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hypersurfaces in Hadamard manifolds.
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1. Introduction

Let M := Mn+1 be an (n+1)-dimensional Riemannian manifold. An immersed hypersurface
in M is a pair (Σ, ∂Σ) := ((S, ∂S), i) where (S, ∂S) is a compact, n-dimensional manifold
with boundary and i :S → M is an immersion (that is, a smooth mapping whose derivative
is everywhere injective). Throughout the sequel we abuse notation and denote (S, ∂S) also by
(Σ, ∂Σ). We recall that the shape operator of the immersion is defined at each point by taking
the covariant derivative in M of the unit, normal vector field over Σ at that point, and that the
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Gaussian curvature (also called the extrinsic curvature) is then defined as a function over S to
be equal to the determinant of the shape operator at each point.

Geometers have studied the concept of Gaussian curvature ever since Gauss first proved in [6]
his famous Teorema Egregium which states that the Gaussian curvature of a surface immersed in
R

3 only depends on its intrinsic geometry and not on the immersion, which explains, for example,
why a flat sheet of paper cannot be smoothly wrapped round a portion of the sphere. In more
recent times, the Gaussian curvature of a hypersurface has revealed itself as an interesting object
of study also from the perspective of geometric analysis as a straightforward and archetypal case
of a much larger class of problems, including those of affine geometry, mass transport, Calabi–
Yau geometry and so on, all of whose underlying equations are of so-called Monge–Ampère type.

In studying hypersurfaces of constant curvature of any sort, the most natural problems to study
are those of Plateau and Minkowski, which ask respectively for the existence of hypersurfaces of
constant curvature with prescribed boundary, or without boundary but instead satisfying certain
topological conditions. The study of these problems has enjoyed a rich development over the
last century, with the application of a wide variety of different techniques, including, for exam-
ple, polyhedral approximation, used by Pogorelov to solve the Minkowski problem for convex,
immersed spheres of prescribed Gaussian curvature in Euclidean space (cf. [16]), and, more re-
cently, the continuity method, as used by Caffarelli, Nirenberg and Spruck (cf. [3]) to solve the
Plateau problem for locally strictly convex (LSC) hypersurfaces which are graphs over a given
hyperplane in Euclidean space. The ideas of Caffarelli, Nirenberg and Spruck were further devel-
oped in one direction by Rosenberg and Spruck (cf. [17]) to prove the existence of LSC hypersur-
faces of constant extrinsic curvature in hyperbolic space with prescribed asymptotic boundary in
the sphere at infinity (which was in turn generalized by Guan and Spruck in [11] and [12] to treat
more general notions of curvature). Likewise they were developed in another direction by Guan
and Spruck in [9] to prove existence of LSC hypersurfaces of constant extrinsic curvature in Eu-
clidean space with prescribed boundary in the unit sphere. This led Spruck to conjecture in [23]
that any compact, codimension 2, immersed submanifold in Euclidean space which is the bound-
ary of an LSC, immersed hypersurface is also the boundary of an LSC, immersed hypersurface
of constant Gaussian curvature, a conjecture which was confirmed simultaneously by Guan and
Spruck in [10] and Trudinger and Wang in [24] using in both cases a combination of Caffarelli,
Nirenberg and Spruck’s continuity method alongside an elegant application of the Perron method.

With the exception of [17], the above results essentially concern submanifolds of R
n+1 and

mild generalizations of this setup, and since most of the techniques used above rely in some way
or another on the geometry of Euclidean space, the problem in general ambient manifolds has re-
mained largely open. Nonetheless, in [14], Labourie showed how pseudo-holomorphic geometry
may be applied in conjunction with a parametric version of the continuity method to solve the
Plateau problem in the case where M is a 3-dimensional Hadamard manifold. However, since
this approach relies on techniques of holomorphic function theory, it does not easily generalize
to the higher dimensional case, which has therefore hitherto remained unsolved. It is to fill this
gap that we present in this and our forthcoming work [18] an approach which allows us to solve
the Plateau problem for hypersurfaces of constant (or prescribed) Gaussian curvature in general
manifolds, thus generalizing the results [10] and [24] of Guan and Spruck and Trudinger and
Wang on the one hand and the result [14] of Labourie on the other. In the interest of simplicity,
we henceforth restrict attention to Hadamard manifolds, which, we recall, are, by definition,
complete, simply connected manifolds of non-positive sectional curvature. We leave the enthu-
siastic reader to investigate the few extra technical conditions required to state and prove the
results in general manifolds.
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In the current paper, we will essentially be concerned with the local problem of finding so-
lutions under conditions that are typically only valid over small regions. We will be mostly
interested in the analysis required to obtain a priori estimates and compactness results. In the
forthcoming work, geometric results will be developed which will allow us to apply the esti-
mates obtained here also to the global problem, as we will briefly discuss towards the end of this
introduction.

Thus let M be a Hadamard manifold. Let (Σ0, ∂Σ0) be a smooth, convex, immersed hyper-
surface in M with smooth boundary. Let N be the exterior, unit, normal vector field over Σ0 and
define E :Σ0 × ]−∞,0] → M by

E (x, t) = Exp(−tN).

We have chosen here an unusual sign convention which we prefer for technical reasons. We say
that a C0,1 hypersurface (Σ, ∂Σ) is a graph below Σ0 if and only if there exists a C0,1 function
f :Σ0 → ]−∞,0] and a homeomorphism ϕ :Σ0 → Σ such that:

(i) f vanishes along ∂Σ0 (i.e. ∂Σ = ∂Σ0); and
(ii) for all p ∈ Σ0:

ϕ(p) = E
(
p,f (p)

) = Expp

(−f (p)N(p)
)
.

Let (Σ̂, ∂Σ̂) be a C0,1, convex, immersed hypersurface in M which is a graph below Σ0.
We denote by C∞

0 (Σ0) the space of smooth functions over Σ0 which vanish along the bound-
ary, and we identify surfaces which are graphs below Σ0 with functions in C∞

0 (Σ0). Gaussian
curvature defines an operator K :C∞

0 (Σ0) → C∞(Σ0) such that, for all f ∈ C∞
0 (Σ0) and for

all p ∈ Σ , K(f )(p) is the Gaussian curvature of the graph of f at the point below p. When the
graph of f is convex, the linearization DKf of K at f is a second order, elliptic, partial differ-
ential operator. In particular, this is the case for DK0, the linearization of K at the zero function,
and we say that (Σ0, Σ̂) is stable if and only if, for all ψ ∈ C∞

0 (Σ0), if DK0 ·ψ � 0, then ψ < 0
over the interior of Σ0.

We say that (Σ0, Σ̂) is rigid if and only if there exists no other smooth hypersurface Σ lying
between Σ0 and Σ̂ such that K(Σ) = K(Σ0).

In general, stable and rigid pairs of surfaces are relatively easy to construct inside small re-
gions. For example, if Σ0 is a bounded portion of a hypersurface in hyperbolic space which lies
at constant distance from a totally geodesic hypersurface, then (Σ0, Σ̂) is both stable and rigid
for any choice of Σ̂ . We refer the reader to Section 9 for more details.

We prove the following local result:

Theorem 1.1. Choose k > 0 and suppose that the Gaussian curvature of Σ0 is less than k.
Suppose, moreover, that for some ε > 0 the Gaussian curvature of Σ̂ is no less than k + ε in the
weak (Alexandrov) sense and that the second fundamental form of Σ̂ is also no less than ε in
the weak (Alexandrov) sense. If (Σ0, Σ̂) is stable and rigid, then there exists a smooth, convex,
immersed hypersurface Σk such that:

(i) Σk is a graph below Σ0;
(ii) Σk lies between Σ0 and Σ̂ as a graph below Σ0; and

(iii) the Gaussian curvature of Σk is constant and equal to k.

Remark. This follows immediately from Lemma 10.2.
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Remark. The weak (Alexandrov) notion of lower (and upper) bounds for curvature is defined in
Section 4.

Remark. The hypothesis that M be a Hadamard manifold is only made for simplicity of pre-
sentation. The same result, with appropriate modifications, continues to hold in more general
manifolds.

When M is in addition a space form (and thus, up to rescaling, isometric to R
n+1 or H

n+1),
the Perron method may be applied to solve the following more general boundary value problem:
let Γ = (Γ1, . . . ,Γn) be a disjoint collection of closed, smooth, embedded, (n − 1)-dimensional
submanifolds of M . Applying the machinery developed by Guan and Spruck in [10] along with
Lemma 11.3 (which constitutes the more precise version of Theorem 1.1 when M = H

n+1) in
place of Theorem 1.1 of [8], we immediately obtain:

Theorem 1.2. Let M be a space form of non-positive curvature. Choose k > 0. Suppose that there
exists a C2, LSC, immersed hypersurface Σ̂ ⊆ M of Gaussian curvature no less than k such that
∂Σ̂ = Γ . Then there exists a smooth (up to the boundary), locally strictly convex, immersed
hypersurface Σ ⊆ M with ∂Σ = Γ of constant Gaussian curvature equal to k. Moreover, Σ is
homeomorphic to Σ̂ .

The proof of Theorem 1.1 follows the analysis of Caffarelli, Nirenberg and Spruck first laid
out in [2] and first applied to constant curvature hypersurfaces by the same authors in [3]. Our
current work uses two key developments which simplify the analysis. The first, which is merely
a question of perspective, is to analyze the Gauss Curvature Equation intrinsically along the
hypersurface as in Section 6, and the second is the use of Sard’s Lemma in Section 8 to generate
smooth families of hypersurfaces interpolating between the data and the desired solution, which
simplifies the topological approach already suggested by the work [8] of Guan. In Section 12 we
show how our techniques can be easily adapted to recover both the results [8] of Guan and [17]
of Rosenberg and Spruck.

As discussed previously, our main aim is to obtain a global existence result which confirms
the natural extension of Spruck’s conjecture (cf. [23]) to more general manifolds. As we shall
see in our forthcoming work [18], the most significant new obstacle is the geometric problem
of developing compactness results in general manifolds for LSC immersions with prescribed
boundary. Having solved this problem, we return to Theorem 1.1, this time removing Σ0 whilst
also allowing Σ̂ to vary between the data of the problem and a setup which may readily be shown
to be stable and rigid. Then, proceeding as before, we obtain the following result, which is a mild
simplification of the main result of [18]:

Theorem 1.3. Let M be a Hadamard manifold. Let (Σ̂, ∂Σ̂) be a locally strictly convex, im-
mersed hypersurface in M whose boundary intersects itself transversally. Let k > 0 be such that
the Gaussian curvature of Σ̂ is everywhere strictly greater than k.

Suppose that there exists a convex subset K ⊆ M with smooth boundary and an open subset
Ω ⊆ ∂K such that:

(i) ∂Ω is smooth; and
(ii) (Σ̂, ∂Σ̂) is isotopic through locally strictly convex immersions to a finite covering of

(Ω, ∂Ω),
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then there exists a locally strictly convex, immersed hypersurface (Σ, ∂Σ) in M such that:

(i) ∂Σ = ∂Σ̂ ; and
(ii) Σ has constant Gaussian curvature equal to k.

Remark. Since the submission of these papers, we have shown (cf. [22]) that any locally strictly
convex immersion is isotopic through locally strictly convex immersions to such a covering of
an open subset of the boundary of a convex set, and so this condition is in fact redundant. We
have chosen nonetheless to retain it here in order to keep this and the forthcoming paper as
self-contained as possible.

This paper is structured as follows:

(a) in Section 2, we show how first order bounds arise as a consequence of convexity;
(b) in Section 3, we derive the Gauss Curvature Equation for a graph in a general Riemannian

manifold;
(c) in Section 4, we introduce the concept of weak (Alexandrov) lower and upper bounds for

curvature;
(d) in Sections 5 and 6 we obtain a priori second order bounds over the boundary and then over

the whole hypersurface respectively. These bounds are then applied in Section 7 to obtain
the compactness result, Lemma 7.1;

(e) in Section 8, we use Sard’s Lemma to obtain smooth (albeit possibly empty) 1-dimensional
families of hypersurfaces interpolating between the data and the solutions. These are used in
conjunction with the concepts of stability, rigidity and local rigidity developed in Sections 9
and 10 to prove in Section 10 the existence result, Lemma 10.2, which immediately yields
Theorem 1.1;

(f) in Section 11, we restrict attention to space forms, proving Lemma 11.3, which, in con-
junction with the machinery developed by Guan and Spruck in [10] immediately yields
Theorem 1.2;

(g) in Section 12, we show how minor adaptations of these techniques allow us to obtain both
the results [8] of Guan (Theorem 12.1) and [17] of Rosenberg and Spruck (Theorem 12.2);
and

(h) in Appendix A, we prove the regularity of limiting hypersurfaces which are themselves
strictly convex. This result may be found in the notes of Caffarelli [1], but given their general
public unavailability, we consider it preferable to provide our own proof here.

This paper was written whilst the author was staying at the Mathematics Department of the
University Autonoma de Barcelona, Bellaterra, Spain.

2. First order control

Let M := Mn+1 be an (n+1)-dimensional Riemannian manifold. Let (Σ0, ∂Σ0) be a convex,
immersed hypersurface with boundary. Let N0 and A0 denote the outward pointing unit normal
and the second fundamental form respectively of Σ0. We define E :Σ0 × ]−∞,0] → M by

E (x, t) = Exp
(−tN0(x)

)
.
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Remark. The change of sign ensures that convex hypersurfaces correspond to graphs of convex
functions.

We will say that a C0,1 hypersurface, Σ , is a graph below Ω if and only if there exists a C0,1

function f :Ω → ]−∞,0] and a homeomorphism ϕ :Ω → Σ such that:

(i) f vanishes along ∂Ω (i.e. ∂Σ = ∂Ω); and
(ii) for all p ∈ Ω :

ϕ(p) = E
(
p,f (p)

) = Expp

(−f (p)N0(p)
)
.

We refer to f as the graph function of Σ . In particular, since f is Lipschitz, its graph is never
vertical, even along the boundary. Consider the family of graphs over Ω . We define the partial
order “<” on this family such that if Σ and Σ ′ are two graphs over Ω and f and f ′ are their
respective graph functions, then

Σ < Σ ′ ⇔ f (p) < f ′(p) for all p ∈ Ω.

Since ∂Ω is smooth, for all p ∈ ∂Ω , the set of supporting hyperplanes in T M to ∂Ω at p is
parametrized by R. Supporting hyperplanes may be locally considered as graphs over Ω , and we
obtain an analogous partial order on this set which we also denote by <.

Let Σ̂ be a C0,1 convex hypersurface which is a graph over Ω . Let (Σn)n∈N be a sequence
of convex graphs over Ω such that for all n ∈ N, Σn > Σ̂ . For all n, let fn be the graph function
of Σn.

Lemma 2.1. (fn)n∈N is uniformly bounded in the C0,1 sense.

Proof. For all n ∈ N ∪ {∞}, define Un by

Un = {
Expp

(−tN0(p)
)

s.t. p ∈ Ω and 0 � t � fn(p)
}
.

By compactness of the family of convex sets, after extraction of a subsequence, there exists U0
towards which (Un)n∈N converges in the Hausdorff sense. Moreover, the supporting hyperplanes
of U0 are transverse to the normal geodesics leaving H . Indeed, suppose the contrary and let
p0 ∈ ∂U0 be a point where the supporting hyperplane is not transverse to the normal geodesic
leaving Σ0. Taking limits ∂U0 � Σ̂ . Since the tangent to Σ̂ along ∂Σ̂ is not vertical, it follows
that p0 lies over an interior point of Σ0. Let (pn)n∈N ∈ (∂Un)n∈N be a sequence converging
to p0. For all n ∈ N ∪ {0}, let qn ∈ Σ0 be the orthogonal projection of pn onto Σ0 and let γn be
the geodesic segment joining qn to pn. For all n ∈ N, γn ⊆ Un. Taking limits, γ0 ⊆ U0. It follows
that γ0 is an interior tangent to ∂U0 at p0. Therefore, by convexity, γ0 ⊆ ∂U0. In particular,
U0 has a vertical supporting tangent at q0, which is absurd. By compactness, we deduce that the
supporting tangent hyperplanes of (∂Un)n∈N are uniformly transverse to the foliation of normal
geodesics leaving Σ0, and the result follows. �
3. The Gauss Curvature Equation

Let M := Mn+1 be an (n + 1)-dimensional Riemannian manifold. Let (Σ0, ∂Σ0) ⊆ M be a
convex, immersed hypersurface with boundary. Let N0 and A0 denote the outward pointing, unit
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normal and the second fundamental form respectively of Σ0. Using the exponential map, we
identify an open subset of M with Σ0 × ]−∞,0].

We will prove:

Proposition 3.1. Let f :Σ0 → ]−∞,0] be a smooth function. The Gaussian curvature of the
graph of f is given by

K = ψ(x,f,∇f )−1 Det
(
Hess(f ) + Ψ (x,f,∇f )

)1/n
,

where:

(i) ψ = ψ(x, t,p) is a smooth, strictly positive function and, for all R > 0 there exists ε > 0
such that if |t | < ε then ψ(x, t,p) is convex in p for ‖p‖ � R; and

(ii) there exists a smooth function Ψ0 such that:

Ψ (x,f,∇f )ij = A0,ij + f;if;kAk
0 j + f;j f;kAk

0 i + f Ψ0(x, f,∇f ).

Moreover, the graph of f is convex if and only if Hess(f )+Ψ (x,f,∇f ) is positive definite.

Example. We view H
n as a totally geodesic, embedded hypersurface in H

n+1. Let g0 and g

be the metrics of H
n and H

n+1 respectively. We consider the foliation of H
n+1 by geodesics

normal to Hn. Exceptionally, we reparametrize geodesics in a non-uniform manner in order to
make this parametrization conformal which simplifies the calculation of the connexion 2-form.
Let α : ]−π/2,π/2[ → R be such that, for all θ :

cos(θ) cosh
(
α(θ)

) = 1.

Let N be the unit, normal vector field over H
n in H

n+1. We define Φ : Hn ×]−π/2,π/2[ → H
n+1

by

Φ(x, θ) = Exp
(−α(t)N(x)

)
.

We easily obtain:

Φ∗g = 1

cos2(θ)

(
g0 ⊕ dθ2).

If Ω denotes the connexion 2-form of the Levi-Civita covariant derivative of Φ∗g with respect
to that of the product metric, then, for all X, Y tangent to H

n:

Ω(X,Y ) = −〈X,Y 〉 tan(θ)∂θ ,

Ω(X,∂θ ) = tan(θ)X,

Ω(∂θ , ∂θ ) = tan(θ)∂θ .



738 G. Smith / Advances in Mathematics 229 (2012) 731–769
Thus, if Ω ⊆ H
n is an open set, and if f :Ω → ]−π/2,π/2[ is a smooth function, then the

Gaussian curvature of the graph of f is given by

K = cos(f )3(1 + ‖∇f ‖2)−(n+2)/2n Det
(
f;ij − tan(f )(f;j f;j + δij )

)1/n
.

We will return to this formula in later examples.

Let ∇0 denote the Levi-Civita covariant derivative of the product metric on Σ0 × ]−∞,0].
Let g denote the pull back of the metric over M through the exponential map. Let Vol denote
the volume form of g and let ∇ denote the Levi-Civita covariant derivative of g. Trivially, ∇ co-
incides with the pull back through the exponential map of the Levi-Civita covariant derivative
of M .

Proposition 3.2. Let Ω := ∇ − ∇0 be the connection 2-form of ∇ with respect to ∇0. There
exists a smooth 2-form Ω0 such that, if X and Y are tangent to Σ , then:

Ω(x,t)(X,Y ) = A0(X,Y )∂t + tΩ0,(x,t)(X,Y ),

Ω(x,t)(X, ∂t ) = −A0X + tΩ0,(x,t)(X, ∂t ),

Ω(x,t)(∂t , ∂t ) = tΩ0,(x,t)(∂t , ∂t ).

Proof. When t = 0, by definition of A0:

∇XY = ∇0
XY + 〈∇XY,N0〉N0

= ∇0
XY − A0(X,Y )N0.

Thus, since N0 = −∂t , at t0:

∇XY = ∇0
XY + A0(X,Y )∂t .

Likewise

∇X∂t = −∇XN0 = −A0X.

Finally, since the vertical lines are geodesics:

∇∂t ∂t = 0.

The result follows. �
Define f̂ :Σ0 × ]−∞,0] → R by

f̂ (x, t) = f (x) − t.

The graph of f is the level set f̂ −1({0}). Observe that ∇f̂ is parallel to the downwards
pointing unit normal over the graph of f . Let Af denote the second fundamental form of this
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graph. For all i, we define the vector field ∂̂i = (∂i, f;i )(x,f (x)). (∂̂1, . . . , ∂̂n) forms a basis of the
tangent space of the graph of f .

Proof of Proposition 3.1. By definition:

Kn = Det
(
Af (∂̂i , ∂̂j )

)
/Det

(
g(∂̂i , ∂̂j )

)
.

However, since the graph of f is the level set f̂ −1(0):

Af = 1

‖∇f̂ ‖g

(
Hess(f̂ )

)
.

Moreover:

Hess(f̂ ) = Hess0(f̂ ) − df̂ (Ω) = Hess(f ) − df̂ (Ω).

It follows that K has the specified form with:

ψ(x,f,∇f ) = ‖∇f̂ ‖g Det
(
g(∂̂i , ∂̂j )

)1/n
,

and

Ψ (x,f,∇f ) = −df̂ (Ω).

When t = 0:

ψ(x,0,p) = (
1 + ‖p‖2)(n+2)/2n

.

Thus, since the function p �→ (1 + ‖p‖2)α is locally uniformly strictly convex for α > 1/2,
(i) follows.

Likewise, by Proposition 3.2:

Ψ (x,0,p)(∂̂i , ∂̂j ) = df̂ (N)A0(∂i, ∂j ) + f ;j df̂ (A0∂i) + f ;idf̂ (A0∂j )

= A0,ij + f;if;kAk
0 j + f;j f;kAk

0 i .

(ii) follows.
Finally, the graph of f is convex if and only if Af is positive definite, and this completes the

proof. �
4. Interlude – Maximum Principles

Let M := Mn+1 be an (n + 1)-dimensional Riemannian manifold.

Definition 4.1. Let Σ be a C0,1 convex, immersed hypersurface in M . Choose k > 0. For P ∈ Σ ,
we say that the Gaussian curvature of Σ is at least (resp. at most) k in the weak (Alexandrov)
sense at P if and only if there exists a smooth, convex, immersed hypersurface Σ ′ such that:
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(i) Σ ′ is an exterior (resp. interior) tangent to Σ at P ; and
(ii) the Gaussian curvature of Σ ′ at P is equal to k.

This notion is well adapted to the weak Geometric Maximum Principle:

Lemma 4.2 (Weak Geometric Maximum Principle). Let Σ1, Σ2 be two C0,1, convex, immersed
hypersurfaces in M . Choose P ∈ Σ1. If Σ2 is an interior tangent to Σ1 at P , then the Gaussian
curvature of Σ2 at P is no less than the Gaussian curvature of Σ1 at P in the weak (Alexandrov)
sense.

Proof. Let Σ ′
1 be a smooth, convex hypersurface which is an exterior tangent to Σ1 at P . Like-

wise, let Σ ′
2 be a smooth convex hypersurface which is an interior tangent to Σ2 at P . Let A1

and A2 be the respective second fundamental forms of Σ ′
1 and Σ ′

2 respectively. Since Σ ′
2 is an

interior tangent to Σ ′
1 at P :

A2 � A1.

The result follows. �
Remark. This result is often used in conjunction with foliations by constant curvature hypersur-
faces which then act as barriers. In the case where M = H

n+1, if we identify H
n+1 with the upper

half space in R
n+1, then we obtain families of constant curvature hypersurfaces by considering

intersections of spheres in R
n+1 with H

n+1. If the centre of such a sphere lies on R
n, then its

intersection with H
n+1 has zero curvature. Otherwise, if the sphere is not entirely contained in

H
n+1, then the intersection has curvature less than 1, and if it is contained in H

n+1, then the
intersection has curvature greater than 1.

We also have the strong Geometric Maximum Principle:

Lemma 4.3 (Strong Geometric Maximum Principle). Let (Σ1, ∂Σ1) and (Σ2, ∂Σ2) be smooth,
convex, immersed hypersurfaces in M of constant Gaussian curvature equal to k.

(i) If P is an interior point of Σ1, and if Σ2 is an exterior tangent to Σ1 at P , then Σ1 = Σ2.
(ii) Suppose in addition that ∂Σ1 = ∂Σ2. If P is a boundary point of Σ1 and if Σ2 is an exterior

tangent to Σ1 at P , then Σ1 = Σ2.

Proof. Σ2 is a graph below Σ1 near P . Let U be a neighborhood of P in Σ1 over which Σ2 is
a graph. Let A be the shape operator of Σ1 and let f be the graph function of Σ2. By Proposi-
tion 3.1:

Det
(
Hess(f ) + Ψ (x,f,∇f )

)1/n = kψ(x,f,∇f ),

for some Ψ and ψ . However

Det(A) = k.
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Thus, by concavity of Det1/n:

k

n
Tr

(
A−1(Hess(f ) + Ψ (x,f,∇f ) − A

))
� k

(
ψ(x,f,∇f ) − 1

)
.

Moreover, by the proof of Proposition 3.1:

ψ(x,f,∇f ) = (
1 + ‖∇f ‖2)n+2/2n + f ψ0(x, f,∇f ).

For some smooth function ψ0. Thus

k
(
ψ(x,f,∇f ) − 1

) = c1f + 〈b1,∇f 〉,
for some smooth function c1 and vector field b1. Likewise, by Proposition 3.1:

Tr
(
A−1(Ψ (x,f,∇f ) − A

)) = c2f + 〈b2,∇f 〉,
for some smooth function c2 and vector field b2. Thus

Tr
(
A−1 Hess(f )

) + 〈b,∇f 〉 + cf � 0,

for some smooth function c and vector field b. Since f � 0 and f (P ) = 0, in both cases (i)
and (ii), it follows by the Strong Maximum Principle (Theorems 3.5 and 3.6 of [7]) that f = 0
over a neighborhood of P . The result now follows by unique continuation of constant Gaussian
curvature hypersurfaces. �
5. Second order bounds along the boundary

Let M := Mn+1 be an (n + 1)-dimensional Riemannian manifold. Let (Σ0, ∂Σ0) ⊆ M be a
smooth, strictly convex, immersed hypersurface. Using the exponential map, we identify a subset
of M with Σ0 × ]−∞,0]. Let φ :M → ]0,∞[ be a smooth, positive function. Let (Σ̂, ∂Σ̂) be
a C0,1, convex, immersed hypersurface such that:

(i) Σ̂ is a graph below Σ0;
(ii) ∂Σ̂ = ∂Σ0; and

(iii) for all x ∈ Σ̂ , the Gaussian curvature of Σ̂ is greater than φ(x)+ε in the weak (Alexandrov)
sense, for some ε > 0.

Σ̂ serves as a lower barrier for our problem. Let (Σ, ∂Σ) ⊆ M be a smooth, convex, immersed
hypersurface such that:

(i) Σ̂ � Σ � Σ0;
(ii) ∂Σ = ∂Σ0; and

(iii) for all x ∈ Σ , the Gaussian curvature of Σ at x is equal to φ(x).

We aim to obtain bounds for the norm of the second fundamental form of Σ along the boundary
which only depend on the data. To this end, we denote by B the family of constants which depend
continuously on the data: M , Σ0, Σ̂ , ε, φ and the C1 jet of Σ (formally, B is the set of continuous
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– or even locally bounded – functions over the space of data). When supplementary data, D (such
as, for example, a vector field) is added, we denote by B(D) the family of constants which, in
addition, also depend on D.

We will prove:

Proposition 5.1. Let Σ , B be as described above. If Σ0 is strictly convex, then there exists K in
B such that, if A is the second fundamental form of Σ , then, for all P ∈ ∂Σ :∥∥A(P )

∥∥ � K.

Remark. The strict convexity of Σ0 is only required in the last step of the proof, where it is used
to obtain uniform, strict lower bounds for the restriction of the second fundamental form to the
tangent space of ∂Σ0. In other cases, such as where Σ0 is totally geodesic, for example, this may
shown using other means (cf. Section 11).

Let P ∈ ∂Σ0 be a point on the boundary. For the sake of later applications (cf. [18]), we
underline that Σ̂ need only exist locally. We thus let Σ̂P ⊆ M be a smooth, convex, immersed
hypersurface such that:

(i) Σ̂P is a graph below Σ0;
(ii) P ∈ Σ̂P ; and

(iii) for all x ∈ Σ̂P , the Gaussian curvature of Σ̂P at x is greater than φ(x) + ε.

Bearing in mind the results of Section 3, we will consider Σ and Σ̂P as graphs near P over a
hypersurface whose second fundamental form vanishes at P . Thus, let Σ1 ⊆ M be an immersed
hypersurface in M which is tangent to Σ0 at P and which is totally geodesic at P .

Let Ω ⊆ Σ1 be an open set with P ∈ ∂Ω and f0 :Ω → R a function such that:

(i) Σ0 is the graph of f0 over Ω ; and
(ii) f0(∂Ω) = ∂Σ0.

Remark. Observe that both Σ̂P and Σ1 are local objects, only defined near P , as opposed to Σ̂ ,
for example, which is a global object, sharing the same boundary as Σ0.

We observe in passing that, by convexity, after reducing Σ1 if necessary, f0 may be made
to be positive. ∂Ω consists of two components: we denote by ∂bΩ the subset of ∂Ω which lies
below the boundary of Σ0 and we denote by ∂iΩ the subset of ∂Ω which lies below the interior
of Σ0.

Proposition 5.2. Let Σ , B be as described at the beginning of this section. Let Ω be as described
above. For all P ∈ ∂Σ , there exist δ > 0 in B(P ) and a neighborhood U of P in Σ which is a
graph over Bδ(P ) ∩ Ω .

Proof. The radius over which Σ is a graph over Σ1 is determined by the C1 jet of Σ , which is
among the data defining B. The result follows. �

We thus replace Ω with Ω ∩ Bδ(P ) and let f, f̂ :Ω → R be the functions of which Σ and
Σ̂P respectively are the graphs below Σ1.
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By Proposition 3.1, there exist functions ψ and Ψ and a positive number R > 0, which only
depends on M , φ and Σ1 such that:

Det
(
Hess(f ) + Ψ (x,f,∇f )

)1/n = ψ(x,f,∇f ).

Moreover:

(i) Hess(f ) + Ψ (x,f,∇f ) is positive definite;
(ii) Ψ (x, t,p), (∂pk

Ψ )(x, t,p) = O(d(x,P )) + O(t) where d(·,P ) is the distance in M to P ;
and

(iii) for t sufficiently small, p �→ ψ(x, t,p) is a convex function in p for ‖p‖ � R.

We define the matrix B by

B = 1

n
ψ(x,f,∇f )

(
Hess(f ) + Ψ (x,f,∇f )

)−1
.

We define the operator L by

Lg = Bijg;ij + Bij (∂pk
Ψ )ij g;k − (∂pk

ψ)g;k.

Proposition 5.3. Let Σ , B be as described at the beginning of this section. For all P ∈ ∂Σ , there
exists δ1 > 0 and ε1 > 0 in B(P ) such that for d(x,P ) < δ1:

L(f − f̂ ) � −ε1

(
1 +

n∑
i=1

Bii

)
.

Remark. This inequality lies at the heart of the Caffarelli–Nirenberg–Spruck technique. The
aim is to build functions which are subharmonic with respect to L, the key observation being
that the appropriate term with respect to which bounds should be obtained is the trace of the
matrix defining the generalized Laplacian L, in this case

∑n
i=1 Bii . We encourage the interested

reader to compare this proposition with the relation shown on Line 13 of p. 376 of [2], where
the function f − f̂ here plays the role of the function xn in the construction of their barrier
function w. In addition, a clearer view of the main elements of the proof may be obtained by
observing the effect of setting the constant η2 to be equal to 0, amounting to not perturbing f̂ .
Finally, observe how the proof depends on the concavity of the determinant function as well as
the convexity of ψ(x, t,p) with respect to p, which is a recurring theme whenever this technique
is applied.

Proof of Proposition 5.3. There exists η1 > 0 in B such that, near p:

Det
(
Hess(f̂ ) + Ψ (x, f̂ ,∇f̂ )

)1/n � ψ(x, f̂ ,∇f̂ ) + 2η1.

Define δ :Σ1 → R by

δ(x) = d1(x,P )2,
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where d1 denotes the intrinsic distance in Σ1. Near P :

Hess(δ) � Id.

There exists η2 > 0 in B such that, if we define ĝ by

ĝ = f̂ − η2δ,

then, near P :

Det
(
Hess(ĝ) + Ψ (x, ĝ,∇ĝ)

)1/n � ψ(x, ĝ,∇ĝ) + η1.

Since Det1/n is a concave function:

Det
(
Hess(ĝ) + Ψ (x, ĝ,∇ĝ)

)1/n − Det
(
Hess(f ) + Ψ (x,f,∇f )

)1/n

� Bij
(
ĝ;ij + Ψij (x, ĝ,∇ĝ) − f;ij − Ψij (x, f,∇f )

)
� Bij (f̂ − f );ij − η2

n∑
i=1

Bii + Bij
(
Ψij (x, ĝ,∇ĝ) − Ψij (x, f,∇f )

)
.

Bearing in mind that Ψ (x, t,p) = O(d(x,P )) + O(t), near P :

Bij (f − f̂ );ij � −η1 − η2

2

n∑
i=1

Bii + ψ(x,f,∇f ) − ψ(x, ĝ,∇ĝ).

However, sufficiently close to p:

ψ(x,f,∇ĝ) − ψ(x, ĝ,∇ĝ) � η1/3.

Moreover, by convexity of ψ :

ψ(x,f,∇f ) − ψ(x,f,∇ĝ) � (∂pk
ψ)(f;k − f̂;k + η2δ;k).

Since δ;k is continuous and vanishes at P , we conclude that, near P :

Bij (f − f̂ );ij − (∂pk
ψ)(f;k − f̂;k) � −η1/3 − η2/2

n∑
i=1

B11.

Bearing in mind that, for all k, (∂pk
Ψ )(x, t, ξ) = O(d(x,P )) + O(t), the result follows. �

Let X be a vector field over Σ1.

Proposition 5.4. Let Σ , B be as described at the beginning of this section. For all P ∈ ∂Σ , there
exists K in B(P,X) such that near P :

∣∣L(Xf )
∣∣ � K

(
1 +

n∑
i=1

Bii

)
.
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Remark. We encourage the interested reader to compare this relation to 2.12 of [2].

Proof of Proposition 5.4. Differentiating the Gaussian Curvature Equation yields, for all k:

Bij
(
f;ijk + (∂xk

Ψ )ij + (∂tΨ )ij f;k + (∂pl
Ψ )ij f;lk

) = (∂xk
ψ) + (∂tψ)f;k + (∂pl

ψ)f;lk.

However

f;lk = f;kl .

Moreover

f;ijk = f;kij + R
Σ1 p
jki f;p,

where RΣ1 is the Riemann curvature tensor of Σ1. There therefore exists K1 in B(P,Σ1) such
that:

∣∣Bij
(
f;kij + (∂pl

Ψ )ij f;kl

) − (∂pl
ψ)f;kl

∣∣ � K1

(
1 +

n∑
i=1

Bii

)
.

Moreover, bearing in mind the definition of B , we obtain:

Bijf;ki = Bij
(
(f;ki + Ψki) − Ψki

)
= ψ(x,f,∇f ) − BijΨki .

However

L(Xf ) = Xk
(
Bij

(
f;kij + (∂pl

Ψ )ij f;kl

) − (∂pl
ψ)f;kl

)
+ f;k

(
Bij

(
Xk

;ij + (∂pl
Ψ )ijX

k
;l
) − (∂pl

ψ)Xk
;l
) + 2Bij

(
f;kiX

k
;j

)
.

The result follows by combining the above relations. �
Corollary 5.5. Let Σ , B be as described at the beginning of this section. For all P ∈ ∂Σ , there
exists K in B(P,X) such that near P :

∣∣LX(f − f0)
∣∣ � K

(
1 +

n∑
i=1

Bii

)
.

We define δ :Σ1 → ]0,∞[ by

δ(x) = d1(x,P )2,

where d1(·,P ) denotes the distance in Σ1 to P .
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Proposition 5.6. Let Σ , B be as described at the beginning of this section. For all P ∈ ∂Σ , there
exists K in B(P,X) such that near p:

|Lδ| � K

(
1 +

n∑
i=1

Bii

)
.

Proof. Trivial. �
Proof of Proposition 5.1. Let P , Σ1 and Ω be as before. Let X be a vector field over Ω which is
tangent to ∂bΩ . By Propositions 5.3 and 5.6 and Corollary 5.5, there exists η,K > 0 in B(P,X)

such that:

∣∣LX(f − f0)
∣∣ � K

(
1 +

n∑
i=1

Bii

)
,

|Lδ| � K

(
1 +

n∑
i=1

Bii

)
,

L(f − f̂ ) � −η

(
1 +

n∑
i=1

Bii

)
.

Moreover, we may assume that, throughout Ω :

∣∣X(f − f0)
∣∣ � K.

By definition of X, X(f − f0) vanishes along ∂bΩ . Since ∂iΩ is bounded away from P , there
therefore exists A+ > 0 in B(P,X) such that, over ∂Ω :

X(f − f0) − A+δ � 0.

There exists B+ > 0 in B(P,X) such that, throughout Ω :

L
(
X(f − f0) − A+δ − B+(f − f̂ )

)
� 0.

Moreover, since f − f̂ � 0, this function is also negative along ∂Ω . Thus, by the Maximum
Principle, throughout Ω :

X(f − f0) � A+δ + B+(f − f̂ ).

Likewise, there exist A−,B− > 0 in B(P,X) such that:

X(f − f0) � −A−δ − B−(f − f̂ ).

There therefore exists K1 > 0 in B(P,X) such that:

∣∣d(
X(f − f0)

)
(P )

∣∣ � K1.
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Thus, increasing K1 if necessary: ∣∣d(Xf )(P )
∣∣ � K1.

Let N be the unit normal vector field along ∂Σ pointing into Σ . We have shown that there exists
K2 > 0 in B such that, for any vector field, X, tangent to ∂Σ :∥∥A(X,N)

∥∥ � K2‖X‖.
The restriction of A to ∂Σ is determined by the norm of the second fundamental form of ∂Σ =
∂Σ0. There therefore exists K3 > 0 in B such that, if X and Y are vector fields tangent to ∂Σ ,
then ∥∥A(X,Y )

∥∥ � K3‖X‖‖Y‖.

Finally, since Σ lies between Σ0 and Σ̂ , both of which are strictly convex, there exists ε1 > 0 in
B such that, throughout ∂Σ :

A|T ∂Σ � ε1 Id.

Since Det(A) = φ, A(N,N) may be estimated in terms of the other components of A, and there
therefore exists K4 > 0 in B such that, throughout ∂Σ :∥∥A(N,N)

∥∥ � K4.

The result now follows. �
6. Second order bounds over the interior

Let M := Mn+1 be a Hadamard manifold. Let Ω ⊆ M be a relatively compact open subset.
Let (Σ, ∂Σ) ⊆ Mn+1 be a smooth, convex hypersurface and suppose that Σ ⊆ Ω . Let N and A

be the unit, exterior, normal vector and the shape operator of Σ respectively. In this section, it
will be convenient to use the logarithm of the extrinsic curvature. Let φ :M → R be a strictly
positive smooth function. We prove global second order estimates given second order estimates
along the boundary for the problem:

Log
(
Det(A)

) = φ(x).

We denote by ‖A|∂Σ0‖ the supremum over ∂Σ0 of the norm of A. We will prove:

Proposition 6.1. There exists K > 0 in B(‖A|∂Σ0‖) such that:

‖A‖ � K.

In the sequel, we raise and lower indices with respect to A. Thus

AijAjk = δi
k,

where δ is the Krönecker delta function.
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Proposition 6.2.

(i) For all p:

AijAij ;p = φ;p.

(ii) For all p,q:

AijAij ;pq = AimAjnAij ;pAmn;q + φ;pq.

Proof. This follows by differentiating the equation Log(Det(A)) = φ. �
We recall the commutation rules of covariant differentiation in a Riemannian manifold:

Lemma 6.3. Let RΣ and RM be the Riemann curvature tensors of Σ and M respectively. Then:

(i) for all i, j, k:

Aij ;k = Akj ;i + RM
kiνj ,

where ν represents the direction normal to Σ ; and
(ii) for all i, j, k, l:

Aij ;kl = Aij ;lk + R
Σ p
kli Apj + R

Σ p
klj Api.

Corollary 6.4. For all i, j , k and l:

Aij ;kl = Akl;ij + RM
kjνi;l + RM

liνk;j + R
Σ p
jlk Api + R

Σ p
jli Apk.

Proof.

Aji;kl = Aki;j l + RM
kjνi;l

= Aik;lj + RM
kjνi;l + R

Σ p
jlk Api + R

Σ p
jli Apk

= Alk;ij + RM
kjνi;l + RM

liνk;j + R
Σ p
jlk Api + R

Σ p
jli Apk.

The result follows. �
Choose P ∈ Σ . Let λ1, . . . , λn be the eigenvalues of A at P . Choose an orthonormal basis,

(e1, . . . , en) of TP Σ with respect to which A is diagonal such that a := λ1 = A11 is the highest
eigenvalue of A at P . We extend this to a frame in a neighborhood of P by parallel transport
along geodesics. We likewise extend a to a function defined in a neighborhood of P by

a = A(e1, e1).

Viewing λ1 also as a function defined near P , λ1 � a and λ1 = a at P .
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Proposition 6.5. For all i, at P :

a;ii = A11;ii .

Proof. Bearing in mind that ∇ei
ei = 0 at P :

a;ii = Dei
Dei

a

= Dei
Dei

A(e1, e1)

= Dei
(∇A)(e1, e1; ei) − 2Dei

A(∇ei
e1, e1)

= (∇2A
)
(e1, e1; ei, ei) − 2A(∇ei

∇ei
e1, e1).

Since e1 is defined by parallel transport along geodesics emanating from P , for all i,
∇ei

∇ei
e1 = 0 at P , and the result follows. �

We define the Laplacian � such that, for all functions f :

�f = Aijf;ij .

Proposition 6.6. There exists K > 0, which only depends on M and φ such that, if a > 1, then

�Log(a)(P ) � −K

(
1 +

n∑
i=1

1

λi

)
.

Proof. By Corollary 6.4:

a;ii = A11;ii

= Aii;11 + RM
i1ν1;i + RM

i1νi;1 + R
Σ p

1ii Ap1 + R
Σ p

1i1 Api.

However, at P :

n∑
i=1

1

λ1λi

Aii;11 =
n∑

i,j=1

1

λiλjλ1
Aij ;1Aij ;1 + 1

λ1
φ;11.

Thus, at P :

�Log(a) � 1

λ1
φ;11 +

n∑
i,j=1

1

λiλjλ1
Aij ;1Aij ;1 −

n∑
i=1

1

λn
1λi

A11;iA11;i

+
n∑ 1

λ1λi

(
RM

i1ν1;i + RM
i1νi;1

) +
n∑ 1

λ1λi

(
R

Σ p

1ii Ap1 + R
Σ p

1i1 Api

)
.

i=1 i,j=1
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We consider each contribution separately. Since, for all a, b ∈ R, (a + b)2 � 2a2 + 2b2, by
Lemma 6.3, for all i � 2:

A2
11;i = (

Ai1;1 + RM
i1ν1

)2 � 2A2
i1;1 + 2

(
RM

i1ν1

)2
.

Thus, bearing in mind that λ1 � 1, there exists K1, which only depends on M such that:

n∑
i,j=1

1

λiλjλ1
Aij ;1Aij ;1 −

n∑
i=1

1

λ2
1λi

A11;iA11;i � −K1

n∑
i=1

1

λi

.

For all ξ , X and Y :

∇Σξ(Y ;X) = ∇Mξ(Y ;X) − A(X,Y )ξ(N);

and

Xξ(N) = ∇Mξ(N;X) + ξ(AX).

Thus

RM
i1ν1;i = (∇MRM

)
i1ν1;i + λi(1 − δi1)R

M
1νν1 + λiR

M
i1i1,

RM
i1νi;1 = (∇MRM

)
i1νi;1 − λ1(1 − δi1)R

M
iννi − λ1R

M
i1i1.

Bearing in mind that λ1 � 1, there exists K3, which only depends on M such that:

n∑
i=1

1

λ1λi

(
RM

i1ν1;i + RM
i1νi;1

)
� −K3

(
1 +

n∑
i=1

1

λi

)
.

Moreover

R
Σ p

1ii Ap1 + R
Σ p

1i1 Api = RM
1ii1(λ1 − λi) + λ1λi(λ1 − λi).

Bearing in mind that λ1 � 1 and that λ1 � λi for all i, there exists K2, which only depends on M

such that:

n∑
i,j=1

1

λ1λi

(
R

Σ p

1ii Ap1 + R
Σ p

1i1 Api

)
� −K2

(
1 +

n∑
i=1

1

λi

)
.

Since ∇Σ
e1

e1 = 0 at P :

∇M
e1

e1 = ∇Σ
e1

e1 + 〈∇M
e1

e1,N
〉
N

= −A(e1, e1)N

= −λ1N.
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Thus

φ;11 = ∂1∂1φ

= HessM(φ)(e1, e1) − dφ
(∇M

e1
e1

)
= HessM(φ)(e1, e1) − λ1 dφ(N).

Bearing in mind that λ1 � 1, there thus exists K3, which only depends on M and φ such that:

1

λ1
φ;11 � −K3.

The result now follows by combining the above relations. �
We recall that a function f is said to satisfy �f � g in the weak sense if and only if, for

all P ∈ Σ , there exists a smooth function ϕ, defined near P such that:

(i) f � ϕ near P ;
(ii) f = ϕ at P ; and

(iii) �ϕ � g at P .

Corollary 6.7. With the same K as in Proposition 6.6, if λ1 � 1, then

�Log(λ1) � −K

(
1 +

n∑
i=1

1

λi

)
,

in the weak sense.

Proof. Near P ∈ Σ , λ1 � a and λ1 = a at P . Since P ∈ Σ0 is arbitrary, and since a is smooth
at P , the result follows. �

Choose x0 ∈ M . Define δ by

δ = 1

2
d(x, x0)

2.

Proposition 6.8. There exists c, which only depends on M , Ω , φ and x0 such that:

λ1 � c ⇒ �Σδ � 1

2

(
1 +

n∑
i=1

1

λi

)
.

Proof. Since M has non-positive curvature:

HessM(δ) � Id

⇒ HessΣ(δ) � Id−d(x, x0)〈N,∇d〉A
⇒ �δ �

n∑ 1

λi

− nd(x, x0).
i=1
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By compactness of Ω , there exists K1 > 0 such that, throughout Ω :

eφ � K1.

Thus

λ1λ
n−1
n � K1

⇒ λn �
(
K1λ

−1
1

)1/(n−1)

⇒ 1

λn

� (λ1/K1)
1/(n−1)

⇒
n∑

i=1

1

λi

� (λ1/K1)
1/(n−1).

There thus exists c1 > 0 such that, for λ1 � c1, and for x ∈ Ω :

n∑
i=1

1

λi

� 2n d(x, x0) + 1

⇒ �Σδ � 1

2

(
1 +

n∑
i=1

1

λ i

)
.

The result now follows. �
Corollary 6.9. There exists λ > 0 and c > 0, which only depend on M , Ω , φ and x0 such that:

λ1 � c ⇒ �
(
Log(a) + λδ

)
> 0,

in the weak sense.

Interior bounds now follow by the Maximum Principle:

Proof of Proposition 6.1. Consider the function ‖A‖eλδ = λ1e
λδ . If this function achieves its

maximum along ∂Σ , then the result follows since eλδ is uniformly bounded above and below.
Otherwise, it achieves its maximum in the interior of Σ , in which case, by Corollary 6.9 and the
Maximum Principle, at this point:

‖A‖ = λ1 � c.

The result follows. �
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7. Compactness

Let M := Mn+1 be an (n + 1)-dimensional Hadamard manifold. Let (Σ0, ∂Σ0) ⊆ Mn+1 be
a smooth, strictly convex hypersurface. Let N0 and A0 be the unit, exterior, normal vector field
and the shape operator of Σ0 respectively. Using the exponential map, we identify Σ × ]−∞,0]
with a subset of M .

Let Conv ⊆ C∞(Σ0, ]−∞,0]) be the family of smooth, negative valued functions over Σ0
which vanish along ∂Σ0 and whose graphs are strictly convex. We define the Gauss Curvature
Operator K : Conv → C∞(Σ0) such that, for all f , K(f )(x) is the Gauss curvature of the graph
of f at the point (x, f (x)). The formula for K is given by Proposition 3.1.

Let f̂ ∈ Conv be such that:

f̂ � 0, K(f̂ ) − ε > K(0) > 0,

for some ε > 0. Denote φ0 = K(0) and φ̂ = K(f̂ ). Denote by Conv(f̂ ) the set of all f ∈ Conv
such that:

f̂ � f � 0 and φ̂ − ε � K(f ) � φ0.

We prove a slightly stronger version of the assertion that the restriction of K to Conv(f̂ ) is a
proper mapping:

Lemma 7.1. Let (fn)n∈N be a sequence in Conv(f̂ ). Suppose there exists (φn)n∈N ∈ C∞(M)

such that, for all n, and for all x ∈ Σ0:

K(fn)(x) = φn

(
x,fn(x)

)
.

If there exists φ∞ ∈ C∞(M) to which (φn)n∈N converges, then there exists f∞ ∈ Conv(f̂ ) to
which (fn)n∈N subconverges.

Corollary 7.2. The restriction of K to Conv(f̂ ) is a proper mapping.

Proof of Lemma 7.1. By Lemma 2.1 and Propositions 5.1 and 6.1, there exists C1 > 0 in B
such that, for all n:

‖fn‖C2 � C1.

By Proposition 3.1:

K(f ) = F
(
Hess(f ),∇f,f, x

)
,

where F(M,p, t, x) is elliptic in the sense of [4] and concave in M . It follows by Theorem 1 of
[4] that there exist α > 0 and C2 > 0 in B such that, for all n:

‖fn‖C2,α � C2.
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Thus, by the Schauder Estimates (see [7]), for all k ∈ N, there exists Bk > 0 such that, for all n:

‖fn‖Ck � Bk.

The result now follows by the Arzela–Ascoli Theorem. �
8. 1-dimensional families of solutions

Let M := Mn+1 be an (n + 1)-dimensional Hadamard manifold. Let (Σ0, ∂Σ0) ⊆ Mn+1 be
a smooth, convex hypersurface. Let N0 and A0 be the unit, exterior, normal vector field and the
shape operator of Σ0 respectively. Using the Exponential Map, we identify Σ × ]−∞,0] with a
subset of M .

Let f̂ , φ0 and φ̂ be as in the previous section. Let γ : [0,1] → C∞(Σ0) be a smooth family of
smooth functions such that, for all τ :

φ0 + ε < γ (τ) < φ̂ − ε,

for some ε > 0. As before, let K : Conv → C∞(Σ0) be the Gauss Curvature Operator. For all
φ ∈ C∞(Σ0), define Γφ ⊆ I × Conv(f̂ ) by

Γφ = {
(t, f ) s.t. K(f ) = γ (t) + φ

}
.

Viewing Conv as a Banach manifold (strictly speaking, the intersection of an infinite nested
family of Banach manifolds), we will prove:

Proposition 8.1. There exists (φn)n∈N ∈ C∞(Σ0) which converges to 0 such that, for all n:

(i) Γn := Γφn is a (possibly empty) smooth, embedded, 1-dimensional submanifold of I ×
Conv(f̂ ); and

(ii) ∂Γn lies inside {0,1} × Conv(f̂ ).

We first prove:

Proposition 8.2.

(i) For all φ, Γφ is compact; and
(ii) for any neighborhood Ω of Γ0 in I × Conv(f̂ ), there exists a neighborhood U of 0 in

C∞(Σ0) such that if φ ∈ U , then Γφ ⊆ Ω .

Proof. (i) This assertion follows from Corollary 7.2.
(ii) Suppose the contrary. Let (τn)n∈N ∈ [0,1], (φn)n∈N ∈ C∞(Σ0) and (fn)n∈N ∈ Conv(f̂ )

be such that (τn)n∈N converges to τ∞ ∈ [0,1], (φn)n∈N converges to 0 and for all n:

(τn, fn) /∈ Ω.
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Suppose moreover that, for all n:

K(fn) = γ (τn) + φn.

By Lemma 7.1, (fn)n∈N subconverges to f∞ ∈ Conv(f∞, f̂ ) such that:

K(f∞) = γ (τ∞)

⇒ (τ∞, f∞) ∈ Γ0.

Thus, for sufficiently large n, (τn, fn) ∈ Ω , which is absurd. The result follows. �
We denote by C∞

0 (Σ0) the set of smooth functions on Σ0 which vanish along ∂Σ0, and we
identify this with the tangent space of Conv in the natural manner. We consider the derivative
of K :

Proposition 8.3. At every point of Conv, DK defines a uniformly elliptic operator from C∞
0 (Σ0)

to C∞(Σ0).

Proof. This follows by differentiating the formula for the Gauss Curvature Operator given by
Proposition 3.1. �

DK is therefore Fredholm. Since it is defined on the space of smooth functions over a compact
manifold with boundary, which themselves vanish over the boundary, it is of index zero.

Proof of Proposition 8.1. Define K̂ : [0,1] × Conv(f̂ ) × C∞(Σ0) → C∞(Σ0) by

K̂(τ, f,φ) = γ (τ) − K(f ) + φ.

By compactness, there exists a neighborhood Ω of Γ in [0,1] × Conv(f̂ ), a subspace E ⊆
C∞(Σ0) of dimension m < ∞ and ε > 0 such that the restriction of DK̂ to Ω ×Bε(0) ⊆ Ω ×E

is always surjective. This restriction is Fredholm of index (m + 1). Define Γ̂ by

Γ̂ = K̂−1({0}).
By the Implicit Function Theorem for Banach manifolds, Γ̂ is an (m + 1)-dimensional smooth
submanifold of Ω × Bε(0). Let π3 : [0,1] × Conv(f̂ ) × Bε(0) → E denote projection onto the
third factor. By Sard’s Lemma there exists a sequence (φn)n∈N ∈ Bε(0) which tends to 0 such
that, for all n, φn is a regular value of the restriction of π3 to Γ̂ . However, for all n:

Γn := Γφn = Γ̂ ∩ π−1
3 (φn).

Moreover, since φn is a regular value of π3, Γn is a (possibly empty) smooth 1-dimensional
embedded submanifold. By Proposition 8.2, for all n, Γn is compact, and for sufficiently large n,
Γn lies entirely inside [0,1] × Ω . Therefore

∂Γn ⊆ ∂(I × Ω) ⊆ ({0,1} × Ω
) ∪ ([0,1] × ∂ Conv(f̂ )

)
.
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It thus remains to show that ∂Γn lies away from [0,1] × ∂ Conv(f̂ ). However, if (τ, f ) ∈ Γn,
then

0 � f � f̂ , φ0 + ε < K(f ) < K(f̂ ) − ε.

Thus, by the Geometric Maximum Principle, away from ∂Σ0:

0 < f < f̂ ,

and by the geometric maximum principal along the boundary, a similar relation holds for the
derivative of f in the internal normal direction along ∂Σ0. It follows that Γn lies in the interior
of Conv(f̂ ) and so

∂Γn ⊆ {0,1} × Ω.

This completes the proof. �
9. Rigidity and local rigidity

Let M := Mn+1 be an (n + 1)-dimensional Hadamard manifold. Let (Σ0, ∂Σ0) ⊆ Mn+1 be
a smooth, convex hypersurface. Let K : Conv → C∞(Σ0), f̂ , φ0 and φ̂ be as in Section 7. Let
C∞

0 (Σ0) be the set of smooth functions over Σ0 which vanish along ∂Σ0, which, as in the
preceding section, we identify with the tangent space of Conv. In particular, for all f ∈ Conv we
denote by DKf :C∞

0 (Σ0) → C∞(Σ0) the derivative of K at f .

Definition 9.1.

(i) We say that φ ∈ C∞(Σ0) is locally rigid over Conv(f̂ ) if and only if for all f ∈ Conv(f̂ )

such that K(f ) = φ, DKf is invertible (in other words, φ is a regular value of K).
(ii) We say that φ ∈ C∞(Σ0) is rigid over Conv(f̂ ) if and only if there exists at most one f ∈

Conv(f̂ ) such that K(f ) = φ.

Example. Let H
n+1 be (n + 1)-dimensional hyperbolic space. Let H be a totally geodesic hy-

persurface. For D > 0, let H(D) be the equidistant hypersurface at a distance D from H . H(D)

has constant Gaussian curvature equal to tanh(D). Let Ω ⊆ H(D) be any bounded open sub-
set with smooth boundary and consider the hypersurface (Σ0, ∂Σ0) = (Ω, ∂Ω). Define f0 = 0
and φ0 = Kf0 = tanh(D). By the strong Geometric Maximum Principle and the homogeneity of
H

n+1, we readily show that φ0 is rigid for any choice of Σ̂ . Moreover, by calculating the Jacobi
operator of H(D) (or by calculating the derivative of K using the example in Section 3), we
likewise show that φ0 is locally rigid.

Example. The above example is a special case of a more general construction. Let M be a
Riemannian manifold. Let P ∈ M be a point, let N ∈ UM be a unit vector at P , let A be a
positive-definite symmetric 2-form over N⊥ and let k = Det(A). There is no algebraic obstruction
to the construction of a hypersurface Σ such that:

(i) P ∈ Σ ;
(ii) N is normal to Σ at P ;
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(iii) the second fundamental form of Σ at P is equal to A; and
(iv) if ψ = Det(A) is the Gaussian curvature of Σ , then ψ = k up to infinite order at P .

Since ψ = k up to infinite order at P , for ε > 0 small, there exists a smooth family (ψt )t<ε of
smooth functions such that:

(i) ψ0 = ψ ; and
(ii) for all t , ψt = k over the geodesic ball of radius t about P .

Suppose moreover that M has negative sectional curvature bounded above by −1 and that
A = k Id for k < 1. In this case, the derivative of the Gauss Curvature Operator is invertible
over a geodesic ball of small radius about P (see [14] for details in the 2-dimensional case). We
may therefore assume by the Inverse Function Theorem for Banach Manifolds that ψ = k over a
geodesic ball of small radius about P . Moreover, Σ may be extended to a foliation (Σt )t∈]−ε,ε[
of a neighborhood of P in M by hypersurfaces of constant curvature equal to k. Now let B ⊆ M

be a geodesic ball in M centred on P which is covered by this foliation. Let Ω ⊆ Σ be an
open set with smooth boundary contained in B ∩ Σ . If Σ ′ is any other hypersurface of constant
Gaussian curvature equal to k such that ∂Σ ′ = ∂Ω , then, by the Geometric Maximum Principle,
Σ ′ is contained inside B , and, by the strong Geometric Maximum Principle, Σ ′ coincides with
a leaf of the foliation. It is therefore equal to Ω , and we have thus shown that ψ = k is both rigid
and locally rigid over Ω for any choice of Σ̂ .

Proposition 9.2.

(i) If φ is locally rigid, then φ′ is also locally rigid for all φ′ sufficiently close to φ.
(ii) If φ is rigid and locally rigid, then φ′ is rigid for all φ′ sufficiently close to φ.

Proof. (i) Suppose the contrary. Let (φn)n∈N ∈ C∞(Σ0) be a sequence of non-locally rigid func-
tions converging to φ. Since φ is locally rigid, DK is invertible at f for all f ∈ K−1({φ}). There
therefore exists a neighborhood Ω of K−1({φ}) in Conv(f̂ ) such that DK is invertible at f for
all f ∈ Ω . However, by Corollary 7.2, for all sufficiently large n:

K−1({φn}
) ⊆ Ω.

φn is therefore locally rigid for sufficiently large n, which is absurd, and the assertion follows.
(ii) Suppose the contrary. There exists a sequence (φ′

n)n∈N which converges to φ such that φ′
n

is not globally rigid. Thus, for all n, there exists f1,n �= f2,n ∈ Conv(f̂ ) such that:

K(f1,n) = K(f2,n) = φ′
n.

By Corollary 7.2, there exist f1, f2 ∈ Conv(f̂ ) to which (f1,n)n∈N and (f2,n)n∈N respectively
converge. In particular

K(f1) = K(f2) = φ.

Since φ is rigid, it follows that:

f1 = f2 = f.



758 G. Smith / Advances in Mathematics 229 (2012) 731–769
Since φ is locally rigid, DK is invertible at f and thus K is locally invertible over a neighborhood
of f . In particular, for sufficiently large n:

f1,n = f2,n.

This is absurd, and the result follows. �
10. Stability and existence

Let M := Mn+1 be an (n + 1)-dimensional Hadamard manifold. Let (Σ0, ∂Σ0) ⊆ Mn+1 be
a smooth, convex hypersurface. Let (Σ̂, ∂Σ̂) ⊆ Mn+1 be another smooth, convex hypersurface
which is a graph below Σ0. Let f̂ ∈ C∞

0 (Σ0) be the function of which Σ̂ is a graph. As in

Section 7, we denote φ̂ = K(f̂ ) and φ0 = K(0), and we denote by Conv(Σ0, Σ̂) := Conv(f̂ )

the set of all smooth functions in C∞
0 (Σ0) such that:

f̂ � f � 0 and φ̂ − ε � K(f ) � φ0.

We identify every function in Conv(Σ0, Σ̂) with its graph.

Definition 10.1.

(i) We say that (Σ0, Σ̂) is stable if and only if for all ψ ∈ C∞
0 (Σ0), if DK0ψ > 0, then ψ < 0

over the interior of Σ0.
(ii) We say that (Σ0, Σ̂) is rigid if and only if the only hypersurface (Σ, ∂Σ) ∈ Conv(Σ0, Σ̂)

such that K(Σ̂) = K(Σ0) is Σ0 itself.

Remark. In other words, (Σ0, Σ̂) is rigid if and only if φ0 := K(0) ∈ C∞(Σ0) is rigid over
Conv(f̂ ).

Remark. Observe that if (Σ0, Σ̂) is both rigid and stable, then φ0 is also locally rigid over
Conv(f̂ ).

Example. Let N0 and A0 be respectively the outward pointing, unit, normal vector field over
Σ0 and its corresponding shape operator. Let JK be the Jacobi operator of Σ0. JK measures the
first order variation of the Gaussian curvature upon first order, normal perturbations of Σ0 and is
given by

JKφ = Tr
(
A−1

0 W − A0
)
φ − Tr

(
A−1

0 Hess(φ)
)
,

where the mapping W is given by

〈
W(X),Y

〉 = 〈RXN0Y,N0〉,

and where R is the Riemann curvature tensor of M . It follows that if the sectional curvature of
M is bounded above by −ε2 and if the principal curvatures of Σ0 are bounded below by ε, then

JKφ = hφ − Tr
(
A−1 Hess(φ)

)
,
0
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for some non-negative function h. Since DK is conjugate to JK, it follows from the maximum
principal that (Σ0, Σ̂) is stable.

Lemma 10.2. If (Σ0, Σ̂) is stable and rigid, then, for all φ such that:

φ0 � φ � φ̂ − ε,

for some ε > 0, there exists a smooth, convex, immersed hypersurface Σφ such that:

(i) Σ̂ � Σφ � Σ0; and
(ii) the Gaussian curvature of Σφ at the point p is equal to φ(p).

Proof. Assume first that:

φ0 + ε < φ < φ̂ − ε.

By stability, reducing ε is necessary, there exists f0 ∈ Conv(f̂ ) such that:

φ′
0 := K(f0) > φ0 + ε.

By Proposition 9.2, we may assume moreover that φ′
0 is both rigid and locally rigid over

Conv(f̂ ). Let γ : [0,1] → C∞(Σ0) be a smooth family of smooth functions such that:

(i) γ (0) = φ′
0, γ (1) = φ; and

(ii) for all t ∈ [0,1]:

φ0 + ε < γ (t) < φ̂ − ε.

By Proposition 8.1, there exists (φn)n∈N ∈ C∞(Σ0) which converges to 0 such that, for all n,
Γn := Γφn is a (possibly empty) smooth, 1-dimensional embedded submanifold of [0,1] ×
Conv(f̂ ). Moreover, for all n, Γn is compact, and

∂Γn ⊆ {0,1} × Conv(f̂ ).

By Proposition 9.2, we may assume that, for all n, φ′
0 + φn is both rigid and locally rigid. In

addition, since φ′
0 is locally rigid, we may assume that, for all n, there exists fn ∈ Conv(f̂ ) such

that:

(0, fn) ∈ Γn.

Γn is therefore non-empty for all n. Let Γ 0
n be the connected component of Γn containing (0, fn).

Since it is compact, it is either an embedded, compact interval or an embedded, closed loop. We
claim that Γ 0

n is not a closed loop. Indeed, by local rigidity, DK is invertible at (0, fn). Conse-
quently, if π1 : [0,1] × Conv(f̂ ) → [0,1] is the projection onto the first factor, the restriction of
Dπ1 to T Γ 0

n is invertible at fn. Since 0 = π1(fn) is an end point of [0,1], this would imply that
(0, fn) is also an end point of Γ 0. This is absurd and the assertion follows.
n
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For all n, let gn by the other end of Γ 0
n . Since (φ′

0 + φn) is globally rigid:

gn ∈ {1} × Conv(f̂ ).

In other words:

K(gn) = φ + φn.

By Corollary 7.2, there exists g0 ∈ Conv(f̂ ) to which (gn)n∈N subconverges. In particular:

K(g0) = φ.

This proves existence in the case where φ0 + ε < φ < φ̂ − ε. The general case follows by taking
limits. �
11. Space forms and the local geodesic condition

Let M := Mn+1 be an (n+1)-dimensional Riemannian manifold. Let K ⊆ M be a convex set
with non-trivial interior. For any P ∈ ∂K , we say that K satisfies the local geodesic condition
at P if and only if there exists an open geodesic segment Γ such that:

(i) P ∈ Γ ; and
(ii) Γ ⊆ K .

Observe that since K is convex, the second condition implies in particular that Γ ⊆ ∂K .
We henceforth restrict attention to the case where M is a space-form of non-positive curva-

ture. In other words, up to rescaling, M is isometric to either (n + 1)-dimensional Euclidean or
Hyperbolic space. We obtain the following global consequence of the local geodesic condition
(cf. [19]):

Lemma 11.1. Let K be a bounded, convex set with non-trivial interior, let X ⊆ ∂K be a closed
subset and let Y ⊆ ∂K be the set of all points in ∂K satisfying the local geodesic condition. If
X ∪ Y is closed, then Y lies in the convex hull of X.

Proof. Suppose that Y is not contained in the convex hull of X. Then there exists a point Q ∈ Y

and a supporting hyperplane H to K at Q such that H ∩ X is empty. Denote K ′ = K ∩ H . Let
Y ′ ⊆ ∂K ′ be the set of points satisfying the local geodesic condition. In particular, Q ∈ Y ′. Since
X ∪ Y is closed, so is Y ′. We now show that Y ′ is unbounded. Indeed, suppose the contrary.
Choose any P ∈ M and let dP be the distance to P in M . Since Y ′ is closed and bounded, it is
compact, and so there exists a point Q′ ∈ Y ′ maximizing dP . Let Γ be the open geodesic segment
in Y ′ passing through Q′. Trivially, Γ ⊆ Y ′. However, the restriction of dP to Γ is convex, and
so it cannot have a local maximum at Q′. This is absurd, and the assertion follows. However,
since K is bounded, so is Y ′. This is absurd, and the result follows. �

In the current context, regularity follows from the following result:
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Proposition 11.2. Suppose that M is a space form of non-positive curvature. Choose k > 0 and
let (Kn)n∈N ⊆ M be a sequence of convex subsets of M with smooth boundary such that, for
all n, the Gaussian curvature of ∂Kn is equal to k. Suppose that (Kn)n∈N converges to K0 ⊆ M

and that K0 has non-empty interior. Then the set of points in ∂Kn satisfying the local geodesic
condition is closed.

Proof. We show that the complement is open. Indeed, let Q ∈ ∂Kn be a point not satisfying the
local geodesic condition. Then there exist a hyperplane H , a bounded, open, convex subset U of
H and an open subset V of ∂K0 such that:

(i) Q ∈ V ;
(ii) Q lies at non-zero distance from H ; and

(iii) V is a graph over U with ∂V = ∂U .

It follows from [1] that ∂K0 is smooth over V and has constant Gaussian curvature equal to
k (see also Appendix A). In particular, no point of V satisfies the local geodesic condition. This
completes the proof. �

We thus refine Theorem 1.1 to obtain:

Lemma 11.3. Let H
n+1 be (n+ 1)-dimensional hyperbolic space, and let H ⊆ H

n+1 be a totally
geodesic hypersurface. Choose k > 0, and let Ω ⊆ H be a bounded open set such that there
exists a convex hypersurface Σ̂ such that:

(i) Σ̂ is a graph below Ω;
(ii) the second fundamental form of Σ̂ is at least ε in the Alexandrov sense, for some ε > 0; and

(iii) the Gaussian curvature of Σ is at least k in the Alexandrov sense.

There exists a unique convex, immersed hypersurface (Σ, ∂Σ) such that:

(i) Σ is a graph below Ω and ∂Σ = ∂Ω;
(ii) Σ lies above Σ̂ ;

(iii) Σ has C∞ interior and is C0,1 up to the boundary; and
(iv) the Gaussian curvature of Σ is equal to k.

Moreover if ∂Ω is smooth, then Σ is smooth up to the boundary.

Proof. We begin by smoothing the upper barrier. Choose k′ < k. As in Lemma 2.13 of [21], there
exist a sequence (εn)n∈N ∈ ]0, k − k′[ of positive numbers and a sequence of smooth, convex,
immersed hypersurfaces (Σ̂n)n∈N such that:

(i) (εn)n∈N converges to 0 and (Σ̂n)n∈N converges to Σ̂ in the C0,α sense for all α;
(ii) for all n, Σ̂n is a graph over a bounded open subset of H ; and

(iii) for all n, the Gaussian curvature of Σ̂n is greater than k − εn.
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Let (δn)n∈N > 0 be a sequence of positive numbers converging to 0. For all n, let Hn be the
equidistant hypersurface at distance δn from H . We may assume that, for all n, a portion of Σ̂n

is a graph over Hn. Let Ωn be the subset of Hn over which it as a graph.
For all n, since (Ωn, ∂Ωn) is locally and globally rigid, it follows by Theorem 1.1 that there

exists a smooth, convex hypersurface Σn which is a graph below Ωn such that Σn > Σ̂n and
whose Gaussian curvature is equal to k′.

Suppose now that ∂Ω is smooth. There exists ε > 0 such that, for all n and for all P ∈ ∂Ωn,
there exists a geodesic ball B ⊆ Ωn of radius ε such that P ∈ ∂B . For all such B , we consider
the foliation of constant Gaussian curvature hypersurfaces which are graphs below B and whose
boundary is ∂B (in the upper half space model of H

n+1, these are merely intersections of spheres
in R

n+1 with H
n+1). Using these foliations and the Geometric Maximum Principle, we find that

there exists θ > 0 such that, for all n, T Σn makes an angle of at least θ with Hn along ∂Σn.
Bearing in mind the remark following Proposition 5.1, this yields uniform lower bounds for the
restriction to ∂Ωn of the second fundamental form of Σn. Taking limits now yields the desired
hypersurface, Σ .

Consider now the general case. By Lemma 2.1, we may nonetheless assume that (Σ̂n)n∈N

converges to a C0,1, convex hypersurface Σ which is a graph below Ω such that Σ � Σ̂ . Let B

be a geodesic ball such that B ⊆ Ω . Using the Geometric Maximum Principle, by considering
the foliation of constant Gaussian curvature hypersurfaces which are graphs below B and whose
boundary is B , we may show that Σ lies strictly below Ω over its interior. We now assert that
no point of Σ satisfies the local geodesic condition. Indeed, suppose the contrary. By Propo-
sition 11.2 the union of ∂Σ with the set of points of Σ \ ∂Σ which satisfy the local geodesic
condition is closed. Thus, if P ∈ Σ is such a point, it follows from Lemma 11.1 that P lies in the
convex hull of ∂Σ . In particular, P lies in H and thus, by convexity, Σ = Ω , which is absurd.
The assertion follows and it now follows by [1] that Σ is smooth over its interior, and this proves
existence (see also Appendix A).

Let Σ be a graph over Ω of constant Gaussian curvature equal to k. Let f be the graph
function of Σ in conformal coordinates about H (see the example following Proposition 3.1).
f satisfies the following equation:

Det
(
f;ij − tan(f )(f;j f;j + δij )

)1/n = k
1

cos(f )3

(
1 + ‖∇f ‖2)(n+2)/2n

.

Let Σ ′ be another such hypersurface and suppose that Σ ′ �= Σ . Let f ′ be the graph function of
Σ ′ in conformal coordinates about H . Without loss of generality, there exists P ∈ H such that
f ′(P ) > f (P ) and f ′ − f is maximized at P . Define the field of matrices, A, by

A = (
Hess(f ) − tan(f )(∇f ⊗ ∇f + Id)

)−1
.

(This matrix is invertible by convexity of Σ .) A is positive definite. Thus, near P , by concavity
of Det1/n, and since f ′ > f , for some ε, k̂ > 0 that we need not calculate:

k̂ Tr
(
A−1(f ′

;ij − f;ij
)) − k̂ tan(f )Tr

(
A−1(f ′

;if
′
;j − f;if;j

))
� ε + k

3

((
1 + ∥∥∇f ′∥∥2)(n+2)/2 − (

1 + ‖∇f ‖2)(n+2)/2)
.

cos(f )
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At P , since (f ′ − f ) is maximized, ∇f ′ = ∇f . Thus, near P ,

Tr
(
A−1(f ′

;ij − f;ij
))

> 0.

This yields a contradiction by the Maximum Principle. Uniqueness follows and this completes
the proof. �
12. Relations to existing results

With small modifications, these techniques may be adapted to yield existing results. First,
considering R

n as a subspace of R
n+1 in the natural manner, we recover the following theorem

of Guan (see [8]), which is the analogue in Euclidean space of Lemma 11.3:

Theorem 12.1. (See [8].) Choose k > 0, and let Ω ⊆ R
n be a bounded open set. Suppose that

there exists a convex hypersurface, Σ̂ such that:

(i) Σ̂ is a graph below Ω;
(ii) the second fundamental form of Σ̂ is at least ε in the Alexandrov sense, for some ε > 0; and

(iii) the Gaussian curvature of Σ is at least k in the Alexandrov sense.

There exists a unique convex, immersed hypersurface (Σ, ∂Σ) such that:

(i) Σ is a graph below Ω and ∂Σ = ∂Ω;
(ii) Σ lies above Σ̂ ;

(iii) Σ has C∞ interior and is C0,1 up to the boundary; and
(iv) the Gaussian curvature of Σ is equal to k.

Moreover, if ∂Ω is smooth, then Σ is smooth up to the boundary.

Remark. Although, as in Lemma 11.3, if we identify (Σ0, ∂Σ0) = (Ω, ∂Ω), then the Gauss
Curvature Equation is not elliptic at f0 = 0, this, in itself, does not present a serious difficulty
since there exist functions arbitrarily close to f0 where the Gauss Curvature Equation is elliptic.
The particular difficulty in Euclidean space lies in obtaining functions near f0 for which the
Gauss Curvature Equation is also stable. We circumvent this by approximating R

n by spaces of
constant negative sectional curvature.

Proof of Theorem 12.1. Using polar coordinates for R
n, we identify R

n+1 with Σn−1 ×
]0,∞[ × R, where Σn+1 is the unit sphere. We thus denote a point in R

n+1 by the coordi-
nates (θ, r, t) ∈ Σn−1 × ]0,∞[ × R. Let gΣ denote the standard metric over Σn−1. For ε > 0,
we define the metric gε over R

n+1 such that, at (θ, r, t):

g = cosh2(εt)
(
sinh2(εr)gΣ ⊕ dr2) ⊕ dt2.

This metric is smooth and has constant curvature equal to −ε. Indeed, this formula is obtained
by using polar coordinates for H

n about a point and then identifying H
n+1 with H

n × R using
the foliation by geodesics normal to a totally geodesic hypersurface.
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With respect to this metric, R
n is identified with a totally geodesic hypersurface, and, for all

k′ < k, there exists ε > 0 such that Σ̂ satisfies the hypotheses of Lemma 11.3, with k′ instead of k.
There therefore exists Σε ⊆ R

n+1 possessing the desired properties and of constant Gaussian
curvature equal to k′ with respect to the metric gε . Existence follows by taking limits as in
Lemma 11.3.

To prove uniqueness, let Σ1 and Σ2 be two solutions. Suppose that Σ1 �= Σ2. Without loss of
generality, there is a point of Σ1 lying below Σ2. There therefore exists a translate Σ ′

1 of Σ1 in
the vertical direction which lies strictly above Σ1 and which is an interior tangent to Σ2 at some
point P ′. Since ∂Σ ′

1 lies strictly above ∂Σ2, P ′ is an interior point of Σ ′
1 and Σ2. It follows by

the strong Geometric Maximum Principle that Σ ′
1 and Σ2 coincide, which is absurd. Uniqueness

follows and this completes the proof. �
If M is a Riemannian manifold, we say that a bounded open subset Ω ⊆ M satisfies a uniform

exterior ball condition if and only if there exists ε > 0 such that for every P ∈ ∂Ω , there exists
an open geodesic ball B ⊆ Ωc of radius ε such that:

P ∈ ∂B ∩ ∂Ω.

By compactness, Ω satisfies a uniform exterior ball condition for a given metric over M if and
only if it satisfies this condition for any metric over M , and we thus extend this condition to
subsets of arbitrary C∞ manifolds.

Example. Any compact, open subset with smooth boundary satisfies a uniform exterior ball
condition.

Example. Any convex, open subset satisfies a uniform exterior ball condition.

We now recover the following theorem of Rosenberg and Spruck (see [17]), which has also
recently been proven in a more general setting by Guan, Spruck and Szapiel (see [12]):

Theorem 12.2. (See [17].) Let Ω ⊆ ∂∞H
n+1 be a non-trivial open subset whose boundary sat-

isfies the uniform exterior ball condition. Then, for all k ∈ ]0,1[, there exists a convex, immersed
hypersurface Σk ⊆ H

n+1 such that:

(i) identifying ∂∞H
n+1 with R

n ∪{∞} and viewing Ω as a subset of R
n, Σk is a graph over Ω;

(ii) Σk is smooth and C0,1 up to the boundary;
(iii) ∂Σk = ∂Ω; and
(iv) Σk has constant Gaussian curvature equal to k.

Moreover, if Ω is star-shaped, then Σk is unique.

Remark. In this case, we use horospheres as upper barriers. Since these have curvature equal
to 1, we can only prove existence for hypersurfaces of curvature less than 1, hence the hypothesis
on k.
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Proof of Theorem 12.2. We identify H
n+1 with the upper half space R

n ×]0,∞[ in the standard
manner. We thus identify ∂∞H

n+1 with R
n ∪ {∞} and view Ω as a subset of R

n. For ε > 0, let
Hε = Rn × {ε} be the horosphere at height ε above Rn. We define Ωε ⊆ Hε by

Ωε = {
(x, ε) s.t. x ∈ Ω

}
.

By the uniform exterior ball condition, for ε sufficiently small, ∂Ωε is uniformly strictly convex
as a subset of H

n+1 with respect to the outward pointing unit normal in Hε .
Let Kε be the complement of Ωε in Hε . Let K̂ε be the convex hull of Kε in H

n+1. We denote
by Σ0,ε the portion of ∂K̂ε lying above Hε . In other words:

∂K̂ε = (∂K̂ε ∩ Hε) ∪ Σ0,ε .

Since it is locally ruled, Σ0,ε serves as a lower barrier for the problem (see [19]). We define
(Σ̂ε, ∂Σ̂ε) = (Ω, ∂Ω). The only difference between our current framework and that of Theo-
rem 1.1 is that it is the upper barrier, Σ̂ε that is smooth and the lower barrier, Σ0,ε that is not.
The only change required to adapt the proof to our framework is therefore to replace (f − f0) in
Corollary 5.5 with (f − f̂ ). The uniform strict convexity of Ωε as a subset of H

n+1 with respect
to the normal in Hε ensures uniform lower bounds of the restriction to ∂Ω of the second funda-
mental form of any surface Σ which is a graph above Ω such that ∂Σ = ∂Ω . Thus proceeding
as in Theorem 1.1, we show that there exists a graph Σε over Ωε which is smooth up to the
boundary and has constant Gaussian curvature equal to k.

Taking limits yields a C0,1 graph Σ over Ω such that ∂Σ = ∂Ω . Let Y ⊆ Σ be the set of all
points satisfying the local geodesic condition. By Proposition 11.2, ∂Σ ∪Y is closed. It follows as
in Lemma 11.1 that Y is contained in the convex hull of the intersection of some totally geodesic
hyperplane H with ∂Ω (see [21] for details). In particular, if Y is non-empty, then, viewed as a
graph, Σ is vertical at some point on the boundary. However, consider a point P ∈ ∂Ωε and a
geodesic ball B ⊆ Hε such that B ⊆ Ωc and P ∈ ∂B . Using the foliation of constant Gaussian
curvature hypersurfaces in H

n whose boundary coincides with ∂B , we deduce by the Geometric
Maximum Principle that there exists θ > 0 such that, for ε sufficiently small, Σε makes an angle
at P of at least θ with the foliation of vertical geodesics along ∂Ω . Moreover, θ may be chosen
independent of P . Taking limits, it follows that Σ is everywhere strictly convex and is therefore
smooth over the interior by [1]. This proves existence.

Suppose now that Ω is star-shaped, and let Σ1 and Σ2 be two solutions. Suppose that
Σ1 �= Σ2. Without loss of generality, there exists a point P ∈ Σ1 lying below Σ2. As before,
we identify H

n+1 with R
n × ]0,∞[. Without loss of generality, we may suppose that Ω is star-

shaped about (0,0). Consider the family (Mλ)λ>1 of isometries of H
n+1 given by

Mλ(x, t) = (λx,λt).

There exists λ > 1 such that MλΣ1 is an exterior tangent to Σ2 at some point P ′. Since
Mλ∂Σ1 ∩ ∂Σ2 = ∅, P ′ is an interior point of Σ1 and Σ2. It follows by the strong Geometric
Maximum Principle that MλΣ1 = Σ2, which is absurd. Uniqueness follows and this completes
the proof. �
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Appendix A. Regularity of limit hypersurfaces

Let Mn+1 be an (n + 1)-dimensional Riemannian manifold. Choose k > 0 let (Σm)m∈N be
a sequence of smooth, convex, immersed hypersurfaces in M of constant Gaussian curvature
equal to k. Suppose that there exists a C0,1 locally convex, immersed hypersurface, Σ0 to which
(Σm)m∈N converges in the C0,α sense for all α. For all m ∈ N, let Nm and Am be the unit
normal vector field and the second fundamental form respectively of Σm. Choose p0 ∈ Σ0 and
let (pm)m∈N ∈ (Σm)m∈N be a sequence converging to p0. For all r > 0, and for all m ∈ N ∪ {0},
let Bm,r be the ball of radius r (with respect to the intrinsic metric) about pm in Σm.

We will say that Σ0 is functionally strictly convex at p0 if there exists a smooth function, ϕ,
defined on M near p0 such that:

(i) ϕ is strictly convex;
(ii) ϕ(p0) > 0; and

(iii) the connected component of ϕ−1([0,∞[) ∩ Σ0 containing p0 is compact.

Observe that if M is a space form, then Σ0 is functionally strictly convex whenever it is strictly
convex. We will prove:

Lemma A.1. If Σ0 is functionally strictly convex at p0, then there exists r > 0 such that
(Bm,r ,pm)m∈N converges to (B0,r , p0) in the pointed C∞-Cheeger Gromov sense. In particu-
lar, B0,r is a smooth, convex immersion of constant Gaussian curvature equal to k.

As in Section 5, we denote by B the family of constants which depend continuously on the
data: M , k, (Σ0,p0) and the C1 jets of (Σm,pm)m∈N. In this section, for any positive quantity, X,
we denote by O(X) any term which is bounded in magnitude by K|X| for some K in B.

The following elementary lemma will be of use in the proof:

Lemma A.2. For λ > 0 and for all a, b ∈ R:

(a + b)2 � (1 + λ)a2 + (
1 + λ−1)b2.

Proof of Lemma A.1. Since (Σm)n∈N converges to Σ0 and since Σ0 is functionally strictly
convex at p0, there exist ε,h > 0, open sets Ω0, (Ωm)m∈N ⊆ M and, for every m, a smooth
function ϕm :Ωm → [0,∞[ such that:

(i) for all m, Ωm is a neighborhood of pm and (Ωm)m∈N converges to Ω0 in the Hausdorff
sense;

(ii) (ϕm)m∈N converges to ϕ0 in the C∞ sense;
(iii) for all m, Hess(ϕm) � ε Id;
(iv) for all m, ϕm(p0) = 2h; and
(v) for all m, the connected component of pm in Σm ∩ Ωm is compact with smooth boundary

and ϕm equals zero along the boundary: we denote this connected component by Σm,0.

We may assume that, for all m, ϕm � 1 over Σm,0. Finally, after reducing ε if necessary,
there exists a smooth, unit length vector field X defined over a neighborhood of p0 such that, for
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all m, throughout Σm,0, 〈X,Nm〉 � ε. We now follow an adaptation of reasoning presented by
Pogorelov in [15].

Choose α � 1. For all m, we define the function Φm by

Φm = α Log(ϕm) − 〈X,Nm〉 + Log
(‖Am‖),

where ‖Am‖ is the operator norm of Am, which is equal to the highest eigenvalue of Am. We aim
to obtain a priori upper bounds for Φm for some α. We trivially obtain a priori bounds whenever
‖Am‖ � 1. We thus consider the region where ‖Am‖ � 1. Choose m ∈ N and P ∈ Σm,0. Let
λ1 � · · · � λn be the eigenvalues of Am at P . In particular, λ1 = ‖Am‖. Let e1, . . . , en be the
corresponding orthonormal basis of eigenvectors. In the sequel, we will suppress m.

Let the subscript “;” denote covariant differentiation with respect to the Levi-Civita covariant
derivative of Σ . Thus, for example:

Aij ;k = (∇Σ
ek

A
)
(ei, ej ).

We consider the Laplacian, �, defined on functions by:

�f =
n∑

i=1

1

λi

f;ii .

We aim to use the Maximum Principle in conjunction with �. Thus, in the sequel, we will only
be interested in the orders of magnitude of potentially negative terms.

In analogy to Corollary 6.7, at P :

�Log(λ1) �
n∑

i,j=1

1

λ1λiλj

Aij ;1Aij ;1 −
n∑

i=1

1

λ1λ1λi

A11;iA11;i − O(1) − O
(∥∥A−1

∥∥)
,

in the weak sense. However, by Lemma 6.3, for all i:

A11;i = Ai1;1 + RM
i1ν1,

where ν represents the exterior normal direction to Σ . Thus, bearing in mind Lemma A.2, and
that λ1 � 1, we obtain:

�Log(λ1) �
n∑

i=2

1

2λ1λ1λi

Ai1;1Ai1;1 − O(1) − O
(∥∥A−1

∥∥)
,

in the weak sense. Differentiating the Gauss Curvature Equation yields, for all j :

n∑ 1

λi

Aii;j = 0.
i=1
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Thus

−�〈X,N〉 � 〈X,N〉Tr(A) − O(1) − O
(∥∥A−1

∥∥)
� ελ1 − O(1) − O

(∥∥A−1
∥∥)

.

Finally

�
(
α Log(ϕ)

)
� α

ϕ
ε Tr

(
A−1) − α

ϕ2

n∑
i=1

1

λi

ϕ;iϕ;i − O(α).

However, bearing in mind Lemma 6.3,

Φ;i = α

ϕ
ϕ;i − Xν ;i − Xiλi + 1

λ1
Ai1;1 + 1

λ1
RM

i1ν1,

where ν is the exterior normal direction over Σ . Thus, by induction on Lemma A.2, modulo ∇Φ:

∣∣∣∣αϕ ϕ;i
∣∣∣∣
2

� 4

λ2
1

Ai1;1Ai1;1 + 4

λ2
1

(
RM

i1ν1

)2 + 4
(
Xiλi

)2 + 4
(
Xν

;i
)2

.

Thus, bearing in mind that λ1 � λi for all i and that λ1 � 1, we obtain, modulo ∇Φ:

α

ϕ2

n∑
i=2

1

λi

ϕ;iϕ;i = O
(
α−1

∥∥A−1
∥∥) + O

(
α−1λ1

) +
n∑

i=2

4

αλ2
1λi

Ai1;1Ai1;1.

Since ϕ is bounded above (and thus ϕ−1 is bounded below), for sufficiently large α we obtain,
modulo ∇Φ:

�Φ � ε

2
λ1 − O

(
λ−1

1 ϕ−2) − O(1)

= (
ϕ2α‖A‖)−1

(
ε

2

(
ϕα‖A‖)2 − O

(
ϕα‖A‖) − O(1)

)
.

There therefore exists K1 > 0 in B such that if (ϕα‖A‖) � K , then the right-hand side is positive.
However, for all m ∈ N, Φm = −∞ along ∂Σm,0. There thus exists a point P ∈ Σm,0 where Φm

is maximized. By the Maximum Principle, at this point, either ‖A‖ � 1 or ϕα‖A‖ � K1. Taking
exponentials, there therefore exists K2 > 0 in B such that, for all m ∈ N, throughout Σm,0:

ϕα〈X,Nm〉−1‖Am‖ � K2.

Since 〈X,Nm〉 � 1, this yields a priori bounds for ‖Am‖ over the intersection of Σm,0 with
ϕm � h. Using, for example, an adaptation of the proof of Theorem 1.2 of [20] in conjunc-
tion with the Bernstein Theorem [5,13,15] of Calabi, Jörgens, Pogorelov, we obtain a priori Ck

bounds for Σm,0 over the region ϕm � 3h for all k. The result now follows by the Arzela–Ascoli
Theorem. �
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