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ABSTRACT

Let M be the family of all compact sets in C which have connected complement. For K € M we
denote by A(K) the set of all functions which are continuous on X and holomorphic in its interior.
Suppose that {z,} is any unbounded sequence of complex numbers and let Q be a given sub-
sequence of Ny.
If Q has density A(Q) =1 then there exists a universal entire function » with lacunary power
series

(1) @2) =30y p’s p,=0forvgQ,
which has for all K € M the following properties simultaneously:

(2) the sequence {(z + z,)} is dense in 4(K);

(3) thesequence {¢(zz,)} isdensein A(K)if 0 ¢ K.

Also a converse result is proved: If  is an entire function of the form (1) which satisfies (3), then
Q must have maximal density Amas (Q) = 1.

1. INTRODUCTION AND STATEMENT OF THE MAIN RESULTS

For a compact set K in the complex plane C we denote by 4(K) the set of all
complex valued functions, which are continuous on K and holomorphic in its
interior K° (where possibly K° = ). Introducing the norm

A1 : = max £ (z)]

A(K) becomes a Banach space.

" The research work of the second author has been supported by the German Academic Exchange
Service (DAAD).
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By M we denote the family of all compact sets which have connected com-
plement and M, stands for the subfamily of all K € M with 0 ¢ K.

The problems of the existence of so called ‘universal functions’ and the ‘uni-
versal approximation’ of functions are classical, and there is an extensive lit-
erature on the theory of functions, which are universal in different respects. The
first example is due to G.D. Birkhoff [3], who proved the existence of an entire
function ¢ with the property that for an arbitrary entire function f there exists a
subsequence {n;}, . of the natural numbers N, such that {¢(z + )}, con-
verges to f(z), compactly on C. Hence the sequence of ‘additive translates’
{¢(z4+n)},cn is dense in the space of all entire functions endowed with the
topology of compact convergence.

P. Zappa [16] has established a theorem analogous to that of Birkhoff for the
punctured plane C*:= C\{0}. He proved the existence of a holomorphic
function ¢ on C* with the property that for any compact set K C C*, whose
complement is connected in C”, the sequence {¢(nz)}, . is dense in A(K).

In a recent paper L. Bernal-Gonzalez and A. Montes-Rodriguez [2] char-
acterized the sequences {,}, .y of automorphisms of a domain G C C with
the property, that there exists a universal holomorphic function ¢ on G such
that the sequence {¢ o ¢,} is dense in the space of all holomorphic functions
on G.

For a brief resumé of the history of universal functions we refer to the articles
[3] and [7], where further bibliographical remarks are given.

In the classical theory of universal functions the approximation theorems of
C. Runge and S.N. Mergelian (see [15], [10] and [5]) are fundamental for the
construction of those functions.

In this note we deal with the question whether refinements of results con-
cerning universal functions are obtainable, if approximation by lacunary poly-
nomials is taken as a basic tool for the construction of those functions. Other
results involving lacunary approximation were obtained by M. Dixon and
J. Korevaar [4], N.U. Arakelian and V.A. Martirosian [1], V.A. Martirosian [9]
and J. Muller [11], [12].

If Qis a subsequence of Ny : = N U {0}, we will denote by A(Q) its density (if
it exists) and by Ap,.«(Q) its maximal density in the sense of G. Polya [13], that
is

@)= i, (imsup "6

where ng(r) is the number of elements in @ N [0, 7].
In our main result we prove the existence of an entire function with a la-
cunary power series which has two universal properties simultaneously.

Theorem 1. Let Q be any subsequence of Ny with density A(Q) =1 and let
S = {zu}, cn be any unbounded sequence of complex numbers. Then there exists
an entire function ¢ with lacunary power series
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(1) o(z)= 2 &', ¢ =0forvdQ

v=0

which is universal in the double sense that

(A) The sequence of ‘additive translates’ {¢(z + z,)}, v is dense in A(K) for
all K € M.

(B) The sequence of ‘multiplicative translates’ {$(zz,)}, cn is dense in A(K)
forall K € M.

In the following result we investigate the sharpness of the density property of Q.
We shall prove the following partial converse of Theorem 1.

Theorem 2. Let Q be a given subsequence of No and let S = {z,}, . be any un-
bounded sequence of complex numbers. Suppose that ¢ is an entire function of the
Jorm (1) which is universal in the sense that it has property (B) of Theorem . Then

Anmax(Q) = 1.

2. AUXILIARY RESULTS

For the proofs of our results some Lemmas are needed. We start with the fol-
lowing result.

Lemma 1. There exists a sequence {K,}, . of sets K, € My with the property
that for any K € My there exists an ng € Nwith K C K,,.

A short proof can be found in [8].

The following result (compare with [4]) is an essential tool for our construction
of universal functions.

Lemma 2. Let Q be a subsequence of Ny with density A(Q) = 1 and let K be a
given set in M with K° # Qand 0 € K°. Suppose that the function f is holomorphic
on K and that in a neighborhood of the origin it has a power series representation
of the form

f(o) = i f.2¥, where f, =0 forv ¢Q.

=0
Then for every € > O there exists a ‘lacunary’ polynomial
N
(2) P(zy= > p.z", where p,=0forvgQ
I/:()
such that

max |f(z) = P(2)| < e.

Proof. According to the Riesz representation theorem and the Hahn-Banach
theorem, it is sufficient to show that for every Borel measure p on K with
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(3)  [¢du(Q) =0 forneQ

K

we have

Jf(Q)du(¢) =0.

K
Let a Borel measure p on K with (3) be given, and let

du(¢)
(—z

be the Cauchy transform of p. Then /% is holomorphic in @\K, and for
|z| > max¢c k|| we have

e = [ (=3 2 )duto) = 5 i (- canto))

h(z):= | for z € C\K
k

with a, : = [ ("du(C) for n ¢ Q. Since A(Q) =1 and thus A(Np\Q) =0, the
Fabry gap theorem [6] shows that # has a holomorphic extension to |z] > 6,
where ¢ : = dist(0, 9K). Therefore the expansion (4) holds compactly in |z| > é.

Let 2 € C be an open set containing K and such that f is holomorphic in 2.
Then there exists a contour I' in 2\ K such that

. 1, aeK
indr(a) = 0 0 d

(see for example [14], Theorem 13.5). From Cauchy’s theorem we obtain

L fw)

Qmiy wit]

dw=f,=0 for néQ.

Since I' C {2\K, we have uniform convergence of (4) on I" and therefore, ac-
cording to Fubini’s theorem, we find

LT, S )
kff(()du(C) = l! i LJ: - de] du(¢) =
= Lrpon ] 9 gy =
=l
= X O‘n%f fivi)l dw=0. O
ng 0 iy ow

In order to state the next result, we use the following notation. If a compact set
K and a number 6 € [0, 7r) are given, we define

Ks:= |J {w:w=1ze%z€K}.
fol<é

532



Lemma 3. Let Q be a subsequence of Ny with the density A(Q) = A € [0,1) and
let f be an entire function with a power series representation

f(z) = i 12", where f,, = 0 for v ¢ Q.
v=0

Suppose that there exists a sequence of closed disks
Cy:= {2 . |Z - Cm‘ < rm}
with the properties

lim ¢, = oc, 1 < liminf M<oc

m—oc m— Y
and a constant C (independent of m) such that
If(2) £ C  forall z€ (Cp)a,

Then f'is a constant.

For a proof see [9, Lemma 8].

3. PROOF OF THEOREM 1

1. We assume that {K,}, . is a sequence of compacta as in Lemma 1 and that
{I1,}, - is an enumeration of all the polynomials II,(z) # 0 whose coefficients
have rational real and imaginary parts. Let £ = {(K};, IT})}, . be a countable
listing of all the pairs (K,, /1,) with the property that every such pair occurs
infinitely often on L.

2. By an inductive procedure we may choose a sequence p = {pn},n, Of
natural numbers with py = 1and p, > n+ 1 and subsequences a = {a,}, . and
b= {bu},cn of {zu},cn With |a,| > n such that the following properties hold:

If 4, :=a,K;, if B,:={z:|z—b,| <n}and C,:={z:|z| < p,}, then we
have

A0 B, =0, (4,UuB)NC, =0, A,UB,CC,.

Obviously the sets A, B,, C, | are pairwise disjoint.

3. We now construct a sequence { Py}, n, Of polynomials of the form (2). Let
us assume, that the polynomials Py =0, Py,..., P, | have already been de-
termined. Then according to Lemma 2 there exists a polynomial P, of the form
(2) such that the following three conditions hold simultaneously:

1

(5) max |Pa(2) = P ()] < =5,
1
(6) mB%x |P,,(z)—H,,(z—b,,)l<;,
z 1
7 4 a(2) — I — —.
D m |- () <1

By induction we obtain the sequence {P,}
4. Let the function ¢ be defined by

nelNg:
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¢(z) := > {Pu(z) = B1(9)}

=1
Then (5) implies that ¢ is an entire function and it obviously has the desired
representation (1).
Forall 4 > n+ 1 we have B, C C, C C,,_ and we obtain from (6) and (5)
max |¢(z + b,) — H,(z) | = max [(z) — [, (z = by) | <

[z|<n
(8) Smax|P(z) — (= = ba) [+ 32 ] max [£(z) — £, (2) <
&l H=n+ p-1
2
< -,
n

Analogously we have 4, € C, € C,_ forall g > n+ I and (7) and (5) imply

CRACNE

max {o{anz) — I (2) | = max

n Ap

(9) < max|P,(z) - II; (é—) |+ > max|B(z)— B i(2)] <
n ”n p=n+1 pol
2
< —.
n

5. Let K be given set in M and let f be a function in A(K). By the theorem of
Mergelian there exists a subsequence {k}, p of N such that

(10) ml?x[f(:)—Hk\(:)|<§ for all s € N.

a) Since K C {z : |z| < k,} for all sufficiently large s, it follows from (8) and {10)
for those s that
max (= + b)) = f(2)] <
< max 90z + by} = My, (2)] + max [1y (=) = f(z)] <
2]
ke s’
Therefore the sequence {¢(z + z,)}, cn 1s dense in A(K).

b) Let us now suppose that K € M. Then by Lemma 1 there exists an
ng with K C K,,,. By our definition of £ there exists a strictly increasing se-
quence {n\"},_, of natural numbers such that (K,,, IT;,) = (K., IT*,,) for all

" n,
LeN. ’

The estimate (9) therefore guarantees, that for any s € N there exists a

R ng‘) such that

2
max lolap.z) — I (2)] < o

which together with (10) implies that
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max 6(ap.2) ~ 1)) <.

Therefore the sequence {¢(z2z,)}, . is dence in A(K). This completes the proof
of Theorem 1. [J

4. PROOF OF THEOREM 2

Suppose that the sequence Q satisfies Apax (@) < 1 and that there exists a uni-
versal entire function ¢ of the form (1) for which the property (B) of Theorem 1
holds.

From the definition of maximal density it follows that we may assume with-
out loss of generality that Q has ordinary density A(Q) = A € {0,1).

We consider a disk C:= {z: |z — | < r} with || > rand C, € M. Since it
is assumed that ¢ satisfies condition (B), there exists a subsequence {7}, ., of
N such that z,, — oc and

lo(zz, ) <1 forall ze Cry
or equivalently
lp(z)] <1 forall zé€z, - Cra.

If we now apply Lemma 3 to the function ¢, we derive that ¢ must be a con-
stant, which is impossible. This completes the proof of Theorem 2. [

Remark. The authors also investigated the existence of universal functions
with lacunary power series in general open sets. In this situation more subtle
density properties of the sequence Q are essential. The results will soon be
published elsewhere.
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