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Distribution and expression of macrolide resistance genes in
coagulase-negative staphylococci
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A B S T R A C T

In total, 494 isolates of coagulase-negative staphylococci (CoNS) were identified to the species level by
biochemical tests and sodA sequencing. Erythromycin resistance phenotypes were determined and
specific resistance genes were identified by PCR. The prevalence of erythromycin resistance varied
widely among staphylococcal species, from 0% in Staphylococcus lugdunensis to almost 90% in
Staphylococcus haemolyticus. Most (63%) erythromycin-resistant isolates carried constitutively expressed
erm(C) as the sole resistance determinant, with the notable exception of Staphylococcus hominis subsp.
hominis, which carried inducible erm(C). The erm(A) and erm(B) determinants were comparatively rare.
The msr(A) gene was carried by 20–30% of all erythromycin-resistant isolates, with little variation
among species, and was combined in 16.7% of isolates with mph(C), a resistance gene of unknown
clinical relevance found previously in isolates of veterinary origin. No erythromycin resistance that
could not be attributed to the genes investigated was detected. It was concluded that the presence of
methylases cannot be assumed in CoNS isolates that appear erythromycin-resistant and clindamycin-
susceptible; thus, methods that detect the export mechanism should be used with clinically significant
isolates to indicate whether use of clindamycin may be effective. In Staphylococcus epidermidis and
S. haemolyticus, 46% and 66%, respectively, of erythromycin-resistant, clindamycin-susceptible isolates
were susceptible to clindamycin therapy.
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I N T R O D U C T I O N

Macrolide–lincosamide–streptogramin B (MLSB)
antibiotics, especially clindamycin, are important
therapeutic agents for penicillin-allergic patients
suffering from staphylococcal infections. Eryth-
romycin resistance in Staphylococcus aureus is
associated most often with the presence of an
rRNA methylase, whose action also affects
resistance to other macrolides, lincosamides and
streptogramin B [1]. The structural genes may be
expressed either inducibly or constitutively, and
mutations occur readily in the regulatory region
of these genes to change inducible resistance to

constitutive resistance. Consequently, there is a
reluctance to use clindamycin against erythro-
mycin-resistant isolates, as resistance may
emerge during therapy [2–6]. A second resist-
ance mechanism involves export of the antibiotic,
typically mediated by msr(A) [7]. This mechan-
ism does not affect the activity of lincosamides.
For S. aureus, it has been shown that erythromy-
cin resistance is caused almost exclusively by
erm(A) or erm(C), whereas export of macrolide
antibiotics by msr(A) or inactivation of lincosa-
mides by lnu(A) is rare [8–11]. Therefore, eryth-
romycin-resistant isolates of S. aureus may also
be considered to be clindamycin-resistant in
most geographical regions.

Much less is known about the basis of macrolide
and lincosamide (ML) resistance in coagulase-
negative staphylococci (CoNS), but it has been
reported that resistance mechanisms other than
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Bochum, Universitätsstrasse 150, 44800 Bochum, Germany
E-mail: soeren.gatermann@rub.de

� 2007 The Authors
Journal Compilation � 2007 European Society of Clinical Microbiology and Infectious Diseases

brought to you by COREView metadata, citation and similar papers at core.ac.uk

provided by Elsevier - Publisher Connector 

https://core.ac.uk/display/82803303?utm_source=pdf&utm_medium=banner&utm_campaign=pdf-decoration-v1


methylation are more common [10,12–14].
A macrolide phosphotransferase gene, mph(C),
has been found in CoNS of veterinary origin [14],
but neither its presence nor its relevance in human
isolates has yet been studied. In addition, several
reports have attempted to associate different spe-
cies of CoNS with the presence of specific resist-
ance mechanisms. Thus, different strategies to
correctly identify ML resistance mechanisms in
CoNS might be required, and the assumption that
methylases are responsible for erythromycin resist-
ance could lead to an unnecessary avoidance of
lincosamides and an increased usage of glycopep-
tides.

In an era of automated susceptibility testing
systems that test for resistance to single antibiotics,
but not for induction, it is important to identify
isolates that are not predicted correctly by the
software algorithms of the automated systems [15].
The present study therefore tested clinical isolates
of CoNS by phenotypic and genotypic means to
determine the presence and mechanism(s) of ML
resistance.

M A T E R I A L S A N D M E T H O D S

Bacteria

In total, 494 bacterial isolates identified presumptively as
CoNS were collected during 2004–2006. Samples came from
tertiary-care hospitals in Bochum, Germany, and from other
hospitals in the same region. Most isolates were considered to
be clinically relevant and originated from blood cultures or
venous catheter infections. The isolates were identified to the

species level using biochemical techniques [16], with unclear
or equivocal results being resolved by sequencing of the sodA
gene [17].

Characterisation of resistance mechanisms

Phenotypic characterisation of MLSB resistance was performed
using the disk approximation test with erythromycin, clinda-
mycin and lincomycin disks. The D phenomenon was consid-
ered to be indicative of the presence of an inducible erm gene
[18]. Oxacillin resistance was tested as described by Ferreira
et al. [19], and all isolates were investigated by PCR for the
presence of mecA [20]. Multiplex PCR for the erm genes [21]
and PCRs for the presence of msr(A), lnu(A) and mph(C) were
performed as described previously [10,22].

R E S U L T S

Of the 494 isolates, the majority were Staphylo-
coccus epidermidis, Staphylococcus haemolyticus,
Staphylococcus hominis subsp. hominis and Staphy-
lococcus lugdunensis (Table 1). Sequencing of sodA
was performed for 44 isolates because biochemi-
cal identification was equivocal. Erythromycin
resistance was found in 305 (62%) of the isolates;
three (0.6%) were resistant to lincomycin only
and harboured lnu(A).

Of the 305 erythromycin-resistant isolates, 155
(51%) expressed constitutive clindamycin resist-
ance, 78 (25.6%) were inducibly resistant, and 72
(23.6%) were non-inducible (Table 1). S. haemolyt-
icus was mostly (89.8%) erythromycin-resistant;
resistance was less common but still prevalent in
S. epidermidis (62.5%) and S. hominis subsp. hominis
(51.4%); no erythromycin resistance was found in

Table 1. Macrolide–lincosamide–streptogramin B (MLSB) phenotypes and single resistance genes in coagulase-negative
staphylococci

Species

Total

Erythro-

mycin-

resistant Phenotype erm(A) erm(B) erm(C) msr(A)

n % n % ind % const % n.i. % n % ind const n n % ind % const % n %

S. epidermidis 333 67.4 208 62.5 54 26.0 108 51.9 46 22.1 12 5.8 3 9 1 134 64.4 47 35.1 87 64.9 14 6.7
S. haemolyticus 59 11.9 53 89.8 8 15.1 29 54.7 16 30.2 2 3.8 1 1 3 15 28.3 5 33.3 10 66.7 5 9.4
S. hominis hominis 37 7.5 19 51.4 10 52.6 3 15.8 6 31.6 2 10.5 2 11 57.9 10 90.9 1 9.1 1 5.3
S. lugdunensis 15 3.0
S. warneri 9 1.8 5 55.6 1 20.0 2 40.0 2 40.0 3 60.0 1 33.3 2 66.7 1 20.0
S. caprae 7 1.4 3 42.9 2 66.7 1 33.3 2 66.7 1 50.0 1 50.0 0.0
S. simulans 6 1.2 4 66.7 1 25.0 2 50.0 1 25.0 3 75.0 1 33.3 2 66.7 1 25.0
S. capitis 5 1.0 1 20.0 1 100.0 1 100.0 0.0 1 100.0 0.0
S. cohnii 5 1.0 4 80.0 1 25.0 3 75.0 1 3 75.0 1 33.3 2 66.7 0.0
S. hominis novobiosepticus 5 1.0 4 80.0 4 100.0 1 2 50.0 0.0 2 100.0 0.0
S. xylosus 4 0.8 2 50.0 2 100.0 1 1 50.0 0.0 1 100.0 0.0
S. saprophyticus 2 0.4 1 50.0 1 100.0 0.0 1 100.0 1 100.0 0.0 0.0
S. sciuri 3 0.6
S. schleiferi 3 0.6 1 33.3 1 100.0
S. chromogenes 1 0.2
Total 494 100.0 305 61.7 78 25.6 155 50.8 72 23.6 16 5.2 4 12 7 200 65.6 74 37.0 126 63.0 72 23.6

ind., inducible expression of clindamycin resistance; const., constitutive expression of clindamycin resistance; n.i., erythromycin-resistant, clindamycin-susceptible, no
induction.
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S. lugdunensis, Staphylococcus sciuri and Staphylo-
coccus chromogenes. The erm(C) gene was most
common (200 isolates, 65.6%), followed by msr(A)
(72 isolates, 23.6%), erm(A) (16 isolates, 5.3%) and
erm(B) (seven isolates, 2.3%). The mph(C) gene was
found in 79 (25.9%) isolates, and was always
detected in combination with msr(A) or erm(C)
(Table 2).

When different species were analysed, the only
significant variation in the above distribution was
a higher prevalence of msr(A) in S. haemolyticus
(30.2%) and S. hominis subsp. hominis (31.6%),
compared with S. epidermidis (22.1%) (Table 1).
Interestingly, msr(A) was most often combined in
S. haemolyticus and S. epidermidis with mph(C)
(14 ⁄ 18, 77.8%, and 32 ⁄ 46, 69.6%, respectively)
(Table 2); erm(C) was most often inducibly
expressed in S. hominis subsp. hominis, whereas
expression was mostly constitutive in other
prevalent species.

Isolates that were erythromycin-susceptible in
the phenotypic test were also tested for the
presence of mph(C), but no isolate with this
genotype was detected. Combinations of methy-
lases and the exporter were detected only rarely,
and occurred mostly in oxacillin-resistant isolates.
Oxacillin resistance was common (272 ⁄ 494,
55.1%), but its prevalence differed significantly
among species, being greatest in S. haemolyticus
(51 ⁄ 59, 86.4%) and S. hominis subsp. novobiosepti-
cus (4 ⁄ 5, 80%), followed by S. epidermidis
(186 ⁄ 333, 55.9%) and Staphylococcus warneri (5 ⁄ 9,
55.6%). No oxacillin resistance was found in

S. lugdunensis, Staphylococcus schleiferi or Staphylo-
coccus saprophyticus. The phenotypic oxacillin
screening test and mecA PCR always yielded
concordant results. As expected, erythromycin
resistance was more prevalent in oxacillin-resist-
ant isolates (83.5%).

D I S C U S S I O N

Erythromycin resistance was more common
(62%) in the present study than was described
in 2002 by John et al. [23] (35%), but was similar to
the level (56%) reported by Hamilton-Miller and
Shah [9]. However, most erythromycin-resistant
isolates in the present study showed constitutive
expression of clindamycin resistance (51%), in
contrast to previous studies that reported consti-
tutive resistance in 25%, 39% and 26–37%,
respectively, of erythromycin-resistant CoNS
isolates [9,10,24]. As reported previously
[10,12,13,18], MLSB resistance was caused most
often by erm(C), in contrast to the situation in
S. aureus, in which constitutive resistance tends to
be caused by erm(A) and the inducible phenotype
is caused by erm(C) [10,13,18,25]. Export of
macrolides is rarely seen in S. aureus, but seems
to be more frequent in CoNS [9,10]. However, one
study [18] reported that the msr(A) exporter was
present in a high proportion of S. aureus isolates,
indicating that geographical differences may
exist.

The present study extends the data from
previous studies in which only unspeciated CoNS

Table 2. Combinations of macrolide–lincosamide–streptogramin B (MLSB) resistance genes in coagulase-negative
staphylococci

Species

Total

Erythro-
mycin-

resistant

mph(C)

+msr(A) mph(C)+erm(C) msr(A)+erm(C) erm(A)+erm(C)

erm(C) + msr(A) +

mph(C)

n % n % n % n ind const n ind const n ind const n ind const

S. epidermidis 333 67.4 208 62.5 32 15.4 9 4 5 6 6
S. haemolyticus 59 11.9 53 89.8 12 22.6 15 2 13 3 3
S. hominis hominis 37 7.5 19 51.4 5
S. lugdunensis 15 3.0
S. warneri 9 1.8 5 55.6 1
S. caprae 7 1.4 3 42.9 1 1
S. simulans 6 1.2 4 66.7
S. capitis 5 1.0 1 20.0
S. cohnii 5 1.0 4 80.0
S. hominis novobiosepticus 5 1.0 4 80.0 1 1
S. xylosus 4 0.8 2 50.0
S. saprophyticus 2 0.4 1 50.0
S. sciuri 3 0.6
S. schleiferi 3 0.6 1 33.3 1 100.0
S. chromogenes 1 0.2
Total 494 100.0 305 61.7 51 16.7 25 7 18 9 9 1 1 3 3

ind, inducible; const, constitutive.
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were analysed. The overall species distribution
of CoNS was similar to that in previous reports
[26–28]. Erythromycin resistance was most
prevalent in S. haemolyticus (86.4%), where it
was usually constitutive and caused by erm(C).
Erythromycin resistance was less prevalent in
S. epidermidis and S. hominis subsp. hominis, but
was still caused by constitutively expressed
erm(C). In these three species, msr(A), alone or
in combination with mph(C), was the only detect-
able resistance mechanism in c. 20–30% of iso-
lates. A similar prevalence of the exporter gene
was seen in S. warneri and Staphylococcus simulans.

Combinations of resistance mechanisms were
seen only rarely, and occurred mostly in oxacil-
lin-resistant isolates. Interestingly, the mph(C)
macrolide-modifying enzyme was found only
in combination with other resistance genes, a
situation that has been described previously [29],
although mph(C) has also been reported to be
the only resistance mechanism in Staphylococcus
xylosus and Staphylococcus equorum (veterinary
isolates) with low-level erythromycin resistance
[14]. The clinical implications of mph(C) in
human and animal infections are presently
unknown. However, since mph(C) occurred in
the present study only in combination with
resistance mechanisms of known clinical signifi-
cance, the presence of mph(C) may be of minor
importance, so that microbiological interpreta-
tions can be guided by the appearance of the
phenotype.

No isolates that were erythromycin-resistant
but did not harbour any of the tested resistance
mechanisms were encountered. This is in contrast
to previous reports that have found unidentified
resistance mechanisms in a considerable propor-
tion of CoNS [18,25]. In addition, isolates that
were phenotypically erythromycin-susceptible
never harboured any of the tested genes. These
observations validate the results and interpreta-
tions of the phenotypic tests. No erythromycin
resistance caused by msr(A) was found in Staphy-
lococcus caprae, Staphylococcus capitis, Staphylococ-
cus cohnii, S. hominis subsp. novobiosepticus,
S. xylosus or S. saprophyticus.

Thus, in conjunction with previous reports, the
results of the present study corroborate the
assumption that there are geographical differ-
ences in the prevalence of erythromycin resist-
ance mechanisms among staphylococci [13,24].
This distribution should be investigated in order

to determine the most appropriate testing strat-
egy. In the Bochum region, it would be ineffective
to test all erythromycin-resistant S. aureus isolates
for the presence of inducible resistance, as the
export mechanism is rare. In CoNS, especially in
S. epidermidis, S. hominis subsp. hominis and
S. haemolyticus, the export mechanism is found
in 20–30% of erythromycin-resistant isolates.
Clindamycin cannot be considered to be ineffec-
tive in these species without testing for inducible
resistance. The present data indicate that this test
would reveal 50% of S. epidermidis and S. hominis
subsp. hominis isolates to be clindamycin-suscept-
ible; in S. haemolyticus, a species with limited
therapeutic options because of its multiple anti-
biotic resistance, up to 65% of all erythromycin-
resistant, clindamycin-susceptible isolates would
be susceptible to clindamycin therapy. The results
therefore suggest that the DD-test should be used to
investigate clinically relevant, erythromycin-
resistant, clindamycin-susceptible CoNS. It can
be expected that at least 50% of isolates tested
with this method will be susceptible to clinda-
mycin therapy. It should be noted that this test is
necessary even for isolates that have been tested
using automated commercial susceptibility
testing systems, as these machines do not test
for inducible resistance genes.
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