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Abstract Copper transport across membranes plays an impor-
tant role in plant growth and survival. P1B-type ATPases
participate in transmembrane transport of copper in various
organisms. A Brassica napus cDNA (BnRAN1) encoding a
putative Cu2þ-ATPase was cloned in this study. A complemen-
tation assay demonstrated that the protein encoded by this
cDNA could functionally replace Ccc2p, a Saccharomyces
cerevisiae Cu2þ-ATPase, rescuing growth of ccc2 mutant under
iron-limited conditions. Our results suggest that this rescue likely
resulted from restoration of copper delivery, mediated by
BnRAN1, to Fet3p. This study is amongst the first to demon-
strate that a putative plant P1B-ATPase is functional and to
examine its substrate specificity.
� 2004 Federation of European Biochemical Societies.
Published by Elsevier B.V. All rights reserved.
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1. Introduction

Copper is an essential micronutrient and copper-containing

proteins play fundamental roles in the survival of plants [1].

Copper is a cofactor involved in respiration (cytochrome-c

oxidase, alternate oxidase), photosynthesis (plastocyanin), and

the detoxification of superoxide radicals (copper/zinc super-

oxide dismutase). While copper is required in limited amounts,

it is toxic in excess [1] and mechanisms are required to control

the amount and location of copper within cells. Transport of

copper across membranes plays an important role in main-

taining this copper homeostasis. A P1B-ATPase, Ccc2p, plays a

role in copper and iron homeostasis in Saccharomyces cerevi-

siae. The Ccc2 protein delivers copper to the multicopper ox-

idase Fet3p, which is required for high-affinity iron uptake [2]

(Fig. 1). Similar roles for P1B-ATPases have been reported in

other eukaryotes, including Caenorhabditis elegans [3] and

humans [4].

Members of the P-type ATPase superfamily transport

charged substrates across membranes. This transport is ATP-

dependent and involves the phosphorylation of an aspartate

(D) residue in the conserved amino acid sequence

DKTGT[LIVM][TI] (Prosite PS00154). The P-type ATPase
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superfamily clusters on a phylogenetic tree according to sub-

strate specificity [5] and has been divided into five major

branches (Type 1–5), which may be further divided into sub-

families. The Type 1B subfamily (P1B-ATPases) is made up of

at least two groups, the Cd2þ-(Zn2þ-/Co2þ-/Pb2þ-) and Cu2þ-
(Ag2þ-) ATPases [5]. Putative P1B-ATPase can be identified

based on sequence similarity to known P1B-ATPases as well as

the presence of Type 1B specific amino acid motifs, including

metal-binding region(s), a CPx motif, and a HP dipeptide [6].

Amino acid residues that may play a role in determining the

substrate specificity of Cu2þ-ATPases have also been identi-

fied. A leucine (L) residue located 21 amino acids C-terminal of

the CxxC metal-binding motif(s) [7] and an extended CPx

motif (CPC[AS]LGLATP) [8] have been proposed for copper-

transporting P1B-ATPases.

While a great deal of research has focused on Cu2þ-ATPases

from organisms such as humans (ATP7A and ATP7B) and

S. cerevisiae (Ccc2p), information about Cu2þ-ATPases from

plants is relatively limited. When this study was initiated an

Arabidopsis cDNA encoding a putative P1B-ATPase named

PAA1 had been cloned, but information about its substrate

specificity and function were minimal [9]. Three additional

Arabidopsis sequences encoding putative P1B-ATPases could be

identified using theBLAST [10] family of programs.Oneof these

putative P1B-ATPases (AC002342 genomic locus T19K24.18;

At5g44790) could be predicted to transport copper.More recent

studies focusing on two groups of allelic mutants (ran1 and paa1

mutants) and their corresponding wild type genes (RAN1 and

PAA1; identified by map-based cloning) suggest that the puta-

tive Arabidopsis P1B-ATPases RAN1 (At5g44790) and PAA1

are involved in copper delivery to ethylene receptors [11,12] and

across the chloroplast envelope [13], respectively. To further

investigate whether P1B-ATPases play a role in copper transport

in plants, we cloned a cDNA that encodes a homolog of the

putative Arabidopsis Cu2þ-ATPase At5g44790 from Brassica

napus. A complementation assay was used to demonstrate that

the protein encoded by the B. napus cDNA could functionally

replace Ccc2p, a Cu2þ-ATPase from S. cerevisiae, providing

support for a copper-transporting function.
2. Materials and methods

2.1. Cloning a B. napus cDNA that encodes a putative P1B-ATPase
A partial cDNA (2323 bp) was isolated from a B. napus

cDNA library kindly provided by Dr. Isobel Parkin (Agriculture and
blished by Elsevier B.V. All rights reserved.
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Fig. 1. Model illustrating the role of Ccc2p in copper and iron ho-
meostasis of S. cerevisiae. Ccc2p (Cu2þ-ATPase) transports copper (d)
into a late- or post-Golgi compartment where copper is incorporated
into Fet3p. Maturation of Fet3p through the secretory pathway re-
quires Ftr1p. Mature Fet3p (multicopper oxidase) and Ftr1p (iron
permease) function at the plasma membrane in high-affinity iron (s)
uptake. Ctr1p (high-affinity copper uptake) and Atx1p (copper chap-
erone) participate in copper delivery to Ccc2p. Figure adapted from
[16]. For additional details see [27].
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Agri-Food Canada). This library was generated using the Uni-ZAP�

XR Cloning Kit (Stratagene) and mRNA isolated from five-day-old,
etiolated, B. napus seedlings from the double haploid line DH12075.
An oligonucleotide probe, produced using the primers 50-AGTG-
AACACCCATTGGCAA-30 and 50-CTTTGGCGACTGCTCTTGC-
30, was used to screen the library following amplification.
The 50-end missing from the partial cDNA was isolated using RT-

PCR. The SUPERSCRIPTTM II RNase H� Reverse Transcriptase Kit
(Gibco), a gene specific primer (50-ATGTATCACCAGGCTGAA-30),
and total RNA isolated from leaves of the B. napus cultivar
Westar were used to produce first strand cDNA. The PCR step used
HotStarTaqTM DNA Polymerase (Qiagen), and sense (50-AAGAAAT-
GGCGCCGAGTAGAC-30) and antisense (50-ATCGCTGTTGCTG-
GAGTAAGT-30) primers.
The RT-PCR product (1356 bp) was ligated to the partial cDNA

(2323 bp) using a SacI site located in a region of overlap shared by
both fragments. The resulting full-length cDNA was cloned into XhoI/
XbaI digested pBluescript SK- vector and sequenced. Sub-cloning
(HindIII/BamHI) into pYES3 vector (Invitrogen) produced the
pYES3-cDNA vector. Transcription of sequences cloned into pYES3
is mediated by the GAL1 promoter and is induced in the presence of
galactose, repressed by glucose, and unaffected by raffinose.

2.2. Saccharomyces cerevisiae strains and growth conditions
Established techniques [14] were used in the growth, maintenance,

and manipulation of the S. cerevisiae strains. The S. cerevisiae strains
were obtained from Dr. Diane Cox (University of Alberta) [15,16]. All
amino acids were added to synthetic medium for maintenance of the
parental strain BJ2168 (MATa pep4-3 prc1-407 prb1-1122 ura3-52 trp1
leu2). The CCC2, FET3, and CTR1 genes of BJ2168 were indepen-
dently disrupted to create the ccc2, fet3, and ctr1 stains, respectively
[15,16]. These disruption strains were selected and maintained on
synthetic medium containing all amino acids except uracil.
The S. cerevisiae strains BJ2168, ccc2, fet3, and ctr1 were indepen-

dently transformed with pYES3 or pYES3-cDNA vectors using a
modified lithium acetate method [17]. Transformants were selected on
synthetic plates supplemented with all amino acids except tryptophan.

2.3. Experimental (iron-limited, iron-sufficient, and copper-sufficient)
media

The iron-limited, iron-sufficient, and copper-sufficient media were
modified synthetic media [14] based on media described by Forbes and
Cox [16]. The carbon source was changed, from 2% glucose to 2%
galactose and 1% raffinose, to allow transcription from the pYES3
vector. Iron-limited medium was made with YNB that lacked both
CuSO4 and FeCl3 (Bio-101), but was supplemented with 50 mM MES
buffer (pH 6.1), 1 mM ferrozine, 50 lM Fe(NH4)2(SO4)2, and 1 lM
CuSO4. Copper- and iron-sufficient media were made by altering the
iron-limited media so that it contained a final concentration of 500 lM
CuSO4 and 350 lM Fe(NH4)2(SO4)2, respectively. Ferrozine was
omitted from the iron-sufficient medium.

2.4. Complementation assay and carbon source growth curve
For all growth assays, cultures grown to saturation in conven-

tional synthetic medium were washed three times with sterile, de-
ionized water (18 mX). For carbon source growth curves, washed
cells were resuspended in sterile, deionized water and used to in-
oculate 5 ml aliquots of either conventional or induction (2% ga-
lactose and 1% raffinose in place of 2% glucose) synthetic medium
at an OD600 of 0.1. Two types of complementation assays (plate
assay, growth curves) were conducted. For complementation assays,
washed cells were resuspended in induction medium, incubated
16 h, washed, resuspended in iron-limited medium, incubated 16 h,
washed, and resuspended in sterile, deionized water (plate assay) or
iron-limited medium (growth curves). For plate assays, cells were
resuspended at an OD600 of 0.1 and 5 ll samples were spotted or
spread onto experimental plates. For growth curves, cells were used
to inoculate 5 ml of experimental media at an OD600 of 0.1. OD600

values for growth curves were determined in a 96-well microplate
using 200 ll samples. Each experiment was performed twice and
representative results are shown.
3. Results and discussion

3.1. A Brassica napus cDNA that encodes a putative

P1B-ATPase

A full-length, B. napus cDNA (3194 bp) was produced by

ligating a RT-PCR product (1356 bp) and a partial clone from

a cDNA library (2323 bp). Sequence data from a 485 bp region

of overlap supported a common origin for these fragments.

The full-length cDNA sequence was submitted to GenBank

(AY045772). The amino acid sequence (AAL02122) predicted

from the B. napus cDNA contained the phosphorylation site

(DKTGTLT) characteristic of the P-type ATPase superfamily.

Motifs suggested to be characteristic of P1B-ATPases [6], in-

cluding two metal-binding regions (CAAC), the CPx motif

(CPC), and the HP dipeptide were also present. The predicted

amino acid sequence was most similar to the Cu2þ-ATPases,

including ATP7A and ATP7B [4], containing leucine (L) res-

idues 21 amino acids C-terminal of the two CxxC (CAAC)

motifs as well as the extended CPx motif (CPCALGLATP).

Thus, copper was considered the likely substrate for this pu-

tative P1B-ATPase.

3.2. Complementation of the S. cerevisiae ccc2 mutant

Complementation assays utilizing S. cerevisiae strains with

the disrupted CCC2 gene have been developed to study puta-

tive Cu2þ-ATPases [3,15,16,18]. The Ccc2 protein is localized

to a late- or post-Golgi compartment in the secretory pathway

[19], where it delivers copper to the multicopper oxidase Fet3p

[2,19]. Copper loaded Fet3p is required at the plasma mem-

brane for high-affinity iron uptake [20]. S. cerevisiae strains

with the disrupted CCC2 gene produce copper-deficient Fet3p

and are, consequently, deficient in high-affinity iron uptake [2].

A functional high-affinity iron uptake system is required for

growth under iron-limited conditions. The ability of a putative

Cu2þ-ATPase to rescue a ccc2 mutant under iron-limited

conditions has been interpreted as evidence, suggesting that the

protein transports copper [3,15,16,18]. Under iron-replete
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conditions, iron uptake occurs via a low-affinity uptake system

[21] that is not dependent upon Ccc2p.

The growth pattern observed on iron-limited plates

(Fig. 2A) and in iron-limited medium (Fig. 3A) suggested that

the putative Cu2þ-ATPase encoded by the B. napus cDNA is

capable of complementing the ccc2 mutant. The ccc2 strain

transformed with the pYES3-cDNA vector was able to grow,

while the ccc2 strain transformed with pYES3 did not

grow (Figs. 2A and 3A). The ccc2/pYES3-cDNA strain did not

grow when galactose and raffinose were replaced by glucose

(data not shown).

Confirmation of a role in copper transport, however, re-

quires invalidation of another hypothesis. When the CCC2

gene is disrupted, Fet3p does not receive the copper it requires

to function and the ccc2 mutant is unable to grow on iron-

limited plates because of the resulting impairment of high-

affinity iron uptake. Thus, it is possible that the B. napus

cDNA rescued the ccc2 mutant by functionally replacing

inactive Fet3p, or by providing alternative iron uptake activ-

ity. To test these alternative hypotheses, the fet3 mutant was
Fig. 2. Growth of BJ2168, ccc2, fet3, and ctr1 mutants transformed
with vector (pYES3) or vector carrying the B. napus cDNA (pYES3-
cDNA) on iron-limited (A), copper-sufficient (B), and iron-sufficient
(C) plates. Plates were incubated at 30 �C for 72 h. Sections shown in
A, B, and C are from single plates, representative (n ¼ 3) of each type
of media.
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Fig. 3. Growth curves for BJ2168 and ccc2 mutant transformed with
vector (pYES3) or vector carrying the B. napus cDNA (pYES3-cDNA)
in iron-limited (A), copper-sufficient (B), and iron-sufficient (C) media.
Data points represent an average OD600 (n ¼ 3; �S.E.).
transformed with either pYES3 or pYES3-cDNA. These fet3

transformants did not grow on the iron-limited plates

(Fig. 2A), ruling out the possibility that the B. napus cDNA

resulted in a direct rescue of impaired high-affinity iron uptake.

Delivery of copper to Ccc2p is dependent upon copper up-

take across the plasma membrane. Under copper-limited

conditions, copper enters the cell by a high-affinity uptake

system encoded by the CTR1 [22] and/or CTR3 [23] gene(s).

Expression of the CTR3 gene is eliminated in most S. cerevisiae

laboratory strains and high-affinity copper uptake is depen-

dent solely on Ctr1p [23]. Copper uptake under copper-replete

conditions occurs via a low-affinity uptake system [22].

Similar to the ccc2 mutant, the ctr1 mutant is also deficient

in copper transport. While the ccc2 mutant is deficient in

copper transport localized to the secretory pathway, the ctr1

mutant is deficient in high-affinity copper uptake at the plasma

membrane. High-affinity iron uptake is also impaired in the

ctr1 mutant, since copper is not delivered to Ccc2p and Fet3p.

To determine if the protein encoded by the B. napus cDNA

could mediate copper uptake at the plasma membrane, the ctr1

mutant was transformed with either pYES3 or pYES3-cDNA.

The transformants were unable to grow on the iron-limited

plates (Fig. 2A), suggesting that the protein encoded by the B.

napus cDNA was not able to mediate copper uptake across the

plasma membrane.



Fig. 5. Growth of BJ2168, ccc2, fet3, and ctr1 mutants after the iron-
sufficient plate shown in Fig. 2C was incubated for an additional 168 h
(240 h total).
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As evident from growth curves of the BJ2168/pYES3 and

BJ2168/pYES3-cDNA strains (Figs. 3A, B, and C), the protein

encoded by the B. napus cDNA was neither detrimental nor

beneficial (under the conditions tested) when Ccc2p was al-

ready present.

Previous studies have demonstrated that ccc2, fet3, and ctr1

mutants can be rescued by supplementing an iron-limited

medium with copper and/or iron [2,16]. This copper-/iron-

mediated rescue can be used to demonstrate the viability of the

strains that did not grow under iron-limited conditions. When

the iron-limited medium was supplemented to 500 lM CuSO4,

all of the ccc2 (Figs. 2B and 3B) and ctr1 (Fig. 2B) strains

grew. All of the ccc2 strains also grew when the iron-limited

medium was supplemented to 350 lM Fe(NH4)2(SO4)2 (Figs.

2C and 3C). There was no apparent growth of the fet3 strains

on iron-sufficient plates (Fig. 2C). A slower growth rate ex-

hibited by fet3 mutants, when glucose is replaced by galactose

and raffinose (Fig. 4), was considered a possible explanation

for this lack of apparent growth. When incubated for a longer

period of time, the fet3 mutants did grow on the iron-sufficient

plates (Fig. 5). This extended growth period did not alter the

results of the iron-limited plates (data not shown).

Although the ccc2, fet3, and ctr1 mutants are all deficient in

high-affinity iron uptake, the protein encoded by the B. napus

cDNA was only capable of complementing the ccc2 mutant.

This supports a copper-transporting role that is likely localized

to a secretory compartment for the product encoded by the B.

napus cDNA.

3.3. Potential roles for the copper-transporting function encoded

by the B. napus cDNA

Potential roles for P1B-ATPase-mediated copper transport in

plants have been suggested from work focusing on Arabidopsis

ran1 (responsive-to-antagonist1) mutants. The ran1-1 and ran1-
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Fig. 4. Growth of BJ2168, ccc2, fet3, and ctr1 mutants when the car-
bon source is glucose (A; conventional synthetic media) or galactose
and raffinose (B; induction synthetic media). Data points represent an
average OD600 (n ¼ 3; �S.E.).
2mutants display an alteration in the specificity of the ethylene

receptor(s) and contain mutations in the gene corresponding to

the genomic locus T19K24.18 (AC002342; At5g44790) [11].

Expression of RAN1 cDNA in S. cerevisiae ccc2 mutants res-

cues these mutants [11]. These results led, in part, to a proposal

that RAN1 functions in the delivery of copper to ethylene

receptor(s) [11]. A rosette lethal phenotype, observed in the

Arabidopsis mutant ran1-3, has been proposed to arise from an

ethylene-independent pathway regulating cell expansion. This

pathway is thought to be dependent upon cuproenzyme(s) that

receive copper in a RAN1-dependent manner and that are,

consequently, inactive in the ran1-3 mutant [12]. It has also

been suggested that RAN1 may play a role in copper recycling

during senescence [24].

The B. napus and RAN1 coding sequences are 88% identical,

while the predicted amino acid sequences are 91% identical.

This level of identity suggests that the B. napus cDNA may

encode a RAN1 homolog. It is, consequently, likely that the

protein encoded by the B. napus cDNA mediates functions

similar to those described for RAN1. Results of the comple-

mentation assay in the current study suggest that the B. napus

cDNA encodes a copper-transporting function. For these

reasons, it is proposed that the B. napus gene (and cDNA) be

named BnRAN1.

Four additional Arabidopsis sequences that encode putative

P1B-ATPases were added to the NCBI databases during the

progress of this study. Partial sequences and expressed se-

quence tags, that appear to correspond to putative P1B-ATP-

ases, suggest that these ATPases occur in a variety of plant

species. A recent paper [25] describes the identification of eight

sequences encoding putative P1B-ATPases from two draft se-

quences of the Oryza sativa (rice) genome. With the exception

of the Arabidopsis P1B-ATPases RAN1 [11,12] and recently

PAA1 [13], AtHMA4 [26], and AtHMA3 [28], the functional

information available for putative P1B-ATPases in plants is

still limited. The current study is, therefore, amongst the first

studies to demonstrate that a putative plant P1B-ATPase is

functional and to examine its substrate specificity.
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