xn over a field k, n � 2. The maximal ideal generated by x
will be denoted m = (x). The multiplicatively closed set in A generated by x = x1 · · · xn , the product of
the variables x1, . . . , xn , will be denoted by S , and B = S−1 A = k[x±] = k[x1, . . . , xn, x−1

1 , . . . , x−1
n ] will

be the corresponding Laurent polynomial ring.
We will use the following multi-index notation: for α = (α1, . . . ,αn) ∈ Zn , or more generally, α a

row or a column of a matrix with ordered entries α1, . . . ,αn ∈ Z, set xα = xα1
1 · · · xαn

n in B . Given such
an α = (α1, . . . ,αn) ∈ Zn , let α+ = max(α,0) ∈ Nn

0 and α− = −min(α,0) ∈ Nn
0, where N0 := N ∪ {0},

so that α = α+ − α− .
By a binomial in A we understand a polynomial of A with at most two terms, say λxα − μxβ ,

where λ,μ ∈ k and α,β ∈ Nn
0. A binomial ideal of A is an ideal of A generated by binomials.

Unless stated otherwise, L will always be a PCB matrix, i.e., an n × n integer matrix defined as
above, f = f1, . . . , fn will be the binomials defined by the columns of L and I = ( f ) will the PCB
ideal of A associated to L.

Given an n × s integer matrix M , we will denote by mi,∗ and m∗, j its i-th row and j-th column,
respectively. Then fm∗, j = x(m∗, j)+ − x(m∗, j)− will denote the binomial defined by the j-th column of M .
The ideal I(M) = ( fm∗, j | j = 1, . . . , s), generated by the binomials fm∗, j , will be called the binomial
ideal associated to the matrix M . For instance, a PCB ideal I is the binomial ideal I = I(L) associated
to a PCB matrix L.

For an n× s integer matrix M , we will denote by M⊂ Zn the subgroup spanned by the columns of
M (M is often called a lattice of Zn). In other words, M= Zm∗,1 + · · · +Zm∗,s = ϕ(Zs) ⊆ Zn , where
ϕ : Zs → Zn is the homomorphism defined by the matrix M . The binomial ideal I(M) = (xm+ − xm− |
m ∈ M) is usually called the lattice ideal of A associated to M (see, e.g., [MS, Definition 7.2] or
alternatively [ES, just before Corollary 2.5], where I(M) is denoted by I+(ρ), ρ : M → k∗ being the
trivial partial character on the lattice M; see also [Vil, Corollary 7.1.4]).

By an n × n invertible integer matrix, we will understand an n × n matrix P with entries in Z
whose determinant is ±1. Thus its inverse matrix P−1 is also an integer matrix.

2. Endowing A with a grading that makes I homogeneous

Let Li, j be the (i, j)-cofactor of an n × n PCB matrix L, i.e., the (n − 1) × (n − 1) matrix obtained
from L by eliminating the i-th row and the j-th column of L. Let hi, j = (−1)i+ j det(L j,i) and set
H = (hi, j) = adj(L), the adjoint matrix of L. In the next result, all the computations are thought of in
Z or Q (i.e., in characteristic zero) and the ranks are taken over Q.

Lemma 2.1. With the notations above:

(a) det(Li,i) > 0, for all i = 1, . . . ,n. In particular, rank(L) = n − 1;
(b) det(Li,n) = (−1)n−i det(Li,i), for all i = 1, . . . ,n;
(c) det(Li, j) = (−1)n− j det(Li,n), for all i, j = 1, . . . ,n.

Moreover,

(d) hi, j > 0, for all i, j = 1, . . . ,n;
(e) hi,∗ = hn,∗ , for all i = 1, . . . ,n. In particular rank(adj(L)) = 1;
(f) Nullspace(L	) is generated as a Q-linear subspace by h	

n,∗ , the transpose of the last row of adj(L).

Proof. The proof of (a) follows easily from standard facts about so-called strictly diagonally dominant
matrices (cf., e.g., an easy adaptation of the statement and proof of [Gas, Bemerkung 6.1, pp. 37–
38] where one employs induction based on the number of rows, using row reduction). We present
here another proof based on a general fact about the eigenvalues of such matrices. Fix i ∈ {1, . . . ,n}.
By the Gershgorin Circle Theorem, every (possibly complex) eigenvalue λ of Li,i lies within at least
one of the discs {z ∈ C | |z − a j, j | � R j}, j �= i, where R j = ∑

u �=i, j | − a j,u | < a j, j since Li,i is a strictly
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diagonally dominant matrix. If λ ∈R, then λ > 0. If λ /∈ R, then since Li,i is a real matrix, its conjugate
λ must also be an eigenvalue of Li,i . By means of the Jordan canonical form of Li,i , one deduces that
det(Li,i) > 0. Clearly (1, . . . ,1)	 is in the nullspace of L and (a) holds.

Fix i ∈ {1, . . . ,n − 1}. By performing n − 1 − i permutations, the i-th column of Li,n may be taken
to the outer right-hand side. Add to this new right hand column the sum of the other columns and
change the sign. Using that the sum of the entries of each row of L is zero, one gets in the outer right
hand column the n-th column of Li,i . Therefore det(Li,n) = (−1)n−i det(Li,i). This proves (b).

Let j ∈ {1, . . . ,n−1}. Since the sum of the entries of each row of L is zero, to calculate det(Li, j) one
can substitute the last column of Li, j by the corresponding j-th column of Li,n with the sign changed.
By performing n −1− j permutations, one gets the matrix Li,n . Therefore det(Li, j) = (−1)n− j det(Li,n).
This proves (c).

For i, j = 1, . . . ,n, using (c), (b) and (a), respectively, we have

hi, j = (−1)i+ j det(L j,i) = (−1)i+ j+n−i det(L j,n) = (−1)i+ j+n−i+n− j det(L j, j) = det(L j, j).

This proves (d).
For j ∈ {1, . . . ,n − 1}, using (c),

hi, j = (−1)i+ j det(L j,i) = (−1)i+ j(−1)n−i det(L j,n) = (−1)n+ j det(L j,n) = hn, j.

Therefore all the rows of adj(L) are equal. In particular, since adj(L) �= 0 by (d), we see that
rank(adj(L)) = 1. This proves (e).

Since rank(L	) = rank(L) = n − 1, we have that dim Nullspace(L	) = 1. Furthermore, since
adj(L)L = 0, the transpose of the (non-zero) last row of adj(L) generates the Q-linear subspace
Nullspace(L	). �

As before, set A = k[x], the polynomial ring in n variables x = x1, . . . , xn over a field k, n � 2.

Definition 2.2. Let I = ( f ) be the PCB ideal associated to L. Let m = m(I) = (m1, . . . ,mn) be the n-th
row of adj(L); this will be called the integer vector associated to I . By the previous lemma, m(I) ∈
Nn and m(I)	 is a basis of the Q-linear subspace Nullspace(L	). We will denote by d the greatest
common divisor of the coefficients of m(I), d := gcd(m(I)), and set ν(I) = m(I)/d = (ν1, . . . , νn) ∈
Nn . From now on, given a PCB ideal I of A, we will endow A with the natural grading induced by
giving xi weight νi . Then A is graded by N0 := N ∪ {0}, and x and f are homogeneous elements of
positive degree. In particular, I is homogeneous. Hence so are its isolated primary components and its
associated primes, and an irredundant embedded primary component may be chosen homogeneous
(see, e.g., [ZS, Ch. VII, §2, Theorem 9 and Corollary, pp. 153–154]).

Remark 2.3. For n = 2 we have I = ( f1, f2), where f1 = x
a1,1
1 − x

a2,1
2 and f2 = x

a2,2
2 − x

a1,2
1 , with a1,1 =

a1,2 and a2,2 = a2,1. Thus f2 = − f1 and I = ( f1) is a complete intersection. In particular, I is unmixed.
Here, m(I) = (a2,2,a1,1) ∈N2 and d = gcd(m(I)) = gcd(a1,1,a2,2).

Remark 2.4. For n = 3 we have I = ( f1, f2, f3), where f1 = x
a1,1
1 − x

a2,1
2 x

a3,1
3 , f2 = x

a2,2
2 − x

a1,2
1 x

a3,2
3 and

f3 = x
a3,3
3 − x

a1,3
1 x

a2,3
2 , with a1,1 = a1,2 + a1,3, a2,2 = a2,1 + a2,3 and a3,3 = a3,1 + a3,2. Observe that

f1, f2, f3 are, up to sign, the 2 × 2 minors of the matrix

(
x

a1,2
1 x

a2,3
2 x

a3,1
3

x
a2,1
2 x

a3,2
3 x

a1,3
1

)
.

It follows that when n = 3, PCB ideals are precisely the ideals of Herzog–Northcott type, or HN
ideals for short, considered in [OP2]. In the proof of [OP2, Remark 4.4], there appear positive inte-
gers m1,m2,m3 presented as the 2 × 2 minors of the matrix defining the exponents of f1 and f2.
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Subsequently, in [OP2, Definition 7.1 and Remark 7.2], (m1,m2,m3) is defined as the integer vector
associated to the Herzog–Northcott ideal I . In conclusion, one can easily check that, when n = 3, the
present definition of m(I) coincides with the one given in [OP2, Definition 7.1 and Remark 7.2].

Remark 2.5. It is a long-standing open problem to find a minimal generating set for the defining ideals
pm of monomial curves Γm , m ∈ Nn , gcd(m) = 1, and to decide whether the pm are set theoretically
complete intersections. For n = 3, the problem was completely solved by Herzog in [Her]. For n = 4,
and provided that pm is an almost complete intersection, Gastinger in [Gas] and Eto in [Eto] gave a
definitive answer. In an attempt to study this problem for n = 4, Alcántar and Villarreal defined in
[AV] what they called a full set of critical binomials as a set of four binomials f1, f2, f3, f4 ∈ pm , where
m = (m1,m2,m3,m4) ∈ N4, m1 < m2 < m3 < m4 and gcd(m) = 1. The f i were respectively defined as
in our introduction, namely

x
a1,1
1 − x

a2,1
2 x

a3,1
3 x

a4,1
4 , x

a2,2
2 − x

a1,2
1 x

a3,2
3 x

a4,2
4 , x

a3,3
3 − x

a1,3
1 x

a2,3
2 x

a4,3
4 , x

a4,4
4 − x

a1,4
1 x

a2,4
2 x

a3,4
3 ,

but with ai,i > 0 and ai, j ∈ N0, and such that ai,i is minimal with respect to the condition ai,imi ∈∑
j �=i m jN0. They then studied when the ideal generated by the f i is the whole of pm . As is clear, our

definition of PCB ideal for n = 4 does not exactly match their definition. On the one hand, we do not
allow zero exponents, and on the other hand we do not ask for the above minimal condition or for
restrictions on the mi .

3. First properties of PCB ideals

Set A = k[x] to be the polynomial ring in n variables x = x1, . . . , xn over a field k, n � 2. We start
this section by recovering a definition from [OP2].

Definition 3.1. Let u = (u1, . . . , un) ∈ Nn be an integer vector with greatest common divisor not nec-
essarily equal to 1. The Herzog ideal associated to u is the prime ideal pu defined as the kernel of the
natural homomorphism ϕu : A → k[t] that sends xi to tui , for each i = 1, . . . ,n.

The following is a list of well-known properties of Herzog ideals, with a sketched proof for the
sake of completeness.

Remark 3.2. Let u ∈ Nn . The extension k[tu1 , . . . , tun ] ⊂ k[t] is integral. Hence A/pu ∼= k[tu1 , . . . , tun ]
has Krull dimension 1 and pu is a prime ideal of height n − 1. Since 0 ∈ V (pu) ⊆ An

k , where V (pu)

denotes the affine set of zeros over k of pu , m = I({0}) ⊇ I(V (pu)) ⊇ pu and pu � m. Moreover, if
v ∈Nn is such that u = dv for some d ∈ N, clearly pu ⊇ pv and, by the equality of heights, pu = pv .

We claim that if gcd(u) = 1, then V (pu) = Γu := {(λu1 , . . . , λun ) ∈ An
k | λ ∈ k} (see [RVZ, Proposi-

tion 2.9]). Clearly Γu ⊆ V (pu). Note that for i = 2, . . . ,n, xui
1 − xu1

i is in pu . Hence if (λ1, . . . , λn) ∈
V (pu) \ {0}, then each λi �= 0 and, taking λ := λ

c1
1 · · ·λcn

n where c1u1 + · · · + cnun = 1 with ci ∈ Z, one
has λui = λi and hence (λ1, . . . , λn) ∈ Γu .

Moreover, pu = (x1 − tu1 , . . . , xn − tun ) ∩ A, where the ideal (x1 − tu1 , . . . , xn − tun ) is considered in
A[t] = k[x1, . . . , xn, t]. Indeed, if f ∈ pu ,

f =
∑

aαxα =
∑

aα

(
x1 − tu1 + tu1

)α1 · · · (xn − tun + tun
)αn

= g +
∑

aα

(
tu1

)α1 · · · (tun
)αn = g + f

(
tu1 , . . . , tun

) = g + ϕu( f ) = g,

where g ∈ (x1 − tu1 , . . . , xn − tun ). Thus, f = g ∈ (x1 − tu1 , . . . , xn − tun )∩ A. The other inclusion follows
easily. In particular, by [ES, Corollary 1.3], pu is a binomial ideal.

Finally, if k is infinite and gcd(u) = 1, we claim that pu = I(Γu), the vanishing ideal of Γu . On the
one hand, since Γu = V (pu), I(Γu) = I(V (pu)) ⊇ pu . On the other hand, let f ∈ I(Γu) ⊂ A ⊂ A[t]. The
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argument above shows that f (x) = g(x, t) + r(t), with g ∈ (x1 − tu1 , . . . , xn − tun ) ⊂ A[t] and r ∈ k[t].
For any λ ∈ k, evaluate xi in λui and t in λ. Then 0 = f (λu1 , . . . , λun ) = g(λu1 , . . . , λun , λ)+ r(λ) = r(λ).
Thus r(λ) = 0 for all λ ∈ k. Since k is infinite, r = 0 and f (x) = g(x, t) ∈ (x1 −tu1 , . . . , xn −tun )∩ A = pu .

The next result gives us the first properties of a PCB ideal.

Proposition 3.3. Let I = ( f ) be the PCB ideal associated to L. Then the following hold.

(a) Any subset of n − 1 elements of f is a regular sequence in A.
(b) pm(I) is the unique Herzog ideal containing I and is a minimal prime over I . In particular, height(I) =

n − 1.
(c) If n = 2, I is principal. If n � 3, f1, . . . , fn is a minimal (homogeneous) system of generators of I and every

(non-necessarily homogeneous) system of generators of I has at least n elements.

Proof. Since ( f1, . . . , fn−1, xn) = (x
a1,1
1 , . . . , x

an−1,n−1
n−1 , xn), the grades of these ideals are equal and co-

incide with grade(x1, . . . , xn) = n (see, e.g., [Kap, Exercise 3.1.12(c)]). Using that A is graded and that
f1, . . . , fn−1, xn are homogeneous, we deduce that these elements form a regular sequence in any
order (see, e.g., [OP2, Theorem 4.1]) (and similarly for the possible variations on this argument). This
proves (a).

Given v ∈ Nn , clearly I ⊆ pv if and only if v satisfies the system of equations vL = 0, i.e., if and
only if v	 is in the nullspace of L	 , which by Lemma 2.1 and Definition 2.2 is the Q-linear subspace
generated by m(I)	 . Therefore I ⊆ pm(I) . Since n − 1 � grade(I) = height(I) � height(pm(I)) = n − 1,
pm(I) is a minimal prime over I and height(I) = n − 1. On the other hand, if I ⊆ pv , for some v ∈ Nn ,
then vL = 0 and rv = sm(I), with r, s ∈ N. Hence pv = prv = psm(I) = pm(I) .

Suppose that n � 3. We see first that f1, . . . , fn is a minimal homogeneous system of genera-
tors of I in the sense that none of them is irredundant. For, if fn were redundant, say, since n � 3,
I = ( f1, . . . , fn−1) ⊆ (x1, . . . , xn−1) and fn = g1x1 + · · · + gn−1xn−1, for some gi ∈ A. Substituting
x1, . . . , xn−1 by 0 and xn by 1, one would get a contradiction. By [BH, Proposition 1.5.15], every mini-
mal homogeneous system of generators of I has exactly μ(Im) elements. Hence n = μ(Im). Finally, if
h1, . . . ,hr is a minimal (non-necessarily homogeneous) system of generators of I , h1, . . . ,hr certainly
lie in m, and h1, . . . ,hr in Am still generate Im . Thus r � μ(Im) = n. �
Remark 3.4. Similarly to [OP2, Remark 6.2], we can show a relation among f1, . . . , fn . Concretely,
xb(1) f1 + · · · + xb(n) fn = 0, where the b(i) ∈Nn

0 are defined as follows:

b(1) = (0,0,a3,3 − a3,4 − · · · − a3,n − a3,1,a4,4 − a4,5 − · · · − a4,n − a4,1, . . . ,an,n − an,1),

b(2) = (a1,1 − a1,2,0,0,a4,4 − a4,5 − · · · − a4,n − a4,1 − a4,2, . . . ,an,n − an,1 − an,2),

b(3) = (a1,1 − a1,2 − a1,3,a2,2 − a2,3,0,0, . . . ,an,n − an,1 − an,2 − an,3), . . . ,

b(n − 1) = (a1,1 − a1,2 − · · · − a1,n−1, . . . ,an−2,n−2 − an−2,n−1,0,0) and

b(n) = (0,a2,2 − a2,3 − · · · − a2,n,a3,3 − a3,4 − · · · − a3,n, . . . ,an−1,n−1 − an−1,n,0).

For instance, when n = 2, b(1) = b(2) = (0,0) and xb(1) f1 + xb(2) f2 = f1 + f2, which is certainly zero.
For n = 3, since the sum of the entries of each row is zero, b(1) = (0,0,a3,2), b(2) = (a1,3,0,0) and
b(3) = (0,a2,1,0). Thus xb(1) f1 + xb(2) f2 + xb(3) f3 = x

a3,2
3 f1 + x

a1,3
1 f2 + x

a2,1
2 f3 = 0, which is (up to sign)

the second syzygy in [OP2, Remark 6.2]. For n = 4, we have

x
a3,2
3 x

a4,2+a4,3
4 f1 + x

a4,3
4 x

a1,3+a1,4
1 f2 + x

a1,4
1 x

a2,4+a2,1
2 f3 + x

a2,1
2 x

a3,1+a3,2
3 f4 = 0.

With respect to the property of being an almost complete intersection (in the sense of Herrmann,
Moonen and Villamayor [HMV]), we have a result similar to that of [OP2, Proposition 6.3].
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Proposition 3.5. Let I = ( f ) be the PCB ideal associated to L. Then the following hold.

(a) For any associated prime p of I , either height(p) = n − 1 and xi /∈ p, for all i = 1, . . . ,n, or else p= m.
(b) For any minimal prime ideal p over I , I Ap is a complete intersection.
(c) If n = 2, I is a complete intersection. If n � 3, I is an almost complete intersection.

Proof. Let p an associated prime of I . Since I is homogeneous, p is homogeneous too and hence
p⊆ m (see, e.g., [BH, §1.5]). If p�m, since height(I) = n − 1, then height(p) = n − 1 too. Moreover, for
each i, xi /∈ p, otherwise ( f , xi) ⊆ p and p= m.

Let p be a minimal prime over I , so in particular p �= m (because I ⊆ pm(I) � m). Thus xi /∈ p,
for all i = 1, . . . ,n. Using Remark 3.4, and with x = x1 · · · xn as before, I Ax = ( f1, . . . , fn−1)Ax and
I Ap = (I Ax)Ap = ( f1, . . . , fn−1)Ap, where f1, . . . , fn−1 is a regular sequence in Ap.

Finally, if n = 2, I is a complete intersection (cf. Remark 2.3). If n � 3, by Proposition 3.3(a), (c), I
has height n − 1 and is minimally generated by n elements. Since I is locally a complete intersection
at its minimal primes, I is an almost complete intersection. �
4. On the (un)mixedness property of PCB ideals

Let S be the multiplicatively closed set in A = k[x] generated by x = x1 · · · xn . Let B = S−1 A =
k[x±] = k[x1, . . . , xn, x−1

1 , . . . , x−1
n ] be the Laurent polynomial ring. As usual, if I is an ideal of A, I B

will denote its extension in B , and, if J is an ideal of B , J ∩ A = J c will denote its contraction in A.
We will also use the notation S(I) = I B ∩ A for the contraction of the extension of an ideal I of A.

Following the notation in [ES, p. 31], we write Hull(I) for the intersection of the isolated primary
components of I .

Note that, if α ∈ Nn
0, and according to our multi-index notation, xα is not normally a power of

x = x1 · · · xn but rather is a monomial in x1, . . . , xn . This monomial xα is indeed a unit in the localized
ring Ax , since Ax equals the Laurent ring B = A[x1, . . . , xn, x−1

1 , . . . , x−1
n ].

The next (standard) result helps to describe the associated primes of I in terms of the associated
primes of I B , its extension in B .

Proposition 4.1. Let I be a PCB ideal of A. Then the following hold.

(a) S(I) = Hull(I).
(b) Either I is unmixed and I = S(I), or else I = S(I) ∩ Q, where Q is m-primary and this intersection is

irredundant.
(c) If α ∈Nn

0 \ {0}, S(I) = I : (xα)∞ := { f ∈ A | f xNα ∈ I, for some N � 0}.
(d) Suppose that I B = b1 ∩ · · · ∩ br is a minimal primary decomposition of I B in B. Then S(I) = bc

1 ∩ · · · ∩ bc
r

is a minimal primary decomposition of S(I) in A and rad(bc
i ) = rad(bi)

c .

Proof. By Proposition 3.5(a), I has a minimal primary decomposition either of the form I = a1 ∩
· · · ∩ ar , or else I = a1 ∩ · · · ∩ ar ∩Q, where the a j are p j-primary ideals with height(p j) = n − 1, and
Q is m-primary. In particular, xi /∈ p j for each i. Therefore I B = a1 B ∩ · · · ∩ ar B is a minimal primary
decomposition of I B in B and S(I) = a1 ∩ · · · ∩ ar , which is precisely equal to Hull(I).

Moreover, either I is unmixed and I = S(I), or else I = S(I) ∩ Q, where Q is m-primary and this
intersection is irredundant. This proves (b).

If I = a1 ∩ · · · ∩ ar , α ∈ Nn
0 \ {0} and N � 0, I : xNα = ⋂r

j=1(a j : xNα) = ⋂r
j=1 a j , because for all i, j,

xi /∈ p j = rad(a j) and a j is p j -primary. On the other hand, if I = a1 ∩ · · · ∩ ar ∩ Q and N � 0, then
I : xNα = ⋂r

j=1(a j : xNα)∩ (Q : xNα) = ⋂r
j=1 a j again, because rad(Q) =m and Q : xNα = A, for N � 0.

Thus, in both cases, I : xNα = a1 ∩ · · · ∩ ar = S(I) when N � 0.
Finally, if I B = b1 ∩· · ·∩br is a minimal primary decomposition of I B in B , then S(I) = bc

1 ∩· · ·∩bc
r

is a primary decomposition of S(I) in A, where rad(bc
i ) = rad(bi)

c . Moreover, if bc
1 ⊇ bc

2 ∩ · · · ∩ bc
r , say,

then, since S−1 A is a flat extension of A, b1 = bce
1 ⊇ bce

2 ∩ · · · ∩ bce
r = b2 ∩ · · · ∩ br , a contradiction.

Therefore S(I) = bc
1 ∩ · · · ∩ bc

r is a minimal primary decomposition. �
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Before proceeding we state, for the sake of reference, a list of well-known properties of lattice
ideals.

Proposition 4.2. Let M be an n × s integer matrix and let M ⊆ Zn be the lattice spanned by the columns
of M. Let I(M) = (x(m∗, j)+ − x(m∗, j)− | j = 1, . . . , s) be the ideal of A generated by the binomials defined by
the columns of M and let I(M) = (xu − xv | u, v ∈ Nn

0, u − v ∈M) be the lattice ideal of A associated to M.
The following hold:

(a) I(M) ⊆ I(M) and I(M) = I(M) : x∞ . In particular, I(M)B ∩ A = I(M);
(b) I(M)B ≡ (xm∗, j − 1 | j = 1, . . . , s)B coincides with I(M)B ≡ (xα − 1 | α ∈M)B;
(c) Given α ∈ Zn, α ∈M if and only if xα − 1 ∈ I(M)B;
(d) If N is an n × r integer matrix with I(M) = I(N), then M=N ;
(e) Let Q be an s × s invertible integer matrix. If M Q = T , then I(M)B = I(T )B.

Proof. The containment at the beginning of (a) is clear and the first equality is [MS, Lemma 7.6].
In particular, I(M)B ∩ A = I(M), because for any ideal J of A, J B ∩ A = J : x∞ . Since the xi are
invertible in the Laurent polynomial ring B = S−1 A, which is a flat A-module, I(M)B = (I(M) :
x∞)B = I(M)B . This proves (b). If α ∈ M, then xα − 1 ∈ I(M)B = I(M)B , by item (b). Conversely,
take xα − 1 ∈ I(M)B = I(M)B . Let ρ : M → k∗ be the trivial character and Lρ = M. Following the
notation in [ES, §2], I(M)B is the Laurent binomial ideal I(ρ). The argument in the second paragraph
of [ES, Theorem 2.1(a), p. 13, last line] shows that α ∈ M. This proves (c). Suppose now I(M) = I(N)

and take α ∈ M. Then, by (c), xα − 1 ∈ I(M)B = I(N)B . By (c) again, this implies that α ∈ N , so that
M ⊆ N . Analogously, N ⊆ M. This proves (d). Finally, if M Q = T with Q invertible, then M = T
and, by (b), I(M)B = I(M)B = I(T )B = I(T )B . �

With this terminology, we see that Proposition 4.1(c) says that the hull of a PCB ideal is the lattice
ideal of the lattice spanned by the columns of the PCB matrix. That is, in concrete terms, we have the
following.

Corollary 4.3. Let I the PCB ideal of A associated to L. Then S(I) = I(L), where L⊆ Zn is the lattice spanned
by the columns of L.

Proof. By Proposition 4.1(c), with α = (1, . . . ,1), and Proposition 4.2(a), S(I) = I(L) : x∞ = I(L). �
We give now an explicit description of S(I) and thus of Hull(I) (see [ES, Problem 6.3]).

Proposition 4.4. Let I = ( f ) = ( f1, . . . , fn) be a PCB ideal and set J = ( f1, . . . , fn−1). Set b(n) = (0,a2,2 −
a2,3 − · · · − a2,n, . . . ,an−1,n−1 − an−1,n,0). Then S(I) = I : xb(n) = J : xb(n) .

Proof. By Proposition 3.3(a), f1, . . . , fn−1 is a regular sequence in A. Hence J is a complete intersec-
tion and an unmixed ideal of height n − 1.

If n = 2, I is principal and unmixed, and J = I = S(I). Moreover, b(n) = (0,0) and J : xb(n) = I :
xb(n) = S(I).

Set n � 3, so b(n) �= 0. By Remark 3.4, xb(n) fn ∈ J . Hence xb(n) I ⊆ J . By Proposition 4.1(c),

I ⊆ J : xb(n) ⊆ I : xb(n) ⊆ I : (xb(n)
)∞ = S(I).

In particular, J : xb(n) is a proper ideal. By the properties of the colon operation vis-à-vis intersection
of ideals, since J is unmixed, it follows that J : xb(n) is unmixed with associated primes a (non-empty)
subset of the primes associated to J , and hence each of height n − 1.

Moreover, if p is an associated prime of J : xb(n) , since I ⊆ J : xb(n) , then I ⊆ p and, since
height(p) = n − 1, p is a minimal prime over I . In particular, xb(n) /∈ p and ( J : xb(n))p = Jp.
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Therefore, for any associated prime p of J : xb(n) (so that p is a minimal prime over I),

Ip ⊆ (
J : xb(n)

)
p

= Jp ⊆ Ip = S(I)p.

Hence ( J : xb(n))p = S(I)p for all associated primes p of J : xb(n) , so J : xb(n) = I : xb(n) = S(I). �
The next result is a kind of ad hoc “unmixedness test”. For a more general result, see the Un-

mixedness Test of W.V. Vasconcelos in [Vas, p. 76].

Corollary 4.5. Let I be a PCB ideal of A. Then the following conditions are equivalent.

(i) I is unmixed;
(ii) Each of x1, . . . , xn is regular modulo I;

(iii) I = I : x1 .

Proof. If I is unmixed and if xi were a zero-divisor modulo I , then xi would be in an associated
prime p of I and p would be equal to m, a contradiction. If I = I : x1, then clearly I = I : x∞

1 . By
Proposition 4.1(c), S(I) = I : x∞

1 . Thus I = S(I) and, by Proposition 4.1(b), I is unmixed. �
Let us state the last result in terms of lattice ideals (cf. also [ES, Corollary 2.5] or [LV, Theorem 3.2]).

Corollary 4.6. Let I be a PCB ideal of A. Then I is unmixed if and only if I is a lattice ideal.

Proof. If I is unmixed, by Proposition 4.1(b), I = S(I) and, by Corollary 4.3, S(I) is a lattice ideal.
Conversely, if I = I(M) is a lattice ideal, then S(I) = I B ∩ A = I(M)B ∩ A, which, by Proposition 4.2,
is equal to I(M) = I . Hence, S(I) = I and, by Proposition 4.1(b), I is unmixed. �
Remark 4.7. Let I be a PCB ideal of A. If n � 3, I is unmixed. This follows from Remark 2.3 for the
case n = 2, and the fact that, for n = 3, PCB ideals are ideals of Herzog–Northcott type (cf. [OP2,
Proposition 2.2(b)]).

Proposition 4.8. Let I = ( f ) be a PCB ideal of A, n � 4. Set g1 = x
a2,1
2 x

a3,1
3 · · · x

an−1,1
n−1 and g2 = x

a2,n
2 x

a3,n
3 · · ·

x
an−1,n
n−1 . Let g = x

a1,1−1
1 x

an,n−an,1
n − x

a1,n−1
1 g1 g2 . Then g ∈ (I : x1) \ I . In particular, I is not unmixed.

Proof. It is easy to check that x1 g = x
an,n−an,1
n f1 + g1 fn . Moreover, if g ∈ I , setting xi = 0 for i =

2, . . . ,n − 1, it would follow that x
a1,1−1
1 x

an,n−an,1
n lies in (x

a1,1
1 , x

an,n
n )k[x1, xn], a contradiction. Thus

g ∈ (I : x1) \ I . By Corollary 4.5, I is not unmixed. (Observe that the condition n � 4 is essential, for if
n = 3, the ideal obtained from I when substituting x2 by 0 is (x

a1,1
1 , x

a1,2
1 x

a3,2
3 , x

a3,3
3 )k[x1, x3].) �

Example 4.9. Let I = (x3
1 − x2x3x4, x3

2 − x1x3x4, x3
3 − x1x2x4, x3

4 − x1x2x3) ⊂ A be the “simplest” PCB
ideal in dimension 4. By Proposition 4.8, I is not unmixed. In fact, the element g ∈ (I : x1) \ I built in
the proof there is x2

1x2
4 − x2

2x2
3. A computation with Singular (see [GPS]) shows that I : x1 = I + (x2

1x2
2 −

x2
3x2

4, x2
1x2

3 − x2
2x2

4, x2
1x2

4 − x2
2x2

3) and that I : x1 = I : x2
1. In particular, by Proposition 4.1(c), S(I) = I : x1.

Alternatively, from Proposition 4.4, we get another description of S(I), namely, since b(4) = (0,1,2,0),
S(I) = I : (x2x2

3).
On the other hand, clearly m(I) = (16,16,16,16) and so d = gcd(m(I)) = 16. We will see (cf. Theo-

rem 7.1 below) that, provided k = C, I has exactly sixteen isolated primary components and one irre-
dundant embedded primary component. The next result says that Q= I +(x1) = (x1, x2x3x4, x3

2, x3
3, x3

4)

is an embedded primary component of I . Alternatively, I + (x2x2
3) is another embedded primary com-

ponent of I .
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We now give an explicit description of an irredundant embedded component of I , provided that
n � 4, that is independent of the characteristic of k. Note that in this case, each irredundant primary
decomposition of I has precisely one embedded component.

Theorem 4.10. Let I = ( f ) be a PCB ideal of A, n � 4. Suppose that I : xα = I : (xα)∞ for some α ∈ Nn
0 \ {0}.

Then the following hold.

(a) I + (xα) is an irredundant m-primary component of I;
(b) In particular, for b(n) = (0,a2,2 −a2,3 −· · ·−a2,n, . . . ,an−1,n−1 −an−1,n,0), I +(xb(n)) is an irredundant

m-primary component of I .

Proof. By Proposition 4.1, S(I) = Hull(I) and S(I) = I : (xα)∞ = I : xα . Moreover, since n � 4, by Propo-
sition 4.8, I is not unmixed.

Since I : xα = I : (xα)∞ , by [ES, Proposition 7.2(a)], I = (I : xα) ∩ (I + (xα)), so I = S(I) ∩ (I +
(xα)), where S(I) = Hull(I) is the intersection of the isolated primary components of I . Since I is not
unmixed, I + (xα) is not redundant.

Clearly, rad(I, xα) = m. Thus I + (xα) is m-primary. One deduces that I + (xα) is an irredundant
m-primary component of I .

By Proposition 4.4, S(I) = I : xb(n) , i.e., I : xb(n) = I : (xb(n))∞ . It follows, that I + (xb(n)) is an irre-
dundant m-primary component of I . �
Example 4.11. Let I = ( f ) = (x4

1 − x2x3x4, x4
2 − x2

1x3x4, x3
3 − x1x2

2x4, x3
4 − x1x2x3) ⊂ A. Again, by

Proposition 4.8, I is not unmixed. Since b(n) = (0,1,2,0), by Theorem 4.10, I + (x2x2
3) is an ir-

redundant m-primary component of I . On the other hand, the integer vector associated to I is
m(I) = (20,24,31,25) and its greatest common divisor is d = gcd(m(I)) = 1. By Proposition 3.3,
pm(I) = ker(ϕm(I)) is the unique Herzog ideal containing I . Recall that the natural map ϕm(I) : A → k[t]
sends x1, x2, x3 and x4 to t20, t24, t31 and t25, respectively. Therefore I ⊆ pm(I) ∩ Q. We will see (cf.
Corollary 6.6 below) that, since d = 1, S(I) = pm(I) , so I = S(I) ∩Q = pm(I) ∩Q, an irredundant inter-
section, and the previous inclusion is an equality.

5. A review of the normal decomposition of an integer matrix

In this section we review some well-known facts about linear algebra over Z or, more generally,
over a Principal Ideal Domain. Our general reference is [Jac, Chapter 3]. As before, A = k[x] is the
polynomial ring in n variables x = x1, . . . , xn over a field k, n � 2.

Definition 5.1. Let M be a non-zero n × s integer matrix. Then there exist an n × n invertible integer
matrix P and an s × s invertible integer matrix Q such that P M Q = D , where D is an n × s integer
diagonal matrix D = diag(d1,d2, . . . ,dr,0, . . . ,0), with di ∈N and di | d j if i � j, and r = rank(M). The
matrix D is called a normal form of M and the expression P M Q = D a normal decomposition of M (D
is also called the Smith Normal Form of M , see, e.g., [GPS]).

Remark 5.2. The non-zero diagonal elements of a normal form D of M , referred to as the invariant
factors of M , are unique. Indeed, let It(M) be the ideal of Z generated by the t × t-minors of the
matrix M , It(M) := Z for t � 0 and It(M) := 0 for t > min(n, s). Then It(M) = It(P M Q ) for all invert-
ible integer matrices P and Q (see, e.g., [CLO, Chapter 5, Lemma 4.8 and Exercise 10, pp. 232–233]).
In particular, It(M) = It(D) and gcd(It(M)) = gcd(It(D)), understanding by the gcd( J ) of a non-zero
ideal J of Z its non-negative generator (and setting 0 to be the gcd of the zero ideal). Therefore, set-
ting 	t = gcd(It(M)), one has that d1 = 	1, d2 = 	2	

−1
1 , . . . ,dr = 	r	

−1
r−1, where r = rank(M) (see,

e.g., [Jac, Theorems 3.8 and 3.9]). Observe that, in particular, d1 = 	1, d1d2 = 	2, . . . , d1 · · ·dr = 	r .
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Lemma 5.3. Let I be the PCB ideal of A associated to L. Let m(I) be the integer vector associated to I , d =
gcd(m(I)) and ν(I) = m(I)/d. Let P L Q = D be a normal decomposition of L and d1, . . . ,dn−1 the invariant
factors of L. Then d = d1 · · ·dn−1 . Moreover, the last row of P is ±ν(I).

Proof. Observe that, by Lemma 2.1, rank(L) = n − 1 and hence there are n − 1 (non-zero) invariant
factors d1, . . . ,dn−1. By Remark 5.2, d1 · · ·dn−1 = 	n−1 = gcd(In−1(L)). But the (n−1)× (n−1) minors
of L are precisely the entries of the matrix adj(L), each of whose rows is equal to the last one, denoted
by m(I) (see Lemma 2.1 and Definition 2.2). Thus d1 · · ·dn−1 = 	n−1 = gcd(In−1(L)) = gcd(m(I)) = d.

Since P L = D Q −1 and the last row of D Q −1 is zero, pn,∗L = 0 and p	
n,∗ ∈ Nullspace(L	). By

Lemma 2.1 and Definition 2.2, Nullspace(L	) is generated, as a Q-linear subspace, by the vector
m(I)	 , or equivalently, by the vector ν(I)	 = m(I)	/d. Therefore there exist r, s ∈ Z \ {0} such that
rpn,∗ = sν(I). Observe that, since det(P ) = ±1, then gcd(pn,∗) = 1. Now, taking the greatest common
divisor, we get r = ±s and hence pn,∗ = ±ν(I). �
Example 5.4. Let I be the PCB ideal of A associated to L. Suppose that n = 2. Then a1,1 = a1,2 and
a2,1 = a2,2. Moreover m(I) = (a2,2,,a1,1). Let d = gcd(m(I)) and write ai,i = da′

i,i and d = b1a1,1 +
b2a2,2 for some b1,b2 ∈ Z. The invariant factor of L is d1 = d and

(
b1 −b2

a′
2,2 a′

1,1

)(
a1,1 −a1,2

−a2,1 a2,2

)(
1 1
0 1

)
=

(
d 0
0 0

)

is a normal decomposition of L.

In order to describe the isolated components of the PCB ideal I associated to L, it will be conve-
nient to know the entries of a matrix P in a normal decomposition P L Q = D of L (see Theorem 7.1).

If n = 3 and if the entries of a row of L are relatively prime, or more generally if their great-
est common divisor equals the first invariant factor d1, we see next that obtaining P explicitly is
almost immediate. Observe that the example also covers the situation where gcd(a2,1,a2,3) = d1 or
gcd(a1,2,a1,3) = d1, via an appropriate relabelling of the suffices. However, calculating an explicit nor-
mal decomposition of a general matrix L, even for n = 3, is technical and unilluminating. For concrete
instances of the matrix L, a normal decomposition of L can be obtained for example in Singular (see
‘smithNormalForm’ [GPS]).

Example 5.5. Let I be the PCB ideal of A associated to L. Suppose that n = 3. Let m(I) be the integer
vector associated to I , d = gcd(m(I)) and ν(I) = m(I)/d. Let d1, d2 be the invariant factors of L. In
particular, d1 = gcd(I1(L)) and d1d2 = d. Set d′

2 = d2/d1. Let b = gcd(a3,1,a3,2) = b′d1. Let c1, c2 ∈ Z
with b = c1a3,1 + c2a3,2. Set α1 = −c1a1,1 + c2a1,2 = d1α

′
1 and α2 = c1a2,1 − c2a2,2 = d1α

′
2, for some

α′
1,α

′
2 ∈ Z. The following conditions are equivalent:

(a) gcd(a3,1,a3,2) = d1;
(b) gcd(ν1, ν2) = 1, b′ | c and (b′)2 | d′

2, where c = s2α
′
1 − s1α

′
2 and s1, s2 ∈ Z are such that s1ν1 +

s2ν2 = 1;
(c) There exists a normal decomposition P L Q = D of L with the first row of P equal to (0,0,1).

Moreover, in this particular case, the second row of P is given by (s2,−s1,−c), while the third row
is given by ν(I) = (ν1, ν2, ν3).

Proof. Set a3,1 = bã3,1, a3,2 = bã3,2, with ã3,1, ã3,2 ∈N. Let Q =
( −c1 ã3,2 1

−c2 −ã3,1 1
0 0 1

)
. Then det(Q ) = 1 and

L Q =
⎛
⎝ a1,1 −a1,2 −a1,3

−a2,1 a2,2 −a2,3

⎞
⎠

⎛
⎝−c1 ã3,2 1

−c2 −ã3,1 1

⎞
⎠ =

⎛
⎝α1 m2/b 0

α2 −m1/b 0

⎞
⎠ .
−a3,1 −a3,2 a3,3 0 0 1 b 0 0
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Since ν(I)	 is a Q-basis of Nullspace(L	) (cf. Definition 2.2), ν(I)L Q = 0 and

α1ν1 + α2ν2 + bν3 = 0. (1)

For P1 =
( 0 0 1

0 1 0
1 0 0

)
, det(P1) = −1 and P1L Q =

( b 0 0
α2 −m1/b 0
α1 m2/b 0

)
.

For P2 =
( 1 0 0

−α′
2 1 0

−α′
1 0 1

)
, det(P2) = 1 and P2 P1L Q =

( b 0 0
α′

2(d1−b) −m1/b 0

α′
1(d1−b) m2/b 0

)
.

The unique non-zero 2 × 2 minor of P2 P1L Q defined by the last two rows is, up to sign, equal
to ((d1 − b)d2/b)[α1ν1 + α2ν2], which, by the equality (1) above, is equal to −(d1 − b)d2ν3. Since
I2(D) = I2(L) = I2(P2 P1L Q ) (cf. Remark 5.2),

d = d1d2 = gcd
(

I2(D)
) = gcd

(
I2(L)

) = gcd
(

I2(P2 P1L Q )
) = gcd

(
ν1d, ν2d, (b − d1)d2ν3

)
.

Since b = d1b′ , then d = d · gcd(ν1, ν2, (b′ − 1)ν3). Therefore, gcd(ν1, ν2, (b′ − 1)ν3) = 1 and
gcd(ν1, ν2, (b′ − 1)) = 1.

Observe that until now we have not used any of the hypotheses (a), (b) or (c). Now suppose that
gcd(a3,1,a3,2) = d1. Then b′ = 1 and gcd(ν1, ν2) = 1. Thus (a) implies (b).

Suppose now that gcd(ν1, ν2) = 1 (where b is not assumed a priori to be equal to d1). Let

s1, s2 ∈ Z with s1ν1 + s2ν2 = 1. Set c = s2α
′
1 − s1α

′
2. Let P3 =

( 1 0 0
c −s1 s2

(1−b′)ν3 ν2 ν1

)
. Then det(P3) = −1

and P3 P2 P1L Q =
( d1b′ 0 0

d1c d2/b′ 0
0 0 0

)
, using the equality (1) above.

Suppose that b′ | c. Set c̃ = c/b′ and P4 =
( 1 0 0

−c̃ 1 0
0 0 1

)
. Then det(P4) = 1. Set P = P4 P3 P2 P1. Then P =

( 0 0 1
s2 −s1 −c̃
ν1 ν2 ν3

)
and P L Q =

( d1b′ 0 0
0 d2/b′ 0
0 0 0

)
. If (b′)2 | d′

2, then d1b′ and d2/b′ are positive integers with d1b′ |
(d2/b′). By the unicity of the normal form of L, b′ = 1. Therefore P L Q = D is a normal decomposition
of L and (b) implies (c).

Finally, suppose that there exists a normal decomposition P L Q = D of L, with the first row of P
equal to (0,0,1). Equating the first rows of the identity P L = D Q −1, one has that, if Q −1 = (ui, j),
(−a3,1,−a3,2,a3,3) = (d1u1,1,d1u1,2,d1u1,3). Therefore

gcd(a3,1,a3,2,a3,3) = d1 · gcd(u1,1, u1,2, u1,3) = d1

and (c) implies (a). �
We finish the section with the answer to a question posed by Josep Àlvarez Montaner. Denote by

Fitti(M) the i-th Fitting ideal of a Z-module M (see, e.g., [CLO, Definition 5.4.9]).

Proposition 5.6. Let I be the PCB ideal of A associated to L. Let m(I) be the integer vector associated to I ,
d = gcd(m(I)). Let L be the lattice of Zn spanned by the columns of L. Then the following hold.

(a) Fitt1(Z
n/L) = dZ and Fitt0(Z

n/L) = 0.
(b) Zn/L∼= Z⊕Z/d1Z⊕ · · · ⊕Z/dn−1Z, with d1, . . . ,dn−1 the invariant factors of L.
(c) The cardinality of the torsion group of Zn/L is d.
(d) L is a direct summand of Zn if and only if d = 1.

Proof. Let P L Q = D be a normal decomposition of L and d1, . . . ,dn−1 the invariant factors of L. By
Lemma 5.3, d = d1 · · ·dn−1. By definition, Fitt1(Z

n/L) = In−1(L) = In−1(D) = (d1 · · ·dn−1)Z = dZ and
Fitt0(Z

n/L) = In(L) = In(D) = 0. Since P L Q = D is a normal decomposition of L, the Z-module Zn/L
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admits a decomposition Z ⊕ T , where T = Z/d1Z ⊕ · · · ⊕ Z/dn−1Z is the torsion module (see, e.g.,
[Jac, Chapter 3]). Clearly d = d1 · · ·dn−1 is the cardinality of the torsion group of Zn/L. Finally, since
rank(L) = n − 1, then rank(L) = n − 1 and rank(Zn/L) = 1 (see, e.g., [BH, §1.4]). Hence L is a direct
summand of Zn if and only if Zn/L is a free Z-module of rank 1. By [Eis, Proposition 20.8], the latter
holds if and only if Fitt1(Z

n/L) = Z and Fitt0(Z
n/L) = 0, i.e., if and only if d = 1. �

Remark 5.7. Note that an obvious analogue of Proposition 5.6 holds for any n × n matrix M of rank
n − 1, with invariant factors d1, . . . ,dn−1, with d now defined merely as the product d1 · · ·dn−1. Note
also that the transpose M	 of M again has d1, . . . ,dn−1 as its invariant factors: indeed, any integer
matrix and its transpose have the same invariants.

Remark 5.8. There is an overlap between the results of Section 5 and the results of [LV, §3].
(Recall that an integer matrix and its transpose have the same invariant factors.) The latter re-
sults were obtained using Gröbner Basis Theory rather than the theory of Fitting ideals, and with
different objectives in mind. For example, one can contrast the statement of [LV, Corollary 3.19]
with the situation that obtains for the ideal I considered in Example 4.11 above. In Example 4.11,
d = 1 and I(L) = S(I) = pm(I) , which is the kernel of the natural map A → k[t] sending x1, x2, x3
and x4 to t20, t24, t31 and t25, respectively, whereas in López and Villarreal’s theory, d = 1 and
I(L) = (x1 − x2, x1 − x3, x1 − x4). Observe that the ideals in [LV] have to be homogeneous in the
standard grading, hence this simpler form. See also Remark 7.2.

6. Applying the Eisenbud–Sturmfels theory of Laurent binomial ideals

In this section we apply the theory of Laurent binomial ideals developed in [ES]. Recall that for
an n × s integer matrix M , we denote by mi,∗ and m∗, j its i-th row and j-th column, respectively.
The abelian group generated by the columns of M is denoted M= Zm∗,1 +· · ·+Zm∗,s = ϕ(Zs) ⊆ Zn ,
where ϕ : Zs → Zn is the homomorphism defined by the matrix M . By an n × n invertible integer
matrix, we understand an n ×n matrix P with entries in Z whose determinant is ±1. Thus its inverse
matrix P−1 is also an integer matrix. Set A = k[x] to be the polynomial ring in n variables x =
x1, . . . , xn over a field k, n � 2, and B = k[x±] = k[x1, . . . , xn, x−1

1 , . . . , x−1
n ], the Laurent polynomial

ring.

Remark 6.1. Let I = ( f ) = ( f1, . . . , fn) be the PCB ideal of A associated to L. Then

I B = ( f1, . . . , fn−1)B = (
xl∗,1 − 1, . . . , xl∗,n−1 − 1

)
B.

In particular, I B is a complete intersection.

Proof. Clearly I B = ( f1, . . . , fn)B = (xl∗,1 − 1, . . . , xl∗,n − 1)B . Since the sum of the entries of each row
is zero, the last column of L, l∗,n , is a Z-linear combination of the first n − 1 columns of L. Thus, by
Remark 4.2(c), xl∗,n −1 ∈ (xl∗,1 −1, . . . , xl∗,n−1 −1)B . An alternative proof would follow from Remark 3.4
(see the proof of Proposition 3.5(b)). �

We now make explicit the change of variables we will use.

Lemma 6.2. Let P = (pi, j) be an n × n invertible integer matrix. Set R = (ri, j), its inverse. Let y1 =
xr∗,1 , . . . , yn = xr∗,n in B = k[x±] = k[x1, . . . , xn, x−1

1 , . . . , x−1
n ]. Then

(a) x1 = yp∗,1 , . . . , xn = yp∗,n ;
(b) B = k[x1, . . . , xn, x−1

1 , . . . , x−1
n ] = k[y1, . . . , yn, y−1

1 , . . . , y−1
n ];

(c) y1, . . . , yn are algebraically independent over k.



406 L. O’Carroll, F. Planas-Vilanova / Journal of Algebra 373 (2013) 392–413
Proof. Since R P is the identity matrix, yp∗,i = y
p1,i
1 · · · y

pn,i
n = xr∗,1 p1,i · · · xr∗,n pn,i = xRp∗,i = xi . Clearly

k[y±] ⊆ B and the equality follows by part (a). Writing Q (R) to denote the quotient field of a do-
main R , we have Q (A) = Q (B) = Q (k[y±]) = Q (k[y]). Thus dim A = trdegk(Q (A)) = trdegk(Q (k[y]))
and the transcendence degree of k[y1, . . . , yn] over k is n. It follows, e.g., using Noether’s Normaliza-
tion Lemma, that y1, . . . , yn are algebraically independent over k. �

The next result expresses I B in terms of the new variables.

Lemma 6.3. Let I be the PCB ideal of A associated to L. Let P L Q = D be a normal decomposition of L and
d1, . . . ,dn−1 the invariant factors of L. Let R = (ri, j) be the inverse of P . Set y1 = xr∗,1 , . . . , yn = xr∗,n in

B = k[x±]. Then I B = (yd1
1 − 1, . . . , y

dn−1
n−1 − 1)B.

Proof. By Remark 6.1, I B = (xl∗,1 − 1, . . . , xl∗,n−1 − 1)B . Using Lemma 6.2(a) and substituting xi

by yp∗,i , we get xl∗,i = x
−a1,i
1 · · · x

ai,i
i · · · x

−an,i
n = yp∗,1(−a1,i) · · · yp∗,iai,i · · · yp∗,n(−an,i) = y Pl∗,i . Therefore

the ideal (xl∗,1 − 1, . . . , xl∗,n−1 − 1)B is equal to (y Pl∗,1 − 1, . . . , y Pl∗,n−1 − 1)B , and so equal to
(y(D Q −1)∗,1 − 1, . . . , y(D Q −1)∗,n−1 − 1)B . By Remark 4.2(e), the latter is equal to the ideal (yD∗,1 −
1, . . . , yD∗,n−1 − 1)B = (yd1

1 − 1, . . . , y
dn−1
n−1 − 1)B . �

Our aim now is to give a minimal primary decomposition of I B in terms of these new variables.
Before this, we introduce some notation.

Notation 6.4. Let I be the PCB ideal associated to L, m(I) its associated integer vector, d =
gcd(m(I)) and ν(I) = m(I)/d. Let P L Q = D be a normal decomposition of L with pn,∗ = ν(I) (see
Lemma 5.3). Let d1, . . . ,dn−1 be the invariant factors of L. Let R = (ri, j) be the inverse of P and
set y1 = xr∗,1 , . . . , yn = xr∗,n in B = k[x±]. For any λ = (λ1, . . . , λn−1) ∈ (k∗)n−1, k∗ := k \ {0}, set
bλ = (y1 − λ1, . . . , yn−1 − λn−1)B . Clearly bλ is a prime ideal of B of height n − 1. In particular,
bc

λ is a prime ideal of A of height n − 1.
Suppose that k contains the dn−1-th roots of unity. (Note that then k will also contain the

d1-th, . . . ,dn−2-th roots of unity, respectively, since di | di+1 for i = 1, . . . ,n − 2.) We will write
{ξi,1, . . . , ξi,di } to denote the set of di -th roots of unity in k when these exist and are distinct, and set

Λ(D) = ∏n−1
i=1 {ξi,1, . . . , ξi,di } ⊂ (k∗)n−1. Clearly, if the characteristic of k, char(k), is zero or char(k) = p,

p a prime with p � dn−1, then the cardinality of Λ(D) is d1 · · ·dn−1, which, by Lemma 5.3, is equal
to d.

Theorem 6.5. Let I be the PCB ideal associated to L, m(I) its associated integer vector, d = gcd(m(I)) and
ν(I) = m(I)/d. Let d1, . . . ,dn−1 be the invariant factors of L. With the notations above:

(a) Suppose that k contains the dn−1-th roots of unity and that the characteristic of k, char(k), is zero or
char(k) = p, p a prime with p � dn−1 . Then I B = ⋂

λ∈Λ(D) bλ and S(I) = ⋂
λ∈Λ(D) b

c
λ are minimal

primary decompositions. In particular, I B and S(I) are unmixed, radical and have exactly d distinct asso-
ciated primes.

(b) If k is an arbitrary field, then I B and S(I) have at most d distinct associated primes.

Proof. As in Notation 6.4, set y1 = xr∗,1 , . . . , yn = xr∗,n in B = k[x±]. Lemma 6.2 says that y =
y1, . . . , yn are algebraically independent over k and B = k[x±] = k[y±]. By Remark 6.1, I B is a com-

plete intersection and, by Lemma 6.3, I B = (yd1
1 − 1, . . . , y

dn−1
n−1 − 1)B .

Let us prove (a). Consider Λ(D) = ∏n−1
i=1 {ξi,1, . . . , ξi,di } ⊂ (k∗)n−1 and, for any λ ∈ Λ(D), bλ =

(y1 − λ1, . . . , yn−1 − λn−1)B , as in Notation 6.4. If p is any prime ideal containing I B = (yd1
1 −

1, . . . , y
dn−1
n−1 − 1)B then an immediate argument shows that bλ ⊆ p for some λ ∈ Λ(D). Hence the
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bλ , for λ ∈ Λ(D), are the minimal primes containing I B . Since I B is a complete intersection, the bλ

are also the associated primes of I B .
Consider the inclusion I B ⊆ ⋂

λ∈Λ(D) bλ and localize at a particular associated prime bμ = (y1 −
μ1, . . . , yn−1 − μn−1)B , with μ ∈ Λ(D), say. We see that this inclusion becomes an equality, since, if
for any λ ∈ Λ(D) and i ∈ {1, . . . ,n−1} we have λi �= μi , then yi −λi becomes a unit in the localization
and, as a result, each ydi

i − 1 becomes an associate of yi − μi . Therefore, by Proposition 4.1(d), I B =⋂
λ∈Λ(D) bλ and S(I) = ⋂

λ∈Λ(D) b
c
λ are minimal primary decompositions of I B and S(I), respectively.

Recall that the cardinality of Λ(D) is d1 · · ·dn−1 = d by Lemma 5.3.
Now suppose that k is an arbitrary field; let k denote the algebraic closure of k. Note that, by

Base Change, the extension k[y±] ↪→ k[y±] is faithfully flat and integral. In particular, by the former

property, J := Ik[y±] is again a complete intersection.

There are at most di distinct di -th roots of unity in k. The above argument yields that there are
then at most d distinct minimal and so associated primes of the ideal J . By standard properties of
integral extensions, the number of minimal primes containing I B is at most the number of minimal
primes containing J , and the result follows. �

As an immediate corollary, we have the following analogue of [OP2, Theorem 7.8]. Note that the
next result can be interpreted as giving equivalent conditions for S(I) (which is a lattice ideal by
Corollary 4.3) to be a toric ideal (in the terminology of [MS, Chapter 7]).

Corollary 6.6. Let I be the PCB ideal associated to L, m(I) its associated integer vector and d = gcd(m(I)). The
following conditions are equivalent:

(i) S(I) is prime;
(ii) S(I) = pm(I);

(iii) d = 1.

Proof. On one hand, by Proposition 3.3, pm(I) is a minimal prime of I . Moreover, by Proposition 4.1(a),
S(I) = Hull(I), the intersection of the isolated primary components of I . Therefore I ⊆ S(I) ⊆ pm(I)

and pm(I) is a minimal prime of S(I) too. Therefore, S(I) is prime if and only if S(I) = pm(I) .
Suppose that d = 1. Then dn−1 = 1 and k fulfills the hypotheses of (a) in Theorem 6.5. Thus S(I) is

prime.
Conversely, suppose that S(I) is prime and d > 1. We will derive a contradiction.
Now I B equals the localization S(I)x, so I B is also prime. Recall Lemmas 6.2 and 6.3, and set

A′ = k[y1, . . . , yn]. Note that dn−1 > 1 and that B = A′
y , where y = y1 · · · yn . Hence y

dn−1
n−1 − 1 ∈ I B ∩

A′ = (yd1
1 − 1, . . . , y

dn−1
n−1 − 1)A′ :A′ y∞ . This last ideal is a prime ideal in A′ since I B is prime in B .

Now for some t ∈N0, either yt(yn−1 − 1) or yt(y
dn−1−1
n−1 + · · · + 1) lies in (yd1

1 − 1, . . . , y
dn−1
n−1 − 1)A′ .

On setting each of y1, . . . , yn−2 equal to 1, we deduce that either yt
n−1(yn−1 −1) or yt

n−1(y
dn−1−1
n−1 +

· · · + 1) lies in (y
dn−1
n−1 − 1)k[yn−1]. Since k[yn−1] is a UFD, it follows in fact that either yn−1 − 1 ∈

(y
dn−1
n−1 − 1)k[yn−1] or else y

dn−1−1
n−1 +· · ·+ 1 ∈ (y

dn−1
n−1 − 1)k[yn−1]. Since dn−1 > 1, this is impossible. �

Before proceeding to study the explicit description of bc
λ , we take advantage of this result to ex-

amine how the class of PCB ideals plays off against the class of binomial ideals considered by Hoşten
and Shapiro [HS]. We find that the overlap in the two classes is a trivial one (recall the notations at
the end of Section 1; see also Proposition 4.2).

Proposition 6.7. Let A = k[x] be the polynomial ring in n variables x = x1, . . . , xn. Let A be the class of
binomial ideals of A defined by the columns of n × r integer matrices M of rank r, r � n, with M ∩Nn

0 = {0}
and such that, as in [HS], the lattice ideal I(M) is prime. Let B be the class of PCB ideals of A.
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(a) If n > 2, the intersection of A and B is empty.
(b) If n = 2, the intersection of A and B is the class of principal ideals generated by an irreducible pure

binomial.

Proof. Suppose that J is an ideal in the intersection of A and B. Then J = I(M), for some n × r
matrix M of rank r, r � n, with M ∩ Nn

0 = {0} and with I(M) prime, and J = I(L) for an n × n PCB
matrix L. By Proposition 4.2(d), M = L. Hence, by Lemma 2.1(a), r = rank(M) = rank(L) = n − 1.
Thus J , which is generated by r binomials defined by the r columns of M , can be generated by
r = n − 1 elements. If follows by Proposition 3.3(c) that n must be equal to 2. Hence, if n > 2, the
intersection of A and B is empty.

Suppose now that n = 2 and that J is as above. By Proposition 4.2(b), J B = I(M)B = I(M)B ,
which, by hypothesis, is prime. Therefore S( J ) = J B ∩ A is also prime. By Corollary 6.6, gcd(m( J )) = 1.
By Remark 2.3, J = (x

a1,1
1 −x

a2,2
2 ), with m( J ) = (a2,2,a1,1). Thus gcd(a1,1,a2,2) = 1. In particular, x

a1,1
1 −

x
a2,2
2 is irreducible (see [Fos, Corollary 10.15] or [OP2, Lemma 8.2]; cf. also Example 7.3).

Conversely, suppose that n = 2 and let I = ( f1) be a principal ideal generated by f1 = xa
1 − xb

2, an
irreducible binomial, i.e., gcd(a,b) = 1. In particular, I is prime. Set M = (a − b)	 and complete M to
the obvious 2 × 2 PCB matrix L. Clearly M is a 2 × 1 matrix of rank 1 with M∩N2

0 = {0} and M=L.
Moreover, I = I(M) = I(L). Thus I is the PCB ideal associated to L. By Corollary 4.3, I(L) = S(I). But,
by Remark 4.7 and Proposition 4.1(b), I = S(I). Therefore, I = S(I) = I(L) = I(M) and I(M) is prime.
Thus I is in the intersection of A and B. �

We now express bc
λ in terms of x, the original set of variables. We see that these prime ideals can

be expressed as the vanishing ideals of monomials curves “with coefficients”.

Lemma 6.8. Let P L Q = D be a normal decomposition of L with pn,∗ = (ν1, . . . , νn) ∈ Nn. Let d1, . . . ,dn−1
be the invariant factors of L. Let R = (ri, j) be the inverse of P and set y1 = xr∗,1 , . . . , yn = xr∗,n in B = k[x±].
For any λ = (λ1, . . . , λn−1) ∈ (k∗)n−1 , set aλ = ker(ϕλ), where ϕλ : A → k[t] is the natural map defined by
the rule ϕλ(xi) = λ

p1,i
1 · · ·λpn−1,i

n−1 tνi , for i = 1, . . . ,n. Then the following hold.

(a) aλ is a prime ideal of A of height n − 1;
(b) ϕλ induces the morphism ϕ̃λ : B → k[t, t−1] that sends yi to λi , for i = 1, . . . ,n − 1, and yn to t;
(c) aλ = bλ ∩ A = bc

λ , where bλ = (y1 − λ1, . . . , yn−1 − λn−1)B.

Proof. Set θi = λ
p1,i
1 · · ·λpn−1,i

n−1 ∈ k∗ . Since k[θ1tν1 , . . . , θntνn ] ⊂ k[t] is an integral extension, A/aλ
∼=

k[θ1tν1 , . . . , θntνn ] has Krull dimension 1, and (a) follows. Notice that

ϕ̃λ(yi) = ϕ̃λ

(
xr∗,i

) = (
ϕ̃λ(x1)

)r1,i · · · (ϕ̃λ(xn)
)rn,i

= λ
p1,1r1,i+···+p1,nrn,i
1 · · ·λpn−1,1r1,i+···+pn−1,nrn,i

n−1 tν1r1,i+···+νnrn,i .

Since P R is the identity matrix, the latter is equal to λi , for i = 1, . . . ,n − 1, and to t , for i = n. This
proves (b). Finally, since bc

λ is a prime ideal of A of height n − 1, to prove (c) is enough to show
bc

λ ⊆ aλ . Let σ : A → B = S−1 A and ρ : k[t] → k[t, t−1] be the canonical morphisms, so ϕ̃λ ◦ σ =
ρ ◦ ϕλ . Now, take f ∈ bc

λ . Then f ∈ aλ if and only if ϕλ( f ) = 0, and since ρ is injective, if and only

if σ( f ) ∈ ker(ϕ̃λ). Since σ( f ) ∈ bλ , it follows that σ( f ) = ∑n−1
i=1 gi(yi − λi), for some gi ∈ B . Thus

ϕ̃λ(σ ( f )) = ∑n−1
i=1 ϕ̃λ(gi)ϕ̃λ(yi − λi) = 0 by (b). �

We finish the section by stating the “intrinsic” role of the minimal prime component pm(I) , the
unique Herzog ideal containing the PCB binomial ideal I , among the other minimal primes of I . As
was to be expected, pm(I) is the minimal prime ideal picked out by the element (1, . . . ,1) ∈ Λ(D),
which exists for an arbitrary coefficient field k.
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Remark 6.9. Let I be the PCB ideal associated to L, m(I) its associated integer vector, d = gcd(m(I))
and ν(I) = m(I)/d. Let P L Q = D be a normal decomposition of L with pn,∗ = ν(I). Let d1, . . . ,dn−1
be the invariant factors of L. Even if k does not contain the dn−1-th roots of unity, we may write
{ξi,1, . . . , ξi,di } for the set of di -th roots of unity in a field extension k̃ of k (allowing possible repeti-

tions, by abuse of notation) and set Λ(D) = ∏n−1
i=1 {ξi,1, . . . , ξi,di } ⊂ (k̃∗)n−1. However, there is always

one λ ∈ Λ(D)∩ (k∗)n−1, namely λ = (1, . . . ,1). For this especial λ, ϕλ : A → k[t] sends xi to tνi . There-
fore, according to Lemma 6.8 and Definition 2.2, aλ = ker(ϕλ) = pν(I) = pm(I) .

7. Main theorem

We are now in position to state the main result of the paper, recalling Theorem 4.10 for this
purpose. As always, A = k[x] is the polynomial ring in n variables x = x1, . . . , xn over a field k, n � 2,
m = (x) is the maximal ideal generated by x, S is the multiplicatively closed set generated by x =
x1 · · · xn and B = S−1 A = k[x±] = k[x1, . . . , xn, x−1

1 , . . . , x−1
n ] is the Laurent polynomial ring. If I is an

ideal of A, I B denotes the extension of I in B and S(I) = I B ∩ A the contraction of I B in A.

Theorem 7.1. Let I be the PCB ideal associated to L, m(I) its associated integer vector, d = gcd(m(I)) and
ν(I) = m(I)/d. Let P L Q = D be a normal decomposition of L with pn,∗ = ν(I). Let d1, . . . ,dn−1 be the
invariant factors of L.

(a) Suppose that k contains the dn−1-th roots of unity and that the characteristic of k, char(k), is zero or
char(k) = p, p a prime with p � dn−1 . Write {ξi,1, . . . , ξi,di } to denote the set of di -th roots of unity in k and

Λ(D) = ∏n−1
i=1 {ξi,1, . . . , ξi,di }. For any λ ∈ Λ(D), set aλ = ker(ϕλ), where ϕλ : A → k[t] is the natural

map defined by the rule ϕλ(xi) = λ
p1,i
1 · · ·λpn−1,i

n−1 tνi , for i = 1, . . . ,n. If n � 4, I = ⋂
λ∈Λ(D) aλ ∩ Q, with

Q an irredundant m-primary ideal, is a minimal primary decomposition of I in A and I has exactly d + 1
primary components. If n � 3, I = ⋂

λ∈Λ(D) aλ is a minimal primary decomposition of I in A, I is radical
and has exactly d primary components.

(b) Suppose that k is an arbitrary field. If n � 4, I is not unmixed and has at most d + 1 primary components,
only one of them embedded. If n � 3, I is unmixed and has at most d primary components.

Proof. Let us show (a). Let R = (ri, j) be the inverse of P and set y1 = xr∗,1 , . . . , yn = xr∗,n in B =
k[x±]. By Theorem 6.5(a), I B = ⋂

λ∈Λ(D) bλ is a minimal primary decomposition of I B in B , where
bλ = (y1 − λ1, . . . , yn−1 − λn−1)B , and S(I) = ⋂

λ∈Λ(D) b
c
λ is a minimal primary decomposition of S(I)

in A. By Lemma 6.8, bc
λ = aλ . Thus S(I) = ⋂

λ∈Λ(D) aλ is a minimal primary decomposition of S(I)
in A. If n � 4, by Proposition 4.8, I is not unmixed and, by Proposition 4.1(b), I = S(I) ∩ Q, with Q

an m-primary ideal, and this intersection is irredundant. Therefore I = ⋂
λ∈Λ(D) aλ ∩ Q is a minimal

primary decomposition of I in A and I has exactly d + 1 primary components. On the other hand, if
n � 3, by Remark 4.7, I is unmixed and, by Proposition 4.1(b), I = S(I). Therefore I = ⋂

λ∈Λ(D) aλ is
a minimal primary decomposition of S(I) in A, I is radical and has exactly d primary components.
Finally, (b) follows from Theorem 6.5(b) and Proposition 4.1(d). �
Remark 7.2. The thrust of [LV] is to calculate the degree of a lattice ideal that is homogeneous in
the standard grading, whereas ours (cf. Theorem 7.1 above) is to calculate the number of primary
components in a minimal binomial primary decomposition of a PCB ideal, as well as to describe such
components explicitly. The two enterprises are of course linked to an extent by the Associativity Law
of Multiplicities.

Example 7.3. Let I = ( f1, f2) be the PCB ideal of A associated to L, n = 2. Then I = (x
a1,1
1 − x

a2,2
2 ),

m(I) = (a2,2,a1,1) and d = gcd(m(I)) = gcd(a1,1,a2,2). Set ai,i = da′
i,i and d = b1a1,1 + b2a2,2, for some

b1,b2 ∈ Z. Suppose that k contains the d-th roots of unity and that the characteristic of k, char(k), is
zero or char(k) = p, p a prime with p � d. Write Λ(D) = {ξ1, . . . , ξd} to denote the set of d-th roots
of unity in k. For any i = 1, . . . ,d, set ai = ker(ϕi), where ϕi : A → k[t] is the natural map defined by
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the rule ϕi(x1) = ξ
b1
i ta′

2,2 and ϕi(x2) = ξ
−b2
i ta′

1,1 . By Example 5.4 and Theorem 7.1, I = a1 ∩ · · · ∩ ad is
a minimal primary decomposition of I in A, I is radical and has exactly d primary components.

Observe that each ai is a prime ideal of A of height 1, hence principal (see Lemma 6.8).

Clearly, x
a′

1,1
1 − ξi x

a′
2,2

2 is in ai . A variation of the argument in [Fos, Corollary 10.15] proves that

x
a′

1,1
1 − ξi x

a′
2,2

2 is irreducible. Alternatively, let k̃ be a field extension of k containing an a′
2,2-th root

η of ξi . Set y1 = x1 and y2 = ηx2 and A = k[x1, x2] → k̃[x1, x2] = k̃[y1, y2] =: C , a flat extension. Set

J = (x
a′

1,1
1 − ξi x

a′
2,2

2 )C = (y
a′

1,1
1 − y

a′
2,2

2 ), a PCB ideal in C = k̃[y1, y2], with gcd(a′
1,1,a′

2,2) = 1. Applying

Theorem 7.1 or Corollary 6.6 to J , one deduces that J is prime, hence J C ∩ A = (x
a′

1,1
1 − ξi x

a′
2,2

2 ) is

prime. Therefore ai = (x
a′

1,1
1 − ξi x

a′
2,2

2 ). Since I = a1 ∩ · · · ∩ ad = a1 · · ·ad , the binomial x
a1,1
1 − x

a2,2
2 ad-

mits the decomposition
∏d

i=1(x
a′

1,1
1 − ξi x

a′
2,2

2 ) as a product of irreducibles. In particular, any factor of

x
a1,1
1 − x

a2,2
2 is of the form

∏r
j=1(x

a′
1,1

1 − ξi j x
a′

2,2
2 ), where 1 � r � d, i.e., x

ra′
1,1

1 + η1x
(r−1)a′

1,1
1 x

a′
2,2

2 + · · · +
ηr−1x

a′
1,1

1 x
(r−1)a′

2,2
2 + ηr x

ra′
2,2

2 , for some η j ∈ k̃, which may or not be in k. This result recovers [OP2,
Lemma 8.2].

Example 7.4. Let I = (x3
1 − x2x3x4, x3

2 − x1x3x4, x3
3 − x1x2x4, x3

4 − x1x2x3) ⊂ A, be the PCB ideal of Ex-
ample 4.9. We know that m(I) = (16,16,16,16) and d = gcd(m(I)) = 16. Thus, by Theorem 7.1, I has
at most seventeen primary components, one of them embedded. By Theorem 4.10, Q = I + (x2x2

3) is
an irredundant embedded m-primary component of I .

One can check that

⎛
⎜⎝

1 0 0 0
−1 1 0 0
0 −1 1 0
1 1 1 1

⎞
⎟⎠

⎛
⎜⎝

3 −1 −1 −1
−1 3 −1 −1
−1 −1 3 −1
−1 −1 −1 3

⎞
⎟⎠

⎛
⎜⎝

1 2 1 1
1 3 1 1
1 3 2 1
0 0 0 1

⎞
⎟⎠ =

⎛
⎜⎝

1 0 0 0
0 4 0 0
0 0 4 0
0 0 0 0

⎞
⎟⎠

is a normal decomposition of L. In particular, the invariant factors of L are d1 = 1, d2 = 4, d3 = 4. Sup-
pose that k = C. Then Λ(D) = {1} × {1, i,−1,−i} × {1, i,−1,−i} ⊂ C3. According to Theorem 7.1, for
a λ ∈ Λ(D), the natural morphism ϕλ : k[x1, x2, x3, x4] → k[t] is defined by setting ϕλ(x1) = λ1λ

−1
2 t ,

ϕλ(x2) = λ2λ
−1
3 t , ϕλ(x3) = λ3t and ϕλ(x4) = t . To simplify notations we just write the ordered 4-tuple

(λ1λ
−1
2 t, λ2λ

−1
3 t, λ3t, t) to describe the morphism ϕλ . Using this notation, the sixteen morphisms are

the following:

(t, t, t, t), (t,−it, it, t), (t,−t,−t, t), (t, it,−it, t), (−it, it, t, t), (−it, t, it, t),

(−it,−it,−t, t), (−it,−t,−it, t), (−t,−t, t, t), (−t, it, it, t), (−t, t,−t, t),

(−t,−it,−it, t), (it,−it, t, t), (it,−t, it, t), (it, it,−t, t), (it, t,−it, t).

Therefore, I = ⋂16
i=1 ai ∩Q, where the sixteen minimal primary components ai are the kernels of the

preceding morphisms:

a1 = (x1 − x4, x2 − x4, x3 − x4), a2 = (x1 − x4, x2 + ix4, x3 − ix4),

a3 = (x1 − x4, x2 + x4, x3 + x4), a4 = (x1 − x4, x2 − ix4, x3 + ix4),

a5 = (x1 + ix4, x2 − ix4, x3 − x4), a6 = (x1 + ix4, x2 − x4, x3 − ix4),

a7 = (x1 + ix4, x2 + ix4, x3 + x4), a8 = (x1 + ix4, x2 + x4, x3 + ix4),

a9 = (x1 + x4, x2 + x4, x3 − x4), a10 = (x1 + x4, x2 − ix4, x3 − ix4),
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a11 = (x1 + x4, x2 − x4, x3 + x4), a12 = (x1 + x4, x2 + ix4, x3 + ix4),

a13 = (x1 − ix4, x2 + ix4, x3 − x4), a14 = (x1 − ix4, x2 + x4, x3 − ix4),

a15 = (x1 − ix4, x2 − ix4, x3 + x4), a16 = (x1 − ix4, x2 − x4, x3 + ix4).

Let us obtain the minimal primary components of I over R (and similarly over Q). Consider the ideal
I2,4 := (x1 − x4, x2 + x3, x2

3 + x2
4) in A = C[x]. Clearly, A/I2,4 ∼= C[x3, x4]/(x2

3 + x2
4), so I2,4 is a complete

intersection of height 3, in particular, unmixed. Moreover, I2,4 ⊆ a2 ∩ a4, and if p is a prime over I2,4
we see that p contains a2 or a4. Thus a2 and a4 are the associated primes of I2,4. Since x3 + ix4 /∈ a2,
x3 − ix4 and x2

3 + x2
4 are associated in Aa2 and (I2,4)a2 = (a2 ∩a4)a2 . Analogously (I2,4)a4 = (a2 ∩a4)a4 .

Therefore I2,4 = a2 ∩ a4. Similarly, we have

I5,13 := (
x1 + x2, x2

2 + x2
4, x3 − x4

) = a5 ∩ a13,

I6,16 := (
x1 + x3, x2 − x4, x2

3 + x2
4

) = a6 ∩ a16,

I7,15 := (
x1 − x2, x2

2 + x2
4, x3 + x4

) = a7 ∩ a15,

I8,14 := (
x1 − x3, x2 + x4, x2

3 + x2
4

) = a8 ∩ a14 and

I10,12 := (
x1 + x4, x2 − x3, x2

3 + x2
4

) = a10 ∩ a12.

Therefore, I = a1 ∩ a3 ∩ a9 ∩ a11 ∩ I2,4 ∩ I5,13 ∩ I6,16 ∩ I7,15 ∩ I8,14 ∩ I10,12 ∩ Q. Note that the ideals
appearing in this expression are generated by binomials with coefficients in R. Let us momentarily
denote by Ĩ , ãi , Ĩ i, j and Q̃ the corresponding ideals considered in R =R[x], i.e., Ĩ = (x3

1 − x2x3x4, x3
2 −

x1x3x4, x3
3 − x1x2x4, x3

4 − x1x2x3)R , ã1 = (x1 − x4, x2 − x4, x3 − x4)R and so on. Clearly, their extension

in A are the original ideals, i.e., Ĩ A = I , ãi A = ai , Ĩ i, j A = Ii, j and Q̃A = Q. Moreover, since R → A is
faithfully flat, Ĩ = Ĩ A ∩ R = I ∩ R , ãi = ãi A ∩ R = ai ∩ R , Ĩ i, j = Ĩ i, j A ∩ R = Ii, j ∩ R and Q̃ = Q̃A ∩ R =
Q∩ R .

Hence Ĩ = ã1 ∩ ã3 ∩ ã9 ∩ ã11 ∩ Ĩ2,4 ∩ Ĩ5,13 ∩ Ĩ6,16 ∩ Ĩ7,15 ∩ Ĩ8,14 ∩ Ĩ10,12 ∩ Q̃ is a minimal primary
decomposition of Ĩ in R = R[x]. Indeed, ãi is a prime ideal of R for i = 1,3,9 and 11. Moreover,
R/ Ĩ2,4 ∼= R[x3, x4]/(x2

3 + x2
4), a domain, so Ĩ2,4 = (x1 − x4, x2 + x3, x2

3 + x2
4) is a prime ideal of R .

Analogously, I5,13, I6,16 I7,15, I8,14 and I10,12 are prime ideals of R . Moreover, applying Theorem 4.10
to the PCB ideal Ĩ of R = R[x], one obtains Q̃ as an irredundant embedded primary component of Ĩ .
Finally, the full decomposition is irredundant because all the primes ãi and Ĩ i, j appearing are different
and of the same height.

Now suppose that k = Z/2Z. As before, I is not unmixed, Q = I + (x2x2
3) is an irredundant em-

bedded component of I and d1 = 1, d2 = 4 and d3 = 4 are the invariant factors of L. By Lemma 6.3,
I B = (y1 − 1, y4

2 − 1, y4
3 − 1)B = (y1 − 1, (y2 − 1)4, (y3 − 1)4)B . For λ = (1,1,1), we clearly have

b4
λ � I B � bλ , where bλ = (y1 − 1, y2 − 1, y3 − 1) (see Notation 6.4). By Lemma 6.8, bc

λ = aλ and
aλ = (x1 − x4, x2 − x4, x3 − x4). Hence a4

λ ⊆ (b4
λ)

c ⊆ S(I) ⊆ aλ . Since S(I) is unmixed (cf. Proposi-
tion 4.1), S(I) is an aλ-primary ideal. Therefore I has exactly two primary components, namely aλ

and m.

Example 7.5. As a generalization of Example 7.4, for n � 3, let

I = (
xn−1

1 − x2 · · · xn, . . . , xn−1
n − x1 · · · xn−1

)

be the PCB ideal associated to the n × n PCB matrix L with diagonal entries n − 1 and off-diagonal
entries −1. One can check that the invariant factors of L are d1 = 1,d2 = n, . . . ,dn−1 = n and that a
normal decomposition of P L Q = D is given by
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P =

⎛
⎜⎜⎜⎜⎜⎜⎜⎜⎝

1 0 0 . . . 0 0 0
−1 1 0 . . . 0 0 0
0 −1 1 . . . 0 0 0
...

...
...

...
...

...

0 0 0 . . . 1 0 0
0 0 0 . . . −1 1 0
1 1 1 . . . 1 1 1

⎞
⎟⎟⎟⎟⎟⎟⎟⎟⎠

and Q =

⎛
⎜⎜⎜⎜⎜⎜⎜⎜⎝

1 n − 2 n − 3 . . . 2 1 1
1 n − 1 n − 3 . . . 2 1 1
1 n − 1 n − 2 . . . 2 1 1
...

...
...

...
...

...

1 n − 1 n − 2 . . . 3 1 1
1 n − 1 n − 2 . . . 3 2 1
0 0 0 . . . 0 0 1

⎞
⎟⎟⎟⎟⎟⎟⎟⎟⎠

.

In particular, d = d1 . . .dn−1 = nn−2 and ν(I) = (1, . . . ,1). Therefore, by Theorem 7.1, I has at most
d + 1 = nn−2 + 1 prime components. Suppose that k = C. For λ ∈ Λ(D), let aλ = ker(ϕλ) where ϕλ :
A → k[t] is the natural map defined by the rule ϕλ(xi) = λiλ

−1
i+1t , for i = 1, . . . ,n − 2, ϕλ(xn−1) =

λn−1t and ϕλ(xn) = t . Then each aλ is a prime ideal. If n = 3, I = ⋂
λ∈Λ(D) aλ , whereas if n � 4,

I = ⋂
λ∈Λ(D) aλ ∩ Q with Q = I + (xb(n)) an m-primary ideal; in each case, these decompositions are

irredundant.
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