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THE CONSISTENCY OF NEGATION AS FAILURE 

T I M  F L A N N A G A N  

D Clark's attempt [1] to validate negation as failure in first order logic is 
shown to contain some fundamental errors. In particular, we show that the 
motivation for the completed database, the definition of the completed 
database, and the attempt to validate negation as failure in terms of it are 
illogical, that the completed database cannot be regarded as the intended 
meaning of the database, and that the closed World assumption is generally 
absurd and, in any case, irrelevant. A validation is given using a consistent 
first order extension of the database and hence in the only terms which 
appear to make any sense, namely, consistency with the database. However, 
it seems that the query evaluation process, with negation interpreted as 
failure, is of no practical use as a theorem prover. <1 

INTRODUCTION 

The paper is in two parts. Section I discusses some fundamental errors in Clark's 
pioneering attempt [1] to validate negation as failure (NAF) in terms of first order 
deduction from the completed database (CDB). Section II presents a validation of 
NAF using a consistent first order extension (DB*) of the database (DB). The query 
evaluation process (QEP) is shown to be a theorem prover for DB* and hence a 
consistency prover for database queries or their negations. Like the CDB, DB* 
cannot, however, be regarded as the intended meaning of DB. Its role in the 
argument is therefore catalytic, and the essential function of the QEP, with negation 
interpreted as failure, is as a consistency prover. Thus, NAF is validated in first 
order logic without assigning to the database any meaning beyond itself. In 
particular, it is unnecessary to assume the free interpretation of database terms, as in 
the CDB. 
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To assist readability, proofs of theorems in Section II are given in the appendix. 
The reader is assumed to be familiar with [1] and [6], and  familiarity with [7] 

would be useful. 

I. CLARK'S ATI 'EMI~  TO VALIDATE NAF 

We begin with notation. DB will denote an arbitrary database of the type specified 
in [1] (pp. 297-298), i.e., a database consisting of formulae of the form 

R ( t t , . . . , t n ) ~ L 1 A . ' "  AL m, n,m>_O, 

where the L~ are atoms or the negations of atoms (literals). CWA will denote the 
formal theory of Reiter's dosed world assumption [2], as defined in [7]. Note that 
there is a distinction between the informal assumption of the closed world and the 
formal theory representing it. L~'(DB) will denote the first order language of DB; Q 
an arbitrary query in LP(DB), i.e., a formula of the form 

L 1 A . . .  A L k ,  

where the L i are literals; and if A is a first order formula with free variables 
x t , . . . ,  x, ,  then VIA] will denote the universal closure of A, i.e., Vx t --. Vx,A. 

NAF is an ad hoc rule, and in order to imbue it with logical significance and 
thereby justify its application to any DB, Clark proved the following metatheorem. 

Theorem I. For any DB and any query Q, 

if Q fails in the QEP, then CDB ~- V[-3Q], and 

if Q succeeds with answer 0, then CDB ~ V[Q0]. 

He called this result the "soundness" of NAF. 
Theorem 1 is not strictly correct, for the CDB is not well-defined (pp. 303-304 of 

[1]). Every theory has a particular vocabulary, i.e., a set of function and predicate 
symbols, and theories with different vocabularies are different theories. Clark's 
definition of the CDB assumes the existence of a universal vocabulary, and a basic 
result of set theory shows that there is no such thing. Thus, if DB is any database 
and P is a 0-place predicate not in the vocabulary of CDB, then P fails in the QEP 
and, contrary to Theorem 1, P is not a theorem of CDB, since no sentence can be a 
theorem of a theory unless it is in the language of the theory. 

Thus, in order for NAF to be interpreted in terms of the CDB, as in Theorem 1, 
the QEP should first check that queries are in the language of CDB, whatever that 
language is. Since the CDB is not explicitly defined by DB, this is only possible if the 
vocabulary of CDB is finite and identical to that of DB. In-this case, the check is a 
terminating, recursive procedure, provided that formulae in DB are well formed in 
the standard way. This is not the case if, for example, the expressions t~ in the 
formula 

.R( t l , . . . ,  tn) 
above are allowed to be formulae, as with some forms of PROLOG. Nevertheless, 
Theorem 1 cannot validate NAF for an arbitrary DB, for if CDB is inconsistent, 
then the theorem is trivial because every sentence in the language of an inconsistent 
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theory T is a theorem of T. In particular, if CDB is inconsistent, then, whether Q 
fails, succeeds, flounders, or has an infinite evaluation tree, both Q and 7Q are 
theorems of CDB. At best, therefore, Theorem 1 can only justify the application of 
NAF to those DBs for which the CDB is consistent, and then only when the 
definition of the CDB is modified as above. 

Thus, Clark overlooked the fundamental logical principle that, roughly speaking, 
no proposition can be justified on the basis of derivation from an inconsistent 
theory. Nowhere in his attempt to justify NAF is there mention of the consistency of 
CDB. It is mentioned on p. 317 in relation to the question of the "completeness" of 
NAF (the converse of Theorem 1), and quite rightly, for, if NAF is "complete", in 
the sense of [1], and CDB is inconsistent, then every query Q both fails and 
succeeds, which is impossible [7, Theorem 4]. Thus, the consistency of CDB is 
necessary both to validation by "soundness" and to "completeness", and we have 
established the following. 

Theorem 2. NAF is "incomplete" for DBs with inconsistent CDBs. 

Now, it is easy to find DBs whose CDBs are inconsistent. Take, for instance, the 
following. 

DB 1: P ~ -TP 

The CDB is 

CDBI: P ~ -TP, 

which is a contradiction. However, the only atomic formula in the language of DB 1 
is P, and the query P neither succeeds nor fails in the QEP. In this case, it goes into 
an infinite loop. Hence, DB1 does not satisfy the assumption of Theorem 1, namely, 
that its language supports at least one query, which either succeeds or fails. 

DB 1 therefore does not invalidate Clark's claim that Theorem 1 validates NAF. 
Notice that an inconsistent CDB can always be obtained simply by adding 

P ~ T P  
to DB, where P is a new 0-place predicate, but again, this isn't a counterexample. 

Nevertheless, it is easy to fred DBs and queries which clearly satisfy the assump- 
tion of Theorem 1, and for which the CDB is inconsistent. For example, let DB u be 
the following database. 

DB~: e(a,b), 
P ( x , y ) ~ - T P ( y , x ) .  

The query P(b, a) is "allowed" [1, p. 317], since the negative literal -1P(a, b) is 
closed; i.e., the variables y, x in -TP(y, x) are instantiated to constants (in this case, 
by the query). The query clearly fails. However, the CDB is 

CDB.z: Vx, y[P(x ,  y ) ~ ( x = a A  y = b )  v-1P(y ,x)] ,  

a#:b. 
This is inconsistent, for, putting x = y  = a, it follows that 

P(a,a),-, 7P(a,a), 
which is a contradiction. 
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Incidentally, we abjure Clark's use of the word "ground" as in "ground literal" 
since it duplicates the word "closed", which is standard in mathematical logic and 
applies not just to literals but to any well-formed expression; a closed expression 
being one with no free variables. 

Considering the simplicity of DB 2, we are bound to conclude that, if DB contains 
negative literals, and particularly if it is at all complex, then, even if its language 
contains queries which succeed or fail, the CDB is highly likely to be inconsistent. 
Theorem 1 is therefore useless as a justification of NAF for DBs with negative 
literals. 

Now, to say that NAF is valid is to say that it is valid for all DBs. Contrary to 
Clark's claim, we therefore have the following. 

Theorem 3. The "soundness" of NAF does not validate it. 

Likewise, to say that NAF is "complete" is to say that it is "complete" for all 
DBs. From Theorem 2 and from what we have just shown, it follows that NAF is 
"incomplete" for DBs with negative literals. Thus, we also have 

Theorem 4. NAF is "incomplete ". 

It is not only inconsistency of the CDB which renders NAF "incomplete". Clark 
[1, p. 316] gives an example of a DB and an atom Q such that DB I-- Q although Q 
neither succeeds nor fails but has an infinite evaluation tree for every selection rule 
and, indeed, every ordering of the clauses. Moreover, it is easily seen that the CDB is 
consistent. Thus, the "incompleteness" of NAF is implied by its incompleteness in 
the more usual sense that queries don't always succeed or fail. 

Since DB ~- Q in this example, we have the following result. 

o 

Theorem 5. There is no first order extension of DB for which NAF is "complete" 

Shepherdson [8, Appendix, p. 3] gave a stronger result about weak completeness. 
Now, Jaffar et al. showed in [4] (see also [5]) that NAF is "eomplete" for DBs 

with no negated literals, i.e., for definite Horn formula DBs. Their result is therefore 
as strong as possible. It implies incidentally that the CDB is consistent for positive 
Horn formula DBs. A direct proof of this is given in the appendix, but it therefore 
follows from Theorem 1 (with the extra condition on the QEP mentioned, above) 
that NAF is valid for definite Horn formula DBs. On account of Theorem 3, this 
result is also optimal. However, as Shepherdson [8] pointed out, it isn't very useful. 

Shepherdson [7] also showed that NAF is "sound" in terms of the CWA as well 
as the CDB. That is, he proved a result like Theorem 1 with CWA in place of CDB. 
However, in the database ~ 

DB : t'(x),-- 7R(x), 
R(x) , -  7 s ( x ) ,  

z(a) 
the queries 7P(a)  and R(a)  are both "allowed" by the QEP, and both fail. Since 
neither P(a) nor R(a)  is a theorem of DB3, the CWA includes the sentences 7P(a)  
and 7R(a) as well as the axiom~ of DB 3. Thus the CWA is inconsistent. 
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Shepherdson did not claim, of course, that his theorem validates NAF, but it is 
worth noting that the above example shows that NAF cannot be validated by the 
CWA any more than it can be validated by the CDB. 

It seems that Theorem 1 was called the "soundness" of NAF because it was 
thought to validate it. Now, both words "sound" and "complete" have been taken 
from mathematical logic, where neither concept depends on the notion of con- 
sistency, since they refer to logical calculi and their rules of inference rather than 
particular sets of formulae. We say that a calculus is sound if, for any set of 
sentences X t3 { A), 

X~-A implies X ~ A ,  

and complete if the converse holds, where X k- A means that there is a deduction of 
A from X, and X ~ A means that every model of X is a model of A. 

Thus, the word "sound" is used in logic because it is regarded as validating the 
rules of inference of the logic in question, i.e., validating their application to any set 
X of assumptions, whether X is consistent or not. Thus, since Theorem 1 does not 
validate NAF, it is inappropriate to call it the "soundness" of NAF and its converse 
the "completion". 

The proof of Theorem 3 also raises some fundamental questions about the notion 
of the CDB. 

The Questionable Value of CDB 

Since DB is always consistent and CDB is highly likely to be inconsistent and in 
some cases is, it is illogical to suppose, as in [1] (p. 303), that CDB is the intended or 
implicit meaning of DB. Note that an inconsistency in CDB means that it contains a 
statement which directly contradicts a theorem of DB. For example, DB2 is 
equivalent to 

P(x, y ) ~ - ( x = a A  y=b)  V 7e(y ,x ) ,  

which implies P(a, a), and CDB 2 is got from DB 2 by adding to it, inter alia, 
p( , , ,  y)  o ^ y =  b) v 7e(y,x), 

which implies -qP( a, a ). 
Thus, the value of even the concept of CDB is suspect, and it is questionable 

whether any meaning should be given to DB beyond itself. 
Notice that we are not saying that the value of a theory (in this case CDB) 

diminishes just because it might be inconsistent. Arithmetic might be inconsistent. 
We are saying that the value of a theory is seriously diminished if it is very likely to 
be inconsistent. The same goes for a class of theories, such as the class of CDBs, if 
instances of it are very likely to be inconsistent. 

The point is that, if a theory is to be at all useful, it is necessary to at least be able 
to believe with good reason that it is consistent, even if one cannot prove its 
consistency. As G/Sdel showed, it is impossible to prove that arithmetic is consistent 
without invoking a stronger theory, but arithmetic has so far withstood all attempts 
to prove it inconsistent, so the world, give or take the odd logician, takes it on trust. 
(In fact, there are proofs of the consistency of strong and useful fraL, ments of it.) In 
contrast, the simplicity of DB 2 shows that, in general, we are bound to disbelieve the 
consistency of CDB. 
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Thus, the notion of CDB is not a useful one. Nor, for the same reason, is CWA. 
Even when CDB is consistent, it is an improbable theory because its equality 

axioms [1, p. 304] formally impose on DB an unnatural free interpretation of its 
terms, which trivializes CDB models. Shepherdson [8] illustrates this with a good 
example. 

It is therefore worth looking at Clark's reason for considering the notion of CDB 
in the first place. 

The Motivation for CDB 

On page 294 of [1] there is the following sentence. 

S: "Note that to assume that a relation instance is false if it is not implied, is to 
assume that the data base gives complete information about the true instances 
of its relations." 

This latter assumption is Reiter's closed world assumption that, for atomic sentences, 
DB is implicitly complete. To be precise, it is the assumption that, for every atomic 
sentence A, if DB t/- A, then DB implicitly implies ~A [6, p. 60]. The completion of a 
database is then defined accordingly. 

S, however, is incorrect, for, if a sentence A is not a theorem of a theory T, one 
can assume the negation of A anyway, since it is consistent with T. Doing so implies 
nothing whatsoever about the completeness or otherwise of T. For example, consider 
the database on p. 294 of [1]: 

Maths-course(C101) . 

Maths-course(C301), 

which is equivalent to 

Vx [Maths-course(x) *-- x = C101 v x = C301]. 

Clark [1, p. 295] asserts that, in order to logically infer 

--lMaths-course(C) 

for some constant C different from C101 and C301, it is necessary to assume the 
stronger statement 

Vx[Maths-course(x) ~ x = C 1 0 1  v x=C301] .  

This is not true. In order to infer 

-alVIaths-course(C) 
it suffices to assume it, and one can assume it, since it is consistent with the database. 
If one wants the stronger statement, one can assume that as well, in this case, since it 
too is consistent with the database. However, as we saw with DI~,  the converse of  an 
implication is not always consistent with it. 

Moreover, in formal logic, it is meaningless to say that a theory is implicitly 
complete if it isn't actually complete. If it is actually complete and TIC- A, then it is 
unnecessary to assume qA, since it is implied. 

Let us look more closely, then, at the closed world assumption. 
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say that it 
Generally, 
absurd. 

The Closed World Assumption 

Reiter formalized the closed world assumption by defining the theory DB + EDB, 
and Clark formalized it as CDB. 

Given the definitions of these theories, there is a deeper, more serious error in [6], 
and hence in [1], than the falsity of S, for the notions of truth and falsity are not 
definable in logic except in terms of satisfiability in models. Thus, "true" and "false" 
respectively mean true and false in some model. 

Consider the definition of DB + EDB [6, p. 60], which, apart from some ad- 
ditional equality and domain closure axioms, is what Shepherdson [7] denotes by 
CWA. EDB is the set of all negative closed literals 7L such that DB ~ L, i.e., such 
that DB + 7 L  is consistent. DB + EDB is obtained from DB by simultaneously 
adding to it all the members of EDB. 

Now the separate consistency of two s e n t e n c e s  A 1 and A 2 with a theory T does 
not imply their joint consistency with T. That is, the consistency of both T + A 1 and 
T +  A 2 does not imply the consistency of T + A  t + A  2, for, if A t is added to T, a 
new theory T '  is formed, and the consistency of A 2 with T does not imply its 
consistency with T'.  For example, let T be the database 

DB: P ~ 7R. 

Then EDB is the set (TP, 7R}, since DB ~-P, DB ~-R. Although DB + 7 P  and 
DB + 7R are therefore both consistent, DB + 7P  + 7R is inconsistent, since DB + 
7 R ~ - P .  

The point is that A t being true in one model and A 2 being true in another doesn't 
mean there is a model in which they are both true. In other words, one simply 
cannot say, as Reiter does, that if T ~ A  1 and T ~ A  2, then A t and A 2 can both be 
assumed to be false and that 7A 1 and 7A 2 are therefore both true, and can be 
added to T together.- 

Thus, in general, to say that a DB with negative literals is implicitly complete is to 
is implicitly inconsistent and, hence, worthless as a set of assumptions. 
then, the assumption of implicit completeness is both unnecessary and 

There is therefore no logical justification for Reiter's definition of DB + EDB. It 
is not surprising that, even for simple DBs, DB + EDB can be inconsistent. 

Certainly, if DB is a definite Horn formula database, then DB + EDB is con- 
sistent [7]. Perhaps the dosed world assumption is even natural for some such 
databases, such as airline timetables, which are extensional [6, p. 60], but Reiter 
claimed [6, p. 60] that the closed world assumption is warranted for "most databases 
generally". This implies that, in most cases, DB + EDB is consistent, which is not 
t r u e .  

Now, first order theories are usually incomplete, and for such a theory T, there 
are often true statements in the language of T which are not theorems of T; i.e., 
there are sentences A such that T + A and T + 7A are both consistent. It would be 
perverse to automatically assume such sentences to be false, even though i t  is 
consistent to do so. 

To take a simple example, suppose the axioms of T are the order axioms 

x < y  ~ 7 ( y < x )  A y ~ k x  

x < z  ~ x < y  A y < z  
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Add a 1-place function symbol g and a constant c to the vocabulary of T, and let 
Vx(x < g(x)) be the Skolem resolution of Vx:ly(x <y). Then T~  c < g(c). Never- 
theless, since c < g(c) is implied by Vx3y(x <y),  which, like the axioms of T, is 
true in the standard model consisting of the set of natural numbers with the usual 
ordering relation, it would be absurd to regard c < g(c) as necessarily false. Thus, 
even if DB + EDB is consistent, Reiter's claim that the closed world assumption is 
"usually" warranted is extremely unlikely. In fact, like the assertion that P(n) is 
true for most natural numbers n, where P is some predicate, the claim is both 
unprovable and irrefutable, and hence worthless. 

Debate about whether or not the closed world assumption is warranted for a 
given DB is futile. It is warranted only if it is legitimate, and it is legitimate if and 
only if DB + EDB is consistent. Even if this is consistent, the assumption is unlikely 
if not perverse, and, as explained earlier, it is in any case irrelevant and based on the 
false assumption that separate consistency implies joint consistency. 

The Completed Database 

As we have seen, Clark assumed that DB is implicitly complete and hence that 
separate consistency implies joint consistency. This alone seriously weakens the 
credibility of CDB, but the same sort of error persists in the definition of CDB. 

Apart from the equality axioms obtained from the free interpretation of terms in 
DB, CDB is essentially obtained from DB by doing two things: first, by replacing 
"if"  throughout DB by "iff" ("if and only if"), i.e., ,-- by ~ ,  and second, by 
simultaneously adding the universal closure of the negations of all positive literals L 
for which there is no clause 

L~--GIA . . .  AG m, m>_O, 

"about" L in DB [1, p. 303]. 
Now "if" is replaced by "iff", i.e., augmented with "only if", because implicit 

completeness says that atomic sentences are true "only if" they are implied by DB. 
This formal interpretation of implicit completeness is dearly ad hoc. The correct one 
is DB + EDB, which, as we have seen, is generally inconsistent. 

In fact, as with DB 2, one cannot expect to maintain consistency (recall that DB is 
always consistent) replacing even a single "if"  statement with the corresponding 
"iff" statement. As in the definition of DB + EDB, the situation is made even more 
precarious by making many such replacements at once, as well as by simultaneously 
adding the negations of all those literals for which there is no clause in the database. 
Since these replacements and additions are made only in order to make implicit 
completeness explicit [1, p. 295], and since the notion is unnecessary and generally 
invalid, there is no sound reason to make them anyway. 

Thus, the definition of CDB is as illogical as that of the theory DB + EDB. 
The real illogicality in the definition of CDB is not that the universal closures of 

the negative literals axe added to DB, but that all "if" statements are replaced by 
"iff" statements, for the theory obtained from DB by only adding the closures of the 
negative literals is consistent. 

Let us call this theory the "extended database" (nothing to do with Reiter) and 
denote it by EDB. 
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Theorem 6. EDB is consistent. 

The proof is given in the appendix. 
Both Reiter and Clark, then, attempted to make explicit an assumption which is 

unnecessary, formally meaningless, and absurd, and did so by introducing funda- 
mental illogicalities. 

Now the obvious logical analogy of the NAF rule, which is 

i f  L fails m the QEP, then 7L  succeeds, 

is that, if a sentence A is not a theorem of a theory T, then -aA can be assumed, i.e., 
T +  -7A is consistent, which is inference at the meta-level of T. It would therefore 
have been more natural to try to justify NAF by showing that 

if A fails, 7A can be assumed; 

i.e., 

i f  A fails and DB is consistent, then DB + 7A is consistent. 

Since DB is always consistent, this would amount to showing that 

i f  A fails, then DB + -7A is consistent, 

which would justify NAF in terms of meta-level inference, instead of in terms of 
object-level inference h la Theorem 1. It would also satisfy the minimum requirement 
of logic, namely, that assumptions be consistent with the database. Amongst other 
things, this is proved in Section II. 

Given the illogical motivation for constructing CDB and its illogical definition, it 
is not surprising that there is confusion about the nature of NAF and that it is 
described rather curiously. 

The Nature of  N A F  

NAF is commonly called, after Clark, a "meta-rule of inference" on account of 
Theorem 1, but the expression is a bad one, for its meaning is unclear. This, in turn, 
has fostered an unfortunate and somewhat pretentious mystique in logic program- 
ruing circles, which is that a "recta-rule" is somehow extralogical and special. The 
expression "recta-rule" certainly has no standard logical meaning: The only meaning 
it can have in the context of [1] is that NAF or, more precisely, Theorem 1 is a 
meta-level statement (of inference) about object-level inference, which, trivially, it is, 
since CDB is a first order extension of DB. Clearly, there is a distinction between 
NAF and Theorem 1, which was supposed to validate it. NAF itself is nothing but 
an operational rule, whereas Theorem 1 is a statement about logical inference. The 
prefix "meta" is therefore redundant, for every statement about object-level in- 
ference is a recta-level statement and cannot be anything else. It is also pedantic, 
because meta-level inference is the common mode of inference in mathematics. 
There is nothing either extralogical or special about it at all. 

Bibl~'he~k 
;en~rttm v~'~r W i . ~ k - t ~  ~n ~ . f n r m ~ . ~  
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In fact, as we've seen, NAF is not valid in terms of inference from CDB, and it is 
clearly not valid in terms of inference from DB. For example, if DB is 

DBs: P ~ -7R, 

then P succeeds but DB5 b'- P .  
Thus, it is not immediately clear how NAF could be interpreted at all in terms of 

object-level inference. 
NAF is also described [1, p. 296] as a "derived inference rule for deductions from 

the CDB". The only logical meaning this seems to have is that Theorem 1 is a 
derived rule of inference from CDB, which is false. The only inference rules for CDB 
are those of some formal logical calculus, in this case the predicate calculus and, 
hence, those of any other first order theory. 

Thus, Clark's original question remains open. Can NAF, in any sense, be 
regarded as a valid logical inference? In fact, is there any logical justification for it at 
all? The answer is yes, as we show below. 

H. THE CONSISTENCY OF NAF 

In 1949 Kurt G&lel showed that the axiom of choice (AC) is consistent with the 
other axioms of Zermelo-Fraenkel set theory (ZF), i.e., if ZF is consistent, so is 
ZF + AC; and in 1963 Paul Cohen showed that the negation of AC is also consistent 
with ZF: if ZF is consistent, so is ZF + -tAC. The profound, revolutionary effect that 
these two results have had on our understanding of the nature of mathematics and 
deductive reasoning is to show that logic is not only about proving theorems of 
formal theories, i.e., about proving the existence of formal proofs of given assertions, 
but it is more fundamentally about proving consistency or, more precisely, relative 
consistency, i.e., about proving the nonexistence of formal proofs of the negations of 
given assertions. Whichever way one looks at it, therefore, logic is about exhibiting 
meta-level proofs: on the one hand, proofs of the existence of object-level proofs, 
and, on the other hand, proofs of their nonexistence. Roughly speaking, therefore, 
logic is as much concerned with meta-level inference as it is with object-level 
inference, and the two are inseparable. 

It is therefore hot unreasonable to contend, as we do, that, in its broadest sense, 
logic programming should be concerned with effectively establishing the existence of 
both proofs of consistency and proofs of theorems of formal theories. It seems, 
however, that it is commonly conceived only in terms of the latter. The concept of 
automatic theorem proving thus seems to be heavily overplayed at the expense of the 
more fundamental notion of consistency. 

We now show that NAF can be logically validated by both derivability and 
consistencY--derivability from a consistent extension DB* of the database and, 
hence, consistency with the database. 

For the sake of continuity, omitted proofs are given in the appendix. 

Definition. DB* = DB + E, where E is 

{TL" L is a closed, positive literal in .W(DB) and L fails in QEP}. 

Theorem 7. DB* is consistent. 
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Corollary 7.1. DB is consistent. 

Corollary 7.2. EDB is consistent. 

PROOV (Sketch). If L is a predicate symbol of .~(DB) such that there is no clause 
about L in DB, then, for any closed substitution instance L' of L, L' cannot unify 
with the head of any DB clause. It therefore fails (at height 1 of the failure tree). 
Thus, DB* is an extension of EDB and EDB is consistent. [] 

Direct proofs of Corollaries 7.1, 7.2 are given in the appendix, since the methods 
of proof are of interest. 

Theorem 8. I f  a query Q fails in QEP, then DB* t- V[TQ]. 

Hence, by Theorem 7, we have 

Corollary 8.1. I f  Q fails in QEP, then DB + V[TQ] is consistent. 

Note that this result was proved by Shepherdson [7, Theorem 9]. A direct, 
alternative proof to Shepberdson's is given in the appendix. 

Theorem 9. I f  Q succeeds in QEP with an answer 0, then DB* t-- V[Q0]. 

Again, by Theorem 7, we immediately have 

Corollary 9.1. I f  Q succeeds in QEP with an answer 0, then DB + V[QO] is consistent. 

For example, in DB 5, P succeeds, -7P fails, and both DB 5 + P and DB 5 + 7P are 
clearly consistent. 

Theorem 10. I f  L is a closed, positive literal in ~(DB),  and if DB* ~- -7L, then L 
fails in QEP. 

Now, recall that different selection rules determine different QEPs [1, p. 301], and 
that when we say that a query fails (succeeds) in QEP, we mean that it fails 
~ucceeds) under some selection rule. Moreover, a query which fails (succeeds) under 
one selection rule need not fail (succeed) under another selection rule, but it cannot 
succeed (fail) under another one [7, Theorem 4]. We therefore introduce the 
following definitions. 

Definitions. Let DB be a database, R be a selection rule, and Q be an arbitrary 
query in .Z(DB). 

(1) Q is R-decidable if it either fails or succeeds under R. 

(2) R decides Q if Q is R-decidable. 

(3) Q is QEP-decidable if it is R-decidable for some R. 

(4) QEP decides Q if Q is QEP-decidable. 



104 TIM FLANNAGAN 

(5) DB is R-complete, or R is complete for DB, if every query in La(DB) is 
R-decidable. 

(6) DB is QEP-complete, or QEP is complete for DB, if every query in .~(DB) is 
QEP-decidable. 

REMARK. Instead of simply saying that Q is decidable or that DB is complete, the 
qualifications "R-decidable" etc. are used to prevent confusion with the standard 
notions of decidability and completeness in mathematical logic. A sentence S is 
decidable in a theory T if T ~ S or T ~- -7S, and T is complete if every sentence S in 
Ae(T) is decidable in T. Here, of course, we are talking about logical derivability, 
not query evaluation. 

The proof of the next theorem is obvious. 

Theorem 11. I f  Q is QEP-decidable (R-decidable), then, for any closed substitution 
instance Q' of Q in Aa(DB), 

(1) DB* F- qQ' implies Q fails in QEP (under R), and 

(2) DB* ~ Q' implies Q succeeds in QEP (under R). 

Clearly, then, the following weaker result holds. This is analogous to Clark's 
remark [1, p. 317] about the "completeness" of NAF. 

Corollary 11.1. I f  DB is QEP-complete (R-complete), then, for every closed substitu- 
tion instance Q' of Q in .£a(DB), 

(1) DB* k- -1Q' implies Q fails in QEP (under R), and 

(2) DB* ~- Q' implies Q succeeds in QEP (under R). 

Notice that, whereas Clark supposed [1, p. 317]--rightly, as it turned out (see [7, 
Theorem 3])--that QEP-completeness would yield the consistency of CDB and 
hence what he called the "completeness" of NAF, the consistency of DB* does not 
depend on the QEP being complete for DB. It is consistent anyway. 

Theorems 8 and 9 and their corollaries provide a clear validation of NAF as an 
effective (and efficient) means of proving theorems of DB* and consistency with DB. 
Considering the earlier remarks about the nature of logic and the original motivation 
for CDB, the validation in terms of consistency is fundamental, probably the most 
natural, and certainly a minimum logical requirement. Notice that it does not 
presuppose the need to assign any meaning to DB outside itself. In particular, unlike 
the equality axioms of CDB, the question of the free interpretation of terms in DB 
simply doesn't arise. Putting this simplistically, then, NAF is a theorem prover for 
DB* and a consistency prover for DB. 

QEP as a Theorem Prover 

Although DB* is a first order extension of DB, it cannot plausibly be considered a 
natural interpretation of DB, despite its consistency. We are not assuming that such 
an interpretation is desirable or even useful, for, as we have seen, it is unnecessary. 
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However, the reason for the implausibility is that DB* is defined with respect to the 
infinite totality of all possible selection rules and hence independently of any one of 
them. One clearly cannot program according to all possible rules, for the simple 
reason that a query can fail (succeed) under one selection rule but not under 
another. 

Incidentally, since DB* is independent of any one selection rule, one might be led 
to suppose that it is independent of the logical formulation of DB, but this is not so. 
It is possible for two logically equivalent DBs to have incompatible DB*s. For 
example, let P and L be two 0-place predicate symbols, and consider 

DB6: P ~ -1L, 

which is equivalent to 

DBT: L ~ -1P. 

For any selection rule R, L fails in DB 6 and P fails in DB 7. Hence, if { P, L } is the 
vocabulary of both databases, then DB~ is DB 6 + (-TL} and DB~ is DBT+ (qP}.  
Thus, DB~' and DB~' are different theories. Moreover, DB~ I- -TL and DB~ ~ L. 

Now, if a database DB is constructed on the basis of a given selection rule R, and 
if an extension DB ÷ of DB is the intended meaning of DB, it is reasonable to 
suppose that the definition of DB ÷ should, in some way, depend upon R, and hence 
on the formulation of DB. Thus, logically equivalent DBs could be expected to yield 
even incompatible interpretations, although these must, of course, be compatible 
with their respective databases. For example, since only one selection rule is possible 
for databases DB 6 and DB 7, DB~ and DB~' can reasonably be considered to be 
interpretations of DB 6 and DB 7 respectively. 

It is therefore only because DB* is defined with respect to all possible selection 
rules that we hold it to be an unacceptable interpretation of DB. 

This does not mean that the logical validation of NAF is weakened in any way. It 
simply means that QEP cannot yet be regarded as a theorem prover for any useful 
theory whatsoever, and that the usefulness of QEP is only as a consistency prover for 
DB. 

QEP as a Consistency Prover 

Roughly speaking, if Q succeeds, we are entitled by Corollaries 8.1 and 9.1 to 
assume Q and, if it fails, to assume -1Q, which is very different from inferring that Q 
holds or that -1Q holds. Thus, the word "infer" in the NAF rule [1, p. 294] should be 
replaced by "assume", and the rule should be 

if  Q succeeds with answer O, assume V[QO], and 

if Q fails, assume ~TQI .  

Now, for any sentence Q, it is often the case that both DB + Q and DB + -1Q are 
consistent, so NAF is also a decision rule, viz., a rule for deciding which of Q and 
nQ to assume. This, of course, is useful, but it has certain practical and theoretical 
limitations, the most obvious of which axe as follows. 

Logical consistency of the database and with the database are altogether different 
from the semantic consistency of a given situation. The intended meanings of the 
various predicates in a database could well, and often do, give rise to contradictions 
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at the level of intended meaning. Likewise, answers to queries may be incorrect. In 
particular, just as implicit completeness blindly assumes that unprovable atoms are 
always false, the decision which NAF makes about which of Q and 7Q to assume is 
inflexible and not always the most desirable. This was illustrated above with the 
database for the ordering relation. 

Corollaries 8.1 and 9.1 do not mean that, if Jg  is a model of DB and Q fails, then 
.,¢t' is a model of qQ, or that, if Q succeeds, .,¢t' is a model of Q. Otherwise, 
DB ~ -1Q or DB t- Q, respectively. All that is meant is that if Q fails, there is a 
model .,¢g' of DB + -1Q, and that, if it succeeds, there is a model J r ' "  of DB + Q. 
Thus, a new model is invoked every time a closed negative literal is evaluated by 
QEP, and the new model is not determined by the old one. 

Thus, NAF gives no information about what is logically derivable from DB, only 
about what is not derivable; for if Q succeeds, then DB t¢--1Q although perhaps 
DB ~ Q. Likewise, if Q fails, then DB ~ Q although perhaps DB t- -1Q. In general, 
therefore, if we want to prove theorems of DB, then DB must not contain negative 
literals, NAF serves no purpose, and we are obliged to use some other mechanism, 
such as SLD resolution, which is actually a theorem prover for definite Horn 
databases. 

The main limitation of NAF as a consistency prover is that it is one-sided, for, 
since a query Q cannot both fail and succeed (even under different selection rules), 
QEP cannot show that both DB + Q and DB + -qQ are consistent, when they might 
well be, and if one of them is consistent, one usually needs to know if the other is 
tOO. 

Nor is NAF always helpful. If it is regarded as a consistency prover, then the 
query Q can only mean "Is Q consistent with DB?". If the query succeeds, the 
answer is yes. If it doesn't, then, even if it fails, we are no better off. All we can then 
know is that DB + -qQ is consistent, and nothing about the consistency of DB + Q. 
In this case, success is helpful and failure isn't. 

The opposite is also true. Q might be regarded as true in some context, so we 
might want to include it in the database if it isn't already a theorem. Failure of Q 
would then be useful, for it would mean that Q isn't a theorem. Success would 
simply mean that DB~-nQ, which, if Q is an atom, we know anyway (see 
appendix). 

We might also wish to assume that a sentence Q is true if DB + Q is consistent 
and, as in the dosed world assumption, false if DB + -3Q is consistent. By Corollaries 
8.1 and 9.1, Q could then be assumed true if it succeeds and false if it fails. Of 
course, the difference between this assumption and the closed world assumption, 
quite apart from the fact that ours is legitimate and the closed world assumption 
generally isn't, is that firstly, ours can be made for an arbitrary query, as opposed to 
only positive dosed literals, and secondly, it applies only to one query at a time. 

FINAL REMARK 

The version of NAF which is described in [1], whereby negative literals must be 
closed in order to be evaluated, is implemented in MU-PROLOG (Melbourne 
University PROLOG). Thus, negation in MU-PROLOG is logical negation, and 
QEP is a theorem prover for DB* and a consistency prover for DB. However, other 
forms of PROLOG allow open negative literals to be evaluated, and since the proofs 
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of the theorems in this paper, in particular Theorems 8, 9, all depend heavily on 
negative literals being closed, it seems that it would be difficult to show that negation 
in these forms of PROLOG has any logical meaning at all, even the meaning which 
is commonly ascribed to it, viz., that if Q fails, then Q is not a theorem of DB. This 
is effectively Corollary 8.1, which has only been proven for the version of NAF in 
[1]. 

APPENDIX 

This contains the proofs of Theorems 6-10. 
First, we need to be clear about notation and the various formal systems of first 

order logic in which we shall be working. These are denoted by e(Y/'), PC(Y/'), and 
EC(~e'), where, for a given vocabulary #~" of function and predicate symbols, e(~e') 
is the e-calculus for ~¢', PC(~¢ r )  is the predicate calculus for Y/', and EC(~/') is the 
elementary calculus for ~¢'. The reader is referred to [2] or [3] for background details, 
which are necessarily omitted. 

The axioms of e(~ ')  are all those sentences of .L,°(~/'), the first order language of 
~e-, which are instances of the following axiom schemata: 

P1. A - - * B o A .  

P2. ( A ~ B - o C ) - o , ( A - ~ B ) - - , A - - , C .  

P3. (TA -* TB) --> (B -*A). 

P4. (d ~/¢')~ 7A. 

P5. (A AB)--*A. 

P6. (A A B ) ~ B .  

P7. A--*B-o(AAB) .  

P8. 7(A V B) -> 7A. 

Pg. -(A VB) ~ 7B. 

P10. 7 A - o T B ~ 7 ( A V B ) .  

Q1. VxA --* --axTA. 

Q2. 7VxA - ,  3xTA. 

Q3. 73xA --0- 7A(t). 

Q4. 3xA -,  A(exA). 

El. s = t A A(x/s )  --* A(x/ t) ,  where A is an atom and x does not occur free 
in A within the scope of an vsymbol. 

E2. V z ( A ( x / z ) o  B(y/z) )  ~ exA=eyB. 

E3. t=t .  

The sentence/: is not a predicate symbol of £a(gr), but a logical symbol denoting 
falsity. 

The single inference nile of e(#") is modus ponens: 

A , A ~ B  

B 
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The axioms of PC(Y/') are the e-free axioms of e(~¢/'). In addition to modus ponens, 
PC(~")  has the following inference rule, called the 3-rule. 

A ( x / a ) ~ B  

3xA ~ B ' 

where a is an individual symbol not appearing in A or B. 
The axioms of EC(~") are the elementary axioms of e ( ~ ) ,  i.e., those which are 

quantifier-free and e-free. Modus ponens is the single inference rule of E C ( ~ ) .  

NOTF. As is usual in logic, we do not assume that the vocabulary of a database DB 
only consists of the function and predicate symbols which appear in the axioms of 
DB. 

Notation. 

(1) If XU {A} is any set of sentences in . £a (~ )  (sentences have no free 
variables), we write X ~- ~ A, X ~- ~ A, and X ~- EC A to denote that there is 
a deduction of A from X in e(:¢'), PC(Y/'), and EC(~e') respectively. If it is 
clear which logical calculus is referred to, we simply write X ~ A. 

(2) con , (X)  means that X is consistent in e ( ~ ) ,  i.e., t h a t / '  is not a theorem of 
X in e ( ~ ) .  Likewise, we write convc(X ), COnEc(X ), or just con(X).  

(3) By a literal we shall mean an atom P(q , . . . ,  t,), where P is a predicate 
symbol of ~ ,  or the negation of such an atom. Note that, like the s y m b o l / ' ,  
the identity symbol = is not a predicate symbol of ~ ,  although every 
formula s = t is an atom. 

Before proving Theorem 6, we need some lemmas, and we begin with a rigorous 
proof of the well-known result that DB is consistent. In fact, we show that this 
would hold even if DB were allowed to contain &terms and formulae of the form 

s = t  ~ L1A " "  A L  m ,  m>O 

and even if the L i were allowed to be atomic formulae of the form s = t. We shall 
denote databases in this wider sense by DB +. 

Lemma 1. con~(DB +). 

VROOF. For any formula A of .~(¢/ ') ,  define the formula g(A) by induction on the 
complexity of A, as follows: 

(1) If A is an atom P(t l , . . . ,  t,), then g(A) is 7 / ' .  

(2) If A has the form s = t, then g(A) is 7 / ' .  

(3) If A i s / ' ,  then g(A) i s / ' .  

(4) 

(5) 

If A has the form 7B or B * C, where • is A, V, or 
or g( B ) * g( C) respectively. 

If A has the form VxB or 3xB, then g(A) is g(B). 

, then g(A)  is 7 g ( B )  

Thus, g(A) is obtained from A by erasing all terms appearing in A, erasing all 
quantifiers, and replacing every occurrence of = by 7 / .  
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It is easy to see that if A is a logical axiom of e ( ~ ) ,  then g ( A )  is a tautology, and 
that if g ( A )  and g ( A  ~ B)  are tautologies, then g ( B )  is a tautology. Moreover, if A 
is (the universal closure of) an axiom 

R ~-- L 1 A  . . .  ALm 

of DB ÷, then g(A) is a tautology of the form 

-3,/*- g ( L , )  A - - -  A g(Lm).  

Hence, if DB+~ - A, then g ( A )  is a tautology. However, g ( , / )  i s / ,  which is not a 
tautology, so DB ÷ ~-`/. [] 

r,rOTE. If DB + is e-free and contains no axioms of the form 

s =  t ~ L 1A . . .  A L m, 

then DB ÷ is just DB and, by Hilbert's second e-theorem (see [2] or [3]), DB ~-, f 
implies DB ~ PC f .  In this case, g(s  = t) could also have been defined as follows: 

` /  if s is not t, 
g(  s = t)  is -q`/ otherwise. 

Corollary 1. By the proof of Lemma 1, every DB and DB ÷ has a model in which every 
atom P ( t l , . . . ,  tn) and s = t is true for all terms t l , . . . ,  tn, S, t. 

Corollary 2. l f  L t ,  . . . , L ,  are any positive literals, then con(DB + V[ L 1 A -- .  A L,]), 
whether the L 1 belong to .~ (  ~ ' )  or not. 

PROOF. If an L i is not in .Z(~e'), extend ~ by adding the corresponding predicate 
symbol and augment DB with the universal closures of the L,. to get a new database. 

[] 

Corollary 3. I f  A is a closed atom other than , / ,  then -3A is not a theorem of  DB. 

PROOF. If A is a literal, the result is immediate. The only other atoms have the form 
s = t. The proof of Lemma 1 converts these to -3,/, so if DB ~- s ~ t, then DB ~-,/, 
which is a contradiction. [] 

Definition 1. A substitution is any function from a finite set of variables into the set 
T.~ of terms of .£~'(~/'), which may contain free variables. 

Definition 2. Let ~¢" be the vocabulary of DB, and N be the set of predicate symbols 
P in ~¢" for which there is no axiom in DB "about"  P, i.e., no axiom of the form 

P ( t a , . . .  , t n ) ~ L  1A . . .  ALm.  

Let E be the set 

{V[-3P] : P isin N}. 
Then EDB, as defined above, is DB + E. 

PROOF OF a'n~Ol~M 6. As in Lemma 1, we show in fact that if EDB ÷ is DB ÷ + E, 
then con ~(EDB +). 

Suppose the contrary and let ~ =  (A1, . . . ,  A , )  be a refutation of EDB + in e(~¢/'). 
L e t '  denote the operation of replacing PO by , / t h roughou t  ~ for every P in N and 
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every 0. It is easy to see that if A i is a logical axiom of e(Y/'), then is either a 
tautology or a logical axiom of the same form, and that, if A i follows by modus 
ponens from Aj and A k, then A~ follows by modus ponens from Aj and A~,. If A~ is 
in E, then A~ is the tautology 

7,/ .  

].f A i is a nonlogical axiom of DB ÷, e.g., the universal closure of 

R (  tx , . . . ,  tr) *" L 1 A . . . .ALto ,  

then, since R( t i , . . . ,  t,) is not PO for any P in N (by the definition of N), A~ is 

R( t { , . . . , t ' , )  ~ L' 1 A " "  A L ' .  

Consider the L;, j = 1, . . . ,  m. 
Case (i): Lj is a positive literal. If Lj is P for some P in N, then L~ is , / a n d  A~ 

is the tautology 

R(t{, . . . .  " "  ^ L ; .  

Otherwise, L~ is Lj and A~ is 

R( t~ , . . . ,  t ' ) ~ L ' l ^  . . .  ^ L ' j _ I A L j A L ~ + I  ^ " .  ^ L ' .  

Case (ii): Lj is a negative literal. In this case, L~ is similarly either -q,/or Lj. If 
L~ is ~,/, then A~ is equivalent in e(Y/') to 

. . . ,  " • • ^ ! P . . R( t ; ,  t ' ) ~ L i A  L~_I A L~+I A" ^ L ' .  

Case (iii)." Lj has the form s = t or s ~ t. L~ is then L j, since = is not a predicate 
symbol, and A~ is 

R( t~ , . . . ,  t ; ) ~ L i A  . . .  ^ L ' j _ x A L j A L ' j + I ^  " "  ^ L ' .  

Hence, if A i is an axiom of DB +, then A~ is the universal closure of either a 
tautology [and so equivalent in e(~") to a tautology], or of a formula of the form 

S < - - - G 1 A  . . .  A G  r. 

Let DB~" be the set of formulae so formed by the operation '. By augmenting ~ '  
with proofs of the tautologies introduced by ', we thus find that 

DB~- F-~ , / ,  
which, by I_emma 1, is impossible. [] 

Corollary 4. It follows from the above proof that EDB +, and hence DB +, has a model 
in which every atom of the form s = t is true for all s and t, and in which every 
positive literal P( t l , . . . ,  t ,)  is false for all q , . . . ,  t ,  if P is in N, and true for all 
t l , . . .  , t n otherwise. 

The next three lemmas were proved by Shepherdson [7]. 

Lemma 2. I f  a query Q fails in QEP under some selection rule R, then, for each 
substitution 0, there is a selection rule R s under which QO fails. 

Lemma 3. 1)" a query succeeds in QEP (under some selection rule), then it cannot fail 
under any selection rule. 
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Lemma 4. I f  Q succeeds in QEP with an answer 0 under a selection rule R, then QO 
succeeds under a rule R o. 

The next lemma follows by an easy induction from Lemma 6 in [7]. 

Lemma 5. Let Q be a closed query L 1 A . . .  A L m. 

(1) I f  Q fails under a selection rule R, then, for some i = 1 , . . . ,  m, L z fails under a 
selection rule R'. 

(2) I f  Q succeeds under a selection rule R, then for each i = 1 , . . . ,  m, L i succeeds 
under a selection rule R'. 

PROOF OF THEOREM 7. Note that Theorem 7 follows trivially from Lemma 8 of [7], 
where it is shown that the model .,/t', in which closed positive literals are true unless 
they fail in QEP, is a model of DB. Since [7] omits details of the proof that .At' 
satisfies the axioms of P C ( ~ ) ,  and since it is instructive to do so, we give a 
constructive proof here of Theorem 7. Note also that, as it stands in [1], the QEP 
cannot handle e-terms or the identity symbol, so if DB contains either of these, then 
DB* is undefined. 

Suppose Theorem 7 is false. Then 

DB* ~- P C / ,  

so by Hilbert's first e-theorem ([2] or [3]), 

Y +  

where {-1L i }i ~ t is some finite subset of E, and each member of Y is a substitution 
instance of the matrix of some axiom of DB*. 

Let ~ =  (A1, . . . ,  A,> be a refutation in EC(Y/') of 

Y + ( 7Li  } iE,, 

and let ' denote the operation of 

(1) replacing by/¢  every positive closed literal L in bt such that -7L is in E, 
(2) replacing by 7 / '  every other positive closed literal in ~ ,  
(3) replacing s = t b y , / i f  s is not t and by 7 / i f  s is t. 

We show by induction on i that, for each i = 1 , . . . ,  n, A~ is a tautology. We then 
argue as at the end of the proof of Lemma 1. 

If A i is an axiom of the form P1 , . . . ,  P10, then A~ is clearly an axiom of the same 
form and hence a tautology. If A~ is an El-axiom 

s = t A A ( x / s ) ~ A ( x / t ) ,  

then A~ is the tautology 

/^A(x/s)'--, A(x/t)" 
if s is not t. If s is t, A~ is the tautology 

-7/A A ( x / s ) ' ~  A ( x / s ) ' .  

If A~ is an E3-axiom t = t, then A~ is the tautology "7,/. Thus, if A i is a logical 
axiom of EC(Y/'), then A~ is a tautology. If Ai is a member of E, then A~ is 7 / ' .  If  
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A i is a member of Y, then it has the form 

R ~ L  1A .-- ALr,,, 

where R, L1 , . . . ,  L m are dosed literals. A i is then a closed substitution instance A of 
a I~B formula 

A: R* ,,-- L"{ A . "  A L * .  

Suppose A~ is not a tautology. It must then be 

f f ~ L ~ A . - -  A L ' ,  m > 0 ,  

where L~ is equivalent to -qff for each j = 1, . . . ,  m, and R must fail in QEP under 
some selection rule R. Since R is dosed, it unifies with R* under the restriction 01 of 
0 to the set of free variables of R*. That is, R is R*01, which is R*O. Hence, R*O 1 
fails under R, m > 0, and the query 

Q: { LI' ^ - . .  ^ L* } 01 
fails under R. Let 0 = 0102. Then, by Lemma 2, QO 2 fails under some selection rule 
W. By Lemma 5, LTO fails under some selection rule W' for some j < m. That is, Lj 
fails for some j < m. If Lj is a positive literal, then Lj is f f  and A~ is a tautology, 
contrary to supposition. Lj must therefore be a negative literal, say -qLj. Since Lj 
fails, L 7 is dosed and it succeeds. Hence, by I_emma 3, Lj' cannot fail (under any 
selection rule). Since L~ is dosed, (L~) '  is -q,,¢' and Lj is Tqff, which is a 
contradiction. Thus, if Ai is a member of Y, then A~ is a tautology. 

If A; follows by modus ponens from Aj and A k, then j ,  k < i, so, by the 
induction hypothesis, Aj. and A~, are tautologies. Clearly, A~ follows by modus 
ponens from A~ and A~,, so A~ is also a tautology. Hence, for each i = 1, . . . ,  m, A~ 
is a tautology. However, i f '  is if ,  which is not a tautology, so A,, is not if ,  which 
contradicts the original supposition. [] 

NOTE. The above proof permits formulae L i in the antecedents of database axioms 
to be atoms of the form s = t so long as QEP is extended in such a way that, for any 
terms s, t (not necessarily closed), the following conditions hold: 

(1) If s = t  fails, then { s = t } O  fails for every 0. 

(2) If s, t are different constant terms (with no free variables), then s = t fails. 

(3) t = t succeeds. 

PROOF OF Tn~OPa~M 8. Suppose Q is 

L 1 A  . . .  A L,, 

and that it fails in QEP. Let QO be an arbitrary substitution instance of Q. By 
Lemma 2, QO fails. By Lemma 5, L f l  fails for some i < n, so, by the definition of 
DB*, DB* ~ -qLfl. Hence, DB* ~- -qQO for every 0, and DB* t- V[-1Q], as required. 

[] 

PROOF OF rrmoP,~M 9. Suppose Q succeeds with answer 0. We show by induction on 
the finite height h > 0 of the success tree of Q that DB* t-- pc V[QO]. 

If h = 0, there is nothing to prove, since Q is empty and the result is tautologous. 
Suppose that h > 0, that Q is 

L1A .--  AL,,,, r e > l ,  

and that the selection rule R, say, first selects L;. 
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Case (i): L~ is a positive literal. Then L; is not necessarily dosed, and the first 
step in the evaluation of L i finds a unifying substitution 01, which unifies Li with the 
head of a DB clause 

R ( t l , . . . , t n ) , - - L '  1 A  . . .  A L '  k 

and replaces Q with Q'01, where O'gl is 

{ L 1 A  - - - A L i _ I A L ~ A  . . - A L ~ A L i + I A  - . - A L m } g  1. 

Since Q'01 succeeds, there is a sequence of unifying substitutions 01,. . . ,  Or such that 
0 = 01 "-" 0,. Since the height of the success tree of Q'O 1 is less than h and Q'O 1 
succ~ds  with answer 0 '  = 02 • • " Or, it follows by the induction hypothesis that 

DB* ~ pc V[Q'010'], 

that is, 

DB* ~ Pc V[Q'O]. 

Now clearly 

DB k- PC V[Q'01 ~ R01].  

Since RO 1 is Lfll, it follows that 

DB !- pc V[Q'O 1 ~ Li l t ] ;  

SO 

DB ~ pc V[ Q'O _l. L,O ] 

and 

DB* t- Pc '¢[ QO ]. 

Case (ii): L i is a negative literal, say 7P. Since Q succeeds, P is closed and fails. 
Incidentally, its closed terms are not inherited under unification from any other 
literals in Q, since L i is the first literal in Q to be selected by R. Since P fails, Q is 
replaced by 

Q": L 1A • • • A L i _  1 A L i +  1 A ' ' "  A L m .  

Since Q "  succeeds with answer 0, and the height of its success tree is less than h, it 
follows by the induction hypothesis that 

DB* I- pc V[ Q"O ]. 

Now, by the definition of DB*, DB* ~- pc L~, since P fails, and 

0 F- pc V[ QO ~ L i A Q"O ], 

since L~ is closed; so 

DB* F- pc V[Q0],  

as required. [] 

PROOF OF TI~OREM 10. Let .At' be a structure for DB in which a positive dosed 
literal L holds unless it fails under some selection rule. By Lcmma 8 of [7], . ~  is a 
model of DB, so it is clearly a model of DB*. Hence, if DB* I- a L ,  then . / t '~  -1L, so 
L fails in QEP. [] 
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