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1. Introduction

Let Z be a space equipped with a positive reference measure R and denote MZ the space of all signed measures on Z .
This paper is concerned with the minimization problem

minimize I(Q ) subject to To Q ∈ C, Q ∈ MZ , (1.1)

where To : MZ → Xo is a linear operator on MZ which takes its values in a vector space Xo , C is a convex subset of Xo

and I is the entropy (i.e. convex integral) functional:

I(Q ) =
{ ∫

Z γ ∗
z ( dQ

dR (z)) R(dz) if Q ≺ R,

+∞ otherwise,
Q ∈ MZ , (1.2)
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where Q ≺ R means that Q is absolutely continuous with respect to R and γ ∗ is a [0,∞]-valued measurable function on
Z × R such that γ ∗(z, ·) := γ ∗

z is convex and lower semicontinuous for all z ∈ Z . Assume that for each z there exists a
unique m(z) which minimizes γ ∗

z with

γ ∗
z

(
m(z)

) = 0, ∀z ∈Z. (1.3)

Then, I is [0,∞]-valued, its unique minimizer is mR and I(mR) = 0. The solutions to (1.1) can be interpreted as I-projections
of mR on T −1

o C .
For some sets C such that (1.1) is not attained, it may still happen that an extended version of (1.1), which is stated

at (1.11) below, is attained. This situation is also examined.

Presentation of the results

Our aim is to reduce as much as possible the restrictions on the constraint set C to obtain about (1.1) and its exten-
sion (1.11)

• an attainment criterion,
• dual equalities and
• a characterization of the minimizers.

Our main results are Theorems 4.2 and 3.2. Their proofs are based on abstract results which have been obtained by the
author in [20]. They are exemplified at Section 7.

These results improve several aspects of the literature on the subject.
Clearly, for the problem (1.1) to be attained, T −1

o C must share a supporting hyperplane with some level set of I . This is
the reason why it will be assumed to be closed with respect to some topology connected with the “geometry” of I . It will
be the only restriction to be kept together with the interior specification (1.5) below.

Dual equalities and primal attainment are obtained under the weakest possible assumption:

C ∩ To dom I 	= ∅ (1.4)

where To dom I is the image by To of dom I := {Q ∈ MZ ; I(Q ) < ∞}. One obtains the characterization of the minimizers
of (1.1) in the interior case which is specified by

C ∩ icor(To dom I) 	= ∅ (1.5)

where icor(To dom I) is the intrinsic core of To dom I . The notion of intrinsic core does not rely on any topology; it gives
the largest possible interior set. For comparison, a usual form of constraint qualification required for the representation of
the minimizers of (1.1) is

int(C) ∩ To dom I 	= ∅ (1.6)

where int(C) is the interior of C with respect to a topology which is not directly connected to I . In particular, int(C) must
be nonempty; this is an important restriction. The constraint qualification (1.5) is weaker.

Similarly, a characterization of the solutions to the extended problem (1.11) is obtained together with dual equalities and
a primal attainment criterion, under constraint qualifications analogous to (1.4) and (1.5) where I is replaced by Ī .

Examples

A well-known entropy is the relative entropy with respect to the reference probability measure R which is defined on the
set of all probability measure PZ on Z by

I(P |R) =
∫
Z

log

(
dP

dR

)
dP , P ∈ PZ .

It is close to the Boltzmann entropy (see Section 7.1) and corresponds to γ ∗
z (t) = t log t − t + 1 + ι{t�0} for all z ∈ Z , where

ιA is the indicator of A, see (1.12). Inverting the roles of P and R one obtains the reverse relative entropy I(R|P ), P ∈ PZ .
Popular entropies are

• the relative entropy: γ ∗(t) = t log t − t + 1 + ι{t�0} ,
• the reverse relative entropy: γ ∗(t) = t − log t − 1 + ι{t>0} ,
• the Fermi–Dirac entropy: γ ∗(t) = (1 + t) log(1 + t) + (1 − t) log(1 − t) + ι{−1�t�1} ,
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• the L p norm (1 < p < ∞): γ ∗(t) = |t|p/p and
• the L p entropy (1 < p < ∞): γ ∗(t) = t p/p + ι{t�0} .

In the case of the relative and reverse relative entropies, the global minimizer is R which corresponds to m = 1 and one
can interpret I(P |R) and I(R|P ) as some type of distances between P and R . Note also that the positivity of the minimizers
of (1.1) is guaranteed by domγ ∗ ⊂ [0,∞) where domγ ∗ is the effective domain of γ ∗ . Consequently, the restriction that P
is a probability measure is insured by the only unit mass constraint P (Z) = 1.

The simplest constraint To Q ∈ C is the moment constraint
∫
Z θ(z)Q (dz) ∈ C where θ is some numerical measurable

function on Z and C is a real interval. Clearly Q (Z) = 1 is a moment constraint. Considering K moment constraints
simultaneously corresponds to the operator

To Q =
(∫
Z

θk(z)Q (dz)

)
1�k�K

∈ RK , Q ∈ MZ , (1.7)

where θ = (θk)1�k�K is a RK -valued measurable function on Z . As a typical instance of moment constraints, taking for
(θk)1�k�K the first trigonometric polynomials gives a constraint on the first Fourier coefficients of Q . Infinitely many such
constraints corresponds to the Fredholm integral operator

To Q =
(∫
Z

θ(r, z)Q (dz)

)
r∈R

∈ RR, Q ∈ MZ , (1.8)

where θ is a real measurable function on R×Z .
Another interesting example of constraint is the marginal constraint. Let Z = Z0 ×Z1 be the product of the spaces Z0

and Z1. Let P0 ∈ PZ0 and P1 ∈ PZ1 denote the marginal measures on Z0 and Z1 of any probability measure P ∈ PZ0×Z1 .
The prescribed marginal constraint corresponds to

To P = (P0, P1) ∈ PZ0 × PZ1 , P ∈ PZ0×Z1 . (1.9)

This type of constraints occurs in tomography and image reconstruction where the solution of (1.1) is called a best entropy
solution of the ill-posed inverse problem: “Find P ∈ PZ0×Z1 such that P is absolutely continuous with respect to R , P0 = p0
and P1 = p1,” p0 and p1 being prescribed marginals.

Taking Z = Z [0,1] to be the set of all Z -valued paths z = (zt)0�t�1 (typically Z is Rd or a Riemannian manifold), a
probability P ∈ PZ is the law of a stochastic process. The standard stochastic calculus (Itô’s formula) is kinetic. If one
wishes to develop a dynamic approach to stochastic calculus, one is lead to least action principles which correspond to
entropy minimization problems (1.1) on P Z [0,1] with I the relative entropy under the marginal constraints

To P = (P0, P1) ∈ P Z × P Z , P ∈ P Z [0,1] ,

where P0 and P1 are the laws of the initial (t = 0) and final (t = 1) positions when P is the probability law of the whole
path, see [9,14,28].

The extended minimization problem

A solution to (1.1) is in AZ : the space of all Q ∈ MZ which are absolutely continuous with respect to R . One considers
an extension Ī of the entropy I to a vector space LZ which is the direct sum LZ = AZ ⊕ SZ of AZ and a vector space SZ
of singular linear forms (acting on numerical functions) which may not be σ -additive. Any � in LZ is uniquely decomposed
into � = �a + �s with �a ∈ AZ and �s ∈ SZ and Ī has the following shape

Ī(�) = I
(
�a) + I s(�s),

where I s is a positively homogeneous function on SZ . See (2.12) for the precise description of Ī . For instance, the extended
relative entropy is

Ī(�|R) = I
(
�a

∣∣R
) + sup

{〈
�s, u

〉; u,

∫
Z

eu dR < ∞
}
, � ∈ LZ , (1.10)

and actually 〈�s, u〉 = 0 for any u such that
∫
Z ea|u| dR < ∞ for all a > 0. The reverse entropy, L1-norm and L1-entropy also

admit nontrivial extensions. On the other hand, the extensions of the Fermi–Dirac, L p-norm and L p-entropy with p > 1 are
trivial: {k ∈ SZ ; I s(k) < ∞} = {0}.

The extended problem is

minimize Ī(�) subject to To� ∈ C, � ∈ LZ . (1.11)



186 C. Léonard / J. Math. Anal. Appl. 346 (2008) 183–204
Its precise statement is given at Section 2.3. In fact, Ī is chosen to be the largest convex lower semicontinuous extension of
I to LZ with respect to some weak topology. This guarantees tight relations between (1.1) and (1.11). In particular, one can
expect that their values are equal for a large class of convex sets C .

Even if I is strictly convex, Ī is not strictly convex in general since I s is positively homogeneous, so that (1.11) may admit
several minimizers.

There are interesting situations where (1.1) is not attained in AZ while (1.11) is attained in LZ . Examples are given at
Section 7. This phenomenon is investigated in details by the author in [21] with probabilistic motivations.

Literature about entropy minimization

The maximum entropy method appear in many areas of applied mathematics and sciences such as statistical physics,
information theory, mathematical statistics, large deviation theory, signal reconstruction and tomography. The literature
is considerable: many papers are concerned with an engineering approach, working on the implementation of numerical
procedures in specific situations. Entropy minimization is a popular method for solving ill-posed inverse problems, see
[16,29] for instance.

Although entropy minimization has a long history, rigorous general results are rather recent. Let us cite, among oth-
ers, the main contribution of Borwein and Lewis: [1–7] together with the paper [30] by Teboulle and Vajda. A Bayesian
interpretation in the spirit of Jaynes [17] is developed by Dacunha-Castelle, Gamboa and Gassiat [13,15], see also [12]. In
these papers, topological constraint qualifications of the type of (1.6) are required and results under the weaker constraint
qualification (1.5) are obtained under the additional restriction that To has a finite dimensional rank (finitely many moment
constraints). Such restrictions are removed here.

With a geometric point of view, Csiszár [10,11] provides a complete treatment of (1.1) with the relative entropy.
By means of a method different from the present one, the author has already studied in [23,24] entropy minimization

problems under affine constraints (corresponding to C reduced to a single point) and more restrictive assumptions on γ ∗ .
The present article extends these results.

Notation

Let X and Y be topological vector spaces. The algebraic dual space of X is X∗ , the topological dual space of X is X ′ . The
topology of X weakened by Y is σ(X, Y ) and one writes 〈X, Y 〉 to specify that X and Y are in separating duality.

Let f : X → [−∞,+∞] be an extended numerical function. Its convex conjugate with respect to 〈X, Y 〉 is f ∗(y) =
supx∈X {〈x, y〉 − f (x)} ∈ [−∞,+∞], y ∈ Y . Its subdifferential at x with respect to 〈X, Y 〉 is ∂Y f (x) = {y ∈ Y ; f (x + ξ) �
f (x) + 〈y, ξ〉, ∀ξ ∈ X}. If no confusion occurs, one writes ∂ f (x).

The intrinsic core of a subset A of a vector space is icor A = {x ∈ A; ∀x′ ∈ aff A, ∃t > 0, [x, x + t(x′ − x)[ ⊂ A} where aff A
is the affine space spanned by A. icordom f is the intrinsic core of the effective domain of f : dom f = {x ∈ X; f (x) < ∞}.
The indicator of a subset A of X is defined by

ιA(x) =
{

0 if x ∈ A,

+∞ otherwise,
x ∈ X . (1.12)

The support function of A ⊂ X is ι∗A(y) = supx∈A〈x, y〉, y ∈ Y .
One writes Iϕ(u) := ∫

Z ϕ(z, u(z)) R(dz) = ∫
Z ϕ(u)dR and I = Iγ ∗ for short, instead of (1.2).

Outline of the paper

The minimization problems (1.1) and (1.11) are described in details at Section 2. Section 3 is devoted to the problem
(1.1) and Section 4 to its extension (1.11). In Section 5, the main results of [20] about the extended saddle-point method are
recalled. They are preliminary results for the proofs of Theorems 3.2 and 4.2 at Section 6. One presents important examples
of entropies and constraints at Section 7.

2. The primal problems

The entropy minimization problems (1.1) and (1.11) are rigorously stated and renamed as (PC ) and (PC ). Their correct
mathematical statements necessitate the notion of Orlicz spaces.

The definitions of good and critical constraints are given and the main assumptions are collected at the end of this
section.

2.1. Orlicz spaces

Let us recall some basic definitions and results. A set Z is furnished with a σ -finite nonnegative measure R on a σ -field
which is assumed to be R-complete. A function ρ : Z × R is said to be a Young function if for R-almost every z, ρ(z, ·) is a
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convex even [0,∞]-valued function on R such that ρ(z,0) = 0 and there exists a measurable function z �→ sz > 0 such that
0 < ρ(z, sz) < ∞.

In the sequel, every numerical function on Z is supposed to be measurable.

Definitions 2.1 (The Orlicz spaces Lρ,Eρ , Lρ and Eρ ). The Orlicz space associated with ρ is defined by Lρ(Z, R) = {u :Z → R;
‖u‖ρ < +∞} where the Luxemburg norm ‖ · ‖ρ is defined by ‖u‖ρ = inf{β > 0; ∫

Z ρ(z, u(z)/β)R(dz) � 1}. Hence,

Lρ(Z, R) =
{

u :Z → R; ∃αo > 0,

∫
Z

ρ
(
z,αou(z)

)
R(dz) < ∞

}
.

A subspace of interest is

Eρ(Z, R) =
{

u :Z → R; ∀α > 0,

∫
Z

ρ
(
z,αu(z)

)
R(dz) < ∞

}
.

Now, let us identify the R-a.e. equal functions. The corresponding spaces of equivalence classes are denoted Lρ(Z, R) and
Eρ(Z, R).

Of course Eρ ⊂ Lρ . Note that if ρ does not depend on z and ρ(so) = ∞ for some so > 0, Eρ reduces to the null space
and if in addition R is bounded, Lρ is L∞ . On the other hand, if ρ is a finite function which does not depend on z and R is
bounded, Eρ contains all the bounded functions.

Duality in Orlicz spaces is intimately linked with the convex conjugacy. The convex conjugate ρ∗ of ρ is defined by
ρ∗(z, t) = sups∈R{st − ρ(z, s)}. It is also a Young function so that one may consider the Orlicz space Lρ∗ .

Theorem 2.2 (Representation of E ′
ρ ). Suppose that ρ is a finite Young function. Then, the dual space of Eρ is isomorphic to Lρ∗ .

Proof. For a proof of this result, see [18, Theorem 4.8]. �
A continuous linear form � ∈ L′

ρ is said to be singular if for all u ∈ Lρ , there exists a decreasing sequence of measurable
sets (An) such that R(

⋂
n An) = 0 and for all n � 1, 〈�, u1Z\An 〉 = 0. Let us denote Ls

ρ the subspace of L′
ρ of all singular

forms.

Theorem 2.3 (Representation of L′
ρ ). Let ρ be any Young function. The dual space of Lρ is isomorphic to the direct sum L′

ρ =
(Lρ∗ · R) ⊕ Ls

ρ. This implies that any � ∈ L′
ρ is uniquely decomposed as

� = �a + �s (2.4)

with �a ∈ Lρ∗ · R and �s ∈ Ls
ρ .

Proof. When Lρ = L∞ this result is the usual representation of L′∞ . When ρ is a finite function, this result is [19, The-
orem 2.2]. The general result is proved in [25], with ρ not depending on z but the extension to a z-dependent ρ is
obvious. �

In the decomposition (2.4), �a is called the absolutely continuous part of � while �s is its singular part. The space Ls
ρ is the

annihilator of Eρ : � ∈ L′
ρ is singular if and only if 〈u, �〉 = 0 for all u ∈ Eρ .

Proposition 2.5. Let us assume that ρ is finite. Then, � ∈ L′
ρ is singular if and only if 〈�, u〉 = 0, for all u in Eρ .

Proof. This result is [19, Proposition 2.1]. �
The function ρ is said to satisfy the Δ2-condition if

there exist κ > 0, so � 0 such that ∀s � so, z ∈Z, ρz(2s) � κρz(s). (2.6)

If so = 0, the Δ2-condition is said to be global. When R is bounded, in order that Eρ = Lρ , it is enough that ρ satisfies the
Δ2-condition. When R is unbounded, this equality still holds if the Δ2-condition is global. Consequently, if ρ satisfies the
Δ2-condition we have L′

ρ = Lρ∗ · R so that Ls
ρ reduces to the null vector space.

2.2. The minimization problem (PC )

Let us state properly the basic problem (1.1).
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Relevant Orlicz spaces
Since γ ∗

z is closed convex for each z, it is the convex conjugate of some closed convex function γz . Defining

λ(z, s) = γ (z, s) − m(z)s, z ∈Z, s ∈ R,

where m satisfies (1.3), one sees that for R-a.e. z, λz is a nonnegative convex function and it vanishes at 0. Hence,

λ�(z, s) = max
[
λ(z, s), λ(z,−s)

] ∈ [0,∞], z ∈Z, s ∈ R,

is a Young function. We shall use Orlicz spaces associated with λ� and λ∗� .
We denote the space of R-absolutely continuous signed measures having a density in the Orlicz space Lλ∗� by Lλ∗� R . The

effective domain of I is included in mR + Lλ∗� R .

Constraint
In order to define the constraint, take Xo a vector space and a function θ :Z →Xo . One wants to give a meaning to the

formal constraint
∫
Z θ dQ = x with Q ∈ Lλ∗� R and x ∈Xo . Suppose that Xo is the algebraic dual space of some vector space

Yo and define for all y ∈Yo ,

T ∗
o y(z) := 〈

y, θ(z)
〉
Yo,Xo

, z ∈Z. (2.7)

Assuming that

T ∗
oYo ⊂Lλ� , (2.8)

Hölder’s inequality in Orlicz spaces allows to define the constraint operator To� := ∫
Z θ d� for each � ∈ Lλ∗� R by〈

y,

∫
Z

θ d�

〉
Yo,Xo

=
∫
Z

〈
y, θ(z)

〉
Yo,Xo

�(dz), ∀y ∈ Yo. (2.9)

Minimization problem
Consider the minimization problem

minimize I(Q ) subject to

∫
Z

θ d(Q − mR) ∈ Co, Q ∈ mR + Lλ∗� R, (PCo )

where Co is a convex subset of Xo . One sees with γ ∗
z (t) = λ∗

z (t − m(z)) that Iγ ∗(Q ) = Iλ∗ (Q − mR). Therefore, the problem
(PCo ) is equivalent to

minimize Iλ∗ (�) subject to

∫
Z

θ d� ∈ Co, � ∈ Lλ∗� R, (2.10)

with � = Q − mR . If the function m satisfies m ∈ Lλ∗� , one sees with (2.8) and Hölder’s inequality in Orlicz spaces that the
vector xo = ∫

Z θm dR ∈Xo is well defined in the weak sense. Therefore, (PCo ) is

minimize I(Q ) subject to

∫
Z

θ dQ ∈ C, Q ∈ Lλ∗� R, (PC )

with C = xo + Co .

2.3. The extended minimization problem (PC )

Let us state properly the extended problem (1.11). If the Young function λ� does not satisfy the Δ2-condition (2.6), for
instance if it has an exponential growth at infinity as in (7.1) or even worse as in (7.4), the small Orlicz space Eλ� may be a
proper subset of Lλ� . Consequently, for some functions θ , the integrability property

T ∗
oYo ⊂ Eλ� (2.11)

or equivalently

∀y ∈Yo,

∫
Z

λ
(〈y, θ〉)dR < ∞ (A∀

θ )

may not be satisfied while the weaker property (2.8): T ∗
oYo ⊂Lλ� , or equivalently

∀y ∈Yo, ∃α > 0,

∫
λ
(
α〈y, θ〉)dR < ∞ (A∃

θ )
Z
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holds. In this situation, analytical complications occur (see Section 4). This is the reason why constraints satisfying (A∀
θ ) are

called good constraints, while constraints satisfying (A∃
θ ) but not (A∀

θ ) are called critical constraints.
If the constraint is critical, it may happen that (PC ) is not attained in Lλ∗� R . This is the reason why it is worth introducing

its extension (PC ) which may admit minimizers and is defined by

minimize Ī(�) subject to 〈θ, �〉 ∈ C, � ∈ L′
λ� , (PC )

where L′
λ� is the topological dual space of Lλ� , Ī and 〈θ, �〉 are defined below.

The dual space L′
λ� admits the representation L′

λ� � Lλ∗� R ⊕ Ls
λ� . This means that any � ∈ L′

λ� is uniquely decomposed
as � = �a + �s where �a ∈ Lλ∗� R and �s ∈ Ls

λ� are respectively the absolutely continuous part and the singular part of �, see

Theorem 2.3. The extension Ī has the following form

Ī(�) = I
(
�a) + ι∗dom Iγ

(
�s), � ∈ L′

λ� . (2.12)

It will be shown that Ī is the greatest convex σ(L′
λ� , Lλ� )-lower semicontinuous extension of I to L′

λ� ⊃ Lλ∗� . In a similar

way to (2.9), the hypothesis (A∃
θ ) allows to define

T � := 〈θ, �〉
for all � ∈ L′

λ� by〈
y, 〈θ, �〉〉Yo,Xo

= 〈〈y, θ〉, �〉Lλ� ,L′
λ�

, ∀y ∈Yo.

Important examples of entropies with λ� not satisfying the Δ2-condition are the usual (Boltzmann) entropy and its variants,
see Section 7.1 and (7.1) in particular.

When λ� satisfies the Δ2-condition (2.6), (PC ) is (PC ).

2.4. Hypotheses

Let us collect the hypotheses on R, γ ∗ and θ .

Hypotheses (A).

(AR ) It is assumed that the reference measure R is a σ -finite nonnegative measure on a space Z endowed with some
R-complete σ -field.

(Aγ ∗ ) Hypotheses on γ ∗ .
(1) γ ∗(·, t) is z-measurable for all t and for R-almost every z ∈ Z , γ ∗(z, ·) is a lower semicontinuous strictly convex

[0,+∞]-valued function on R which attains its (unique) minimum at m(z) with γ ∗(z,m(z)) = 0.
(2)

∫
Z λ∗(αm)dR + ∫

Z λ∗(−αm)dR < ∞, for some α > 0.
(Aθ ) Hypotheses on θ .

(1) for any y ∈ Yo , the function z ∈Z �→ 〈y, θ(z)〉 ∈ R is measurable;
(2) for any y ∈ Yo , 〈y, θ(·)〉 = 0, R-a.e. implies that y = 0;
(3) ∀y ∈Yo , ∃α > 0,

∫
Z λ(α〈y, θ〉)dR < ∞.

Remarks 2.13. Some technical remarks about the hypotheses.

(a) Since γ ∗
z is a convex function on R, it is continuous on the interior of its domain. Under our hypotheses, γ ∗ is (jointly)

measurable, and so are γ and m. Hence, λ is also measurable.
(b) As γ ∗

z is strictly convex, γz is differentiable on the interior of its effective domain.
(c) Hypothesis (A2

γ ∗ ) is m ∈ Lλ∗� . It allows to consider problem (PC ) rather than (PCo ). If this hypothesis is not satisfied, our
results still hold for (PCo ), but their statement is a little heavier, see Remark 4.6(d) below.

(d) Since Xo and Yo are in separating duality, (A2
θ ) states that the vector space spanned by the range of θ “is essentially” Xo .

This is not an effective restriction.

2.5. Definitions of Y,X , T ∗ , Γ ∗ and (DC )

These objects will be necessary to state the relevant dual problems. The general hypotheses (A) are assumed.

The space Y . Because of the hypotheses (A2
θ ) and (A∃

θ ), Yo can be identified to the subspace T ∗
oYo = {〈y, θ〉; y ∈ Yo} of Lλ� .

The space Y is the extension of Yo which is isomorphic to the ‖ · ‖λ� -closure of T ∗
oYo in Lλ� .

The space X . The topological dual space of Y is X = Y ′ ⊂ Xo . It will be shown at (6.7) that under our assumptions
T L′ ⊂X . Hence, X is identified with L′ /ker T and its norm is given by |x|∗ = inf{‖�‖∗ ; � ∈ L′ : T � = x}.
λ� λ� Λ λ� λ�
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The operator T ∗. Let us define the adjoint T ∗ : X ∗ → L′∗
λ� for all ω ∈ X ∗ by 〈�, T ∗ω〉L′

λ� ,L′∗
λ�

= 〈T �,ω〉X ,X ∗ , ∀� ∈ L′
λ� . We

have the inclusions Yo ⊂ Y ⊂ X ∗ . The adjoint operator T ∗
o is the restriction of T ∗ to Yo . With some abuse of notation,

one still denotes T ∗ y = 〈y, θ〉 for y ∈ Y . Remark that this can be interpreted as a dual bracket between X ∗
o and Xo since

T ∗ y = 〈 ỹ, θ〉 R-a.e. for some ỹ ∈X ∗
o .

Note that under the assumption (A∀
θ ), T ∗Y ⊂ Eλ� and T (Lλ∗� R) ⊂X .

The function Γ ∗. The basic dual problem associated with (PC ) and (PC ) is

maximize inf
x∈C

〈y, x〉 − Γ (y), y ∈ Yo,

where Γ (y) = Iγ (〈y, θ〉), y ∈Yo. Let us denote

Γ ∗(x) = sup
y∈Yo

{〈y, x〉 − Iγ
(〈y, θ〉)}, x ∈Xo,

its convex conjugate. It will be shown at (6.8) that dom Γ ∗ ⊂X .

The dual problem (DC ). Another dual problem associated with (PC ) and (PC ) is

maximize inf
x∈C∩X

〈y, x〉 − Iγ
(〈y, θ〉), y ∈ Y . (DC )

3. Solving (PC )

In this section, the general hypotheses (A) are imposed and we study (PC ) under the additional good constraint hypoth-
esis (A∀

θ ) which imposes that T ∗Y ⊂ Eλ� .
The decomposition into positive and negative parts of linear forms is necessary to state the extended dual problem which

is needed for the characterization of the minimizers. If λ is not an even function, one has to consider{
λ+(z, s) = λ

(
z, |s|),

λ−(z, s) = λ
(
z,−|s|), (3.1)

which are Young functions and the corresponding Orlicz spaces Lλ± .

The cone Kλ. It is the cone of all measurable functions u with a positive part u+ in Lλ+ and a negative part u− in Lλ− :
Kλ = {u measurable; ∃a > 0,

∫
Z λ(au)dR < ∞}.

The cone Ỹ . The σ(Kλ, L±)-closure A of a set A ⊂ Kλ is defined as follows: u ∈ Kλ is in A if u± is in the σ(Lλ± , Lλ∗± )-

closure of A± = {u±; u ∈ A}. Clearly, A± = {u±; u ∈ A}. The cone Ỹ ⊂ X ∗ is the extension of Yo which is isomorphic to

the σ(Kλ, L±)-closure T̃ ∗
oYo of T ∗

oYo in Kλ in the sense that T ∗Ỹ = T̃ ∗
oYo .

The extended dual problem (D̃C ). The extended dual problem associated with (PC ) is

maximize inf
x∈C∩X

〈ω, x〉 − Iγ
(〈ω,θ〉), ω ∈ Ỹ . (D̃C )

Note that the dual bracket 〈ω, x〉 is meaningful for each ω ∈ Ỹ and x ∈X .

Theorem 3.2. Suppose that

(1) the hypotheses (A) and (A∀
θ ) are satisfied;

(2) the convex set C is assumed to be such that

T −1
o C ∩ Lλ∗� R =

⋂
y∈Y

{
f R ∈ Lλ∗� R;

∫
Z

〈y, θ〉 f dR � ay

}
(3.3)

for some subset Y ∈ X ∗
o with 〈y, θ〉 ∈ Eλ� for all y ∈ Y and some function y ∈ Y �→ ay ∈ R. In other words, T −1

o C ∩ Lλ∗� R is a
σ(Lλ∗� R, Eλ� )-closed convex subset of Lλ∗� R.

Then:

(a) The dual equality for (PC ) is

inf(PC ) = sup(DC ) = sup(D̃C ) = inf
x∈C

Γ ∗(x) ∈ [0,∞].
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(b) If C ∩ dom Γ ∗ 	= ∅ or equivalently C ∩ To dom I 	= ∅, then (PC ) admits a unique solution Q̂ in Lλ∗� R and any minimizing sequence
(Q n)n�1 converges to Q̂ with respect to the topology σ(Lλ∗� R, Lλ� ).

Suppose that in addition C ∩ icordom Γ ∗ 	= ∅ or equivalently C ∩ icor(To dom I) 	= ∅.

(c) Let us define x̂ �
∫
Z θ dQ̂ in the weak sense with respect to the duality 〈Yo,Xo〉. There exists ω̃ ∈ Ỹ such that⎧⎪⎨⎪⎩

(a) x̂ ∈ C ∩ dom Γ ∗,
(b) 〈ω̃, x̂〉X ∗,X � 〈ω̃, x〉X ∗,X , ∀x ∈ C ∩ dom Γ ∗,
(c) Q̂ (dz) = γ ′

z

(〈
ω̃, θ(z)

〉)
R(dz).

(3.4)

Furthermore, Q̂ ∈ Lλ∗� R and ω̃ ∈ Ỹ satisfy (3.4) if and only if Q̂ solves (PC ) and ω̃ solves (D̃C ).
(d) Of course, (3.4(c)) implies x̂ = ∫

Z θγ ′(〈ω̃, θ〉)dR in the weak sense. Moreover,
1. x̂ minimizes Γ ∗ on C,
2. I(Q̂ ) = Γ ∗(x̂) = ∫

Z γ ∗ ◦ γ ′(〈ω̃, θ〉)dR < ∞ and
3. I(Q̂ ) + ∫

Z γ (〈ω̃, θ〉)dR = ∫
Z 〈ω̃, θ〉dQ̂ .

Remarks 3.5.

(a) Suppose that γ ∗ does not depend on z (to simplify) and lim inf|t|→+∞ γ ∗(t)/|t| < +∞, then λ is not a finite function,
Eλ� = {0} and (A∀

θ ) implies that θ = 0.
(b) Removing the hypothesis (A2

γ ∗ ): m ∈ Lλ∗� , one can still consider the minimization problem (PCo ) instead of (PC ). The
transcription of Theorem 3.2 is as follows. Replace respectively (PC ), C , Γ ∗ , x̂ and γ by (PCo ), Co , Λ∗ , x̃ and λ where
x̃ = ∫

Z θ d(Q̂ − mR) is well defined.
The statement (b) must be replaced by the following one: If Co ∩ dom Λ∗ 	= ∅, then (PCo ) admits a unique solution Q̂ in
mR + Lλ∗� R and any minimizing sequence (Q n)n�1 is such that (Q n − mR)n�1 converges in Lλ∗� R to Q̂ − mR with respect to the
topology σ(Lλ∗� R, Lλ� ).

(c) For comparison with (3.3), note that the general shape of T −1
o C ∩ Lλ∗� R when C is only supposed to be convex is⋂

(y,a)∈A{� ∈ Lλ∗� R; 〈〈y, θ〉, �〉 > a} with A ⊂ Y × R.

4. Solving (PC )

The general hypotheses (A) are imposed and we study (PC ). Again, one needs to introduce several cones to state the dual
problems.

Recall that there is a natural order on the algebraic dual space E∗ of a Riesz vector space E which is defined by e∗ �
f ∗ ⇔ 〈e∗, e〉 � 〈 f ∗, e〉 for any e ∈ E with e � 0. A linear form e∗ ∈ E∗ is said to be relatively bounded if for any f ∈ E , f � 0,
we have supe: |e|� f |〈e∗, e〉| < +∞. Although E∗ may not be a Riesz space in general, the vector space Eb of all the relatively
bounded linear forms on E is always a Riesz space. In particular, the elements of Eb admit a decomposition in positive and
negative parts e∗ = e∗+ − e∗− .

The cone K ′′
λ . It is the cone of all relatively bounded linear forms ζ ∈ L′b

λ� on L′
λ� with a positive part ζ+ whose restriction

to L′
λ+ ⊂ L′

λ� is in L′′
λ+ and with a negative part ζ− whose restriction to L′

λ− ⊂ L′
λ� is in L′′

λ− : K ′′
λ = {ζ ∈ L′b

λ� ; ζ±|L′
λ±

∈ L′′
λ±}.

Note that L′
λ± ⊂ L′

λ� .

A decomposition in K ′′
λ . Let ρ be any Young function. By Theorem 2.3, we have L′′

ρ = [Lρ ⊕ Ls
ρ∗ ] ⊕ Ls′

ρ . For any ζ ∈ L′′
ρ =

(Lρ∗ R ⊕ Ls
ρ)′ , let us denote the restrictions ζ1 = ζ|Lρ∗ R and ζ2 = ζ|Ls

ρ
. Since, (Lρ∗ R)′ � Lρ ⊕ Ls

ρ∗ , one sees that any ζ ∈ L′′
ρ is

uniquely decomposed into

ζ = ζ a
1 + ζ s

1 + ζ2 (4.1)

with ζ1 = ζ a
1 + ζ s

1 ∈ L′
ρ∗ , ζ a

1 ∈ Lρ , ζ s
1 ∈ Ls

ρ∗ and ζ2 ∈ Ls′
ρ . Translating this decomposition onto K ′′

λ leads to K ′′
λ = [Kλ ⊕ K s

λ∗ ] ⊕
K s′

λ where one defines K s
λ∗ = {ζ ∈ (Lλ∗� R)b; ζ±|Lλ∗± R ∈ Ls

λ∗±
} and K s′

λ = {ζ ∈ Lsb
λ� ; ζ±|Ls

λ±
∈ Ls′

λ±}. Note that Lλ∗± R ⊂ Lλ∗� R and

Ls
λ± ⊂ Ls

λ� . With these cones in hand, the decomposition (4.1) holds for any ζ ∈ K ′′
λ with{

ζ1 = ζ a
1 + ζ s

1 ∈ Kλ ⊕ K s
λ∗ = K ′

λ∗ ,

ζ2 ∈ K s′
λ .

The set Y . The σ(K ′′
λ, L′±)-closure A of a set A ⊂ K ′′

λ is defined as follows: ζ ∈ K ′′
λ is in A if ζ± is in the σ(L′′

λ± , L′
λ± )-closure

of A± = {ζ±; ζ ∈ A}. Clearly, A± = {ζ±; ζ ∈ A}. Let T ∗
oYo denote the σ(K ′′, L′±)-closure of T ∗

oYo in K ′′ .
λ λ
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Let D denote the σ(K s′
λ , Ls±)-closure of dom Iλ , that is ζ ∈ K s′

λ is in D if and only if ζ± is in the σ(Ls′
λ± , Ls

λ± )-closure of
{u±; u ∈ dom Iλ}.

The set Y ⊂X ∗ is the extension of Yo which is isomorphic to T ∗
oYo ∩ {ζ ∈ K ′′

λ ; ζ s
1 = 0, ζ2 ∈ D} in the sense that

T ∗Y = T ∗
oYo ∩ {

ζ ∈ K ′′
λ ; ζ s

1 = 0, ζ2 ∈ D
}
.

The extended dual problem (DC ). The extended dual problem associated with (PC ) is

maximize inf
x∈C∩X

〈ω, x〉 − Iγ
([

T ∗ω
]a

1

)
, ω ∈Y . (DC )

Theorem 4.2. Suppose that

(1) the hypotheses (A) are satisfied;
(2) the convex set C is assumed to be such that

T −1
o C ∩ L′

λ� =
⋂
y∈Y

{
� ∈ L′

λ� ;
〈〈y, θ〉, �〉 � ay

}
(4.3)

for some subset Y ⊂ X ∗
o with 〈y, θ〉 ∈ Lλ� for all y ∈ Y and some function y ∈ Y �→ ay ∈ R. In other words, T −1C is a

σ(L′
λ� , Lλ� )-closed convex subset of L′

λ� .

Then:

(a) The dual equality for (PC ) is

inf(PC ) = inf
x∈C

Γ ∗(x) = sup(DC ) = sup(DC ) ∈ [0,∞].

(b) If C ∩ dom Γ ∗ 	= ∅ or equivalently C ∩ To dom Ī 	= ∅, then (PC ) admits solutions in L′
λ� , any minimizing sequence admits

σ(L′
λ� , Lλ� )-cluster points and every such point is a solution to (PC ).

Suppose that in addition we have

C ∩ icordomΓ ∗ 	= ∅ (4.4)

or equivalently C ∩ icor(To dom Ī) 	= ∅. Then:

(c) Let us denote x̂ � T �̂. There exists ω̄ ∈Y such that⎧⎪⎨⎪⎩
(a) x̂ ∈ C ∩ dom Γ ∗,
(b) 〈ω̄, x̂〉X ∗,X � 〈ω̄, x〉X ∗,X , ∀x ∈ C ∩ dom Γ ∗,
(c) �̂ ∈ γ ′

z

([
T ∗ω̄

]a
1

)
R + D⊥([

T ∗ω̄
]

2

) (4.5)

where

D⊥(η) = {
k ∈ Ls

λ� ; ∀h ∈ Lλ� , η + h ∈ D ⇒ 〈h,k〉 � 0
}

is the outer normal cone of D at η.
T ∗ω̄ is in the σ(K ′′

λ, L′±)-closure of T ∗(dom Λ) and there exists some ω̃ ∈X ∗
o such that[

T ∗ω̄
]a

1 = 〈
ω̃, θ(·)〉X ∗

o ,Xo

is a measurable function in the strong closure of T ∗(dom Λ) in Kλ: the set of all u ∈ Kλ such that u± is in the strong closure of
T ∗(dom Λ)± in Lλ± .

Furthermore, �̂ ∈ L′
λ� and ω̄ ∈Y satisfy (4.5) if and only if �̂ solves (PC ) and ω̄ solves (DC ).

(d) Of course, (4.5(c)) implies x̂ = ∫
Z θγ ′(〈ω̃, θ〉)dR + 〈θ, �̂s〉. Moreover,

1. x̂ minimizes Γ ∗ on C,
2. Ī(�̂) = Γ ∗(x̂) = ∫

Z γ ∗ ◦ γ ′(〈ω̃, θ〉)dR + sup{〈u, �̂s〉; u ∈ dom Iγ } < ∞ and

3. Ī(�̂) + ∫
Z γ (〈ω̃, θ〉)dR = ∫

Z 〈ω̃, θ〉d�̂a + 〈[T ∗ω̄]2, �̂
s〉K s

λ
′
,K s

λ
.

Remarks 4.6. General remarks about Theorem 4.2.

(a) The hypothesis (2) is equivalent to C is σ(X ,Y)-closed convex.
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(b) The dual equality with C = {x} gives for all x ∈Xo

Γ ∗(x) = inf
{

Ī(�); � ∈ L′
λ� , 〈θ, �〉 = x

}
.

(c) Note that ω̄ does not necessarily belong to Yo . Therefore, the Young equality 〈ω̄, x̂〉 = Γ ∗(x̂) + Γ (ω̄) is meaningless.
Nevertheless, there exists a natural extension Γ of Γ such that 〈x̂, ω̄〉 = Γ ∗(x̂) + Γ (ω̄) holds, see (5.6). This gives the
statement (d)3.

(d) As in Remark 3.5(b), removing the hypothesis (A2
γ ∗ ): m ∈ Lλ∗� , one can still consider the minimization problem

minimize Ī(�) subject to 〈θ, � − mR〉 ∈ Co, � ∈ mR + L′
λ� , (PCo )

instead of (PC ). The transcription of Theorem 4.2 is as follows. Denote

Λ∗(x) = sup
y∈Yo

{
〈y, x〉 −

∫
Z

λ
(〈y, θ〉)dR

}
, x ∈Xo,

and replace respectively (PC ), C , Γ ∗ , x̂ and γ by (PCo ), Co , Λ∗ , x̃ and λ where x̃ = 〈θ, �̂ − mR〉 is well defined.
The statement (b) must be replaced by the following one: If Co ∩ dom Λ∗ 	= ∅, then (PCo ) admits solutions in mR + L′

λ� ,

any minimizing sequence (�n)n�1 is such that (�n − mR)n�1 admits cluster points �̂ − mR in L′
λ∗� with respect to the topology

σ(L′
λ� , Lλ� ) and �̂ is a solution of (PCo ).

Example 4.7. Now, we give a simple example to illustrate Part (c) of Theorem 4.2. Consider three constraint functions θ1, θ2
and θ3 and the problem

minimize Ī(�) subject to
(〈θ1, �〉, 〈θ2, �〉, 〈θ3, �〉

) ∈ C, � ∈ L′
λ� ,

where C is a closed convex subset of R3 which satisfies (4.4). Let γ ∗ be such that λ� is not Δ2-regular, so that Eλ� � Lλ�
and suppose that θ1, θ2 ∈ Lλ� \ Eλ� while θ3 ∈ Eλ� .

We have T ∗
o y(z) = ∑

1�k�3 ykθk(z), y = (y1, y2, y3) ∈ R3, z ∈ Z , and the closure operations leading to Y are trivial

because of the finite dimension. Hence, in (4.5) we have ω̄ ∈ R3 with [T ∗ω̄]a
1 = ω̄1θ1 + ω̄2θ2 + ω̄3θ3 and [T ∗ω̄]2 = ω̄1θ1 +

ω̄2θ2.
The singular component �̂s is in D⊥(ω̄1θ1 + ω̄2θ2). For �̂s to be nonzero, it is necessary that ω̄1θ1 + ω̄2θ2 is on the

boundary of dom Iλ , that is Iλ(t[ω̄1θ1 + ω̄2θ2]) < ∞ for all 0 � t < 1 and Iλ(t[ω̄1θ1 + ω̄2θ2]) = ∞ for all t > 1. As �̂s is
singular, for each ε > 0 there exists a measurable set Sε such that R(Sε) < ε and 〈�̂s, u1Sc

ε
〉 = 0 for all u ∈ Lλ� . Since

�̂s ∈ D⊥(ω̄1θ1 + ω̄2θ2), it is also necessary that

Iλ
(
t1Sε [ω̄1θ1 + ω̄2θ2]

) = ∞, t > 1. (4.8)

This gives an information on the “support” of �̂s .
In the special case of the reverse relative entropy, Lλ� = L∞ , Eλ� = {0}, domλ+ = (−1,+1) and λ− is Δ2-regular,

see (7.4). Because of this special form, the blowup of t �→ Iλ(t[ω̄1θ1 + ω̄2θ2]) is easy to describe: We have ω̄1θ1 + ω̄2θ2 � 1
R-a.e. and for all ε > 0, Sε must meet {ω̄1θ1 + ω̄2θ2 = 1} for �̂s to be nonzero. With some abuse, one might say that the
“support” of �̂s is an R-negligible subset of {ω̄1θ1 + ω̄2θ2 = 1}.

At examples (b) and (c) at Section 7.4 which involve the relative entropy, a description of �̂s is also given.

5. Preliminary results

The aim of this section is to recall for the convenience of the reader some results of [20,22,24].

5.1. The extended saddle-point method

Denoting the minimizer Q̂ of (PC ), the geometric picture is that some level set of I is tangent at Q̂ to the constraint
set T −1

o C . Since these sets are convex, they are separated by some affine hyperplane and the analytic description of this
separation yields the characterization of Q̂ . Of course Hahn–Banach theorem is the key. Standard approaches require C to
be open with respect to some given topology in order to be allowed to apply it. In the present paper, one chooses to use a
topological structure which is designed for the level sets of I to “look like” open sets, so that Hahn–Banach theorem can be
applied without assuming to much on C .

This strategy is implemented in [20] in an abstract setting suitable for several applications. It is a refinement of the
standard saddle-point method [27] where convex conjugates play an important role.
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5.2. The failure of maximum entropy reconstruction

The main problem one has to overcome when working with infinite dimensional constraints is that the dual attainment
is not the rule. Borwein [1] calls this phenomenon the failure of maximum entropy reconstruction and obtains repre-
sentation of the minimizers in terms of approximating sequences. An aim of [20] was to provide tools to obtain general
representations of the minimizers without approximation. This is done in the present paper where integral representations
of the minimizers are derived.

5.3. Convex minimization problems under weak constraint qualifications

The main results of [20] are presented.

Basic diagram
Let Uo be a vector space, Lo = U∗

o its algebraic dual space, Φ a (−∞,+∞]-valued convex function on Uo and Φ∗ its
convex conjugate for the duality 〈Uo,Lo〉:

Φ∗(�) := sup
u∈Uo

{〈u, �〉 − Φ(u)
}
, � ∈Lo.

Let Yo be another vector space, Xo = Y∗
o its algebraic dual space and To : Lo → Xo a linear operator. We consider the

convex minimization problem

minimize Φ∗(�) subject to To� ∈ C, � ∈Lo, (Po)

where C is a convex subset of Xo .
This will be used later with Φ = Iλ on the Orlicz space Uo = Eλ� (Z, R) or Uo =Lλ� (Z, R).
It is useful to define the constraint operator To by means of its adjoint T ∗

o :Yo →L∗
o for each � ∈Lo , by 〈T ∗

o y, �〉L∗
o ,Lo =

〈y, To�〉Yo,Xo , ∀y ∈Yo .

Hypotheses
Let us give the list of the main hypotheses.

(HΦ) 1. Φ : Uo → [0,+∞] is σ(Uo,Lo)-lower semicontinuous, convex and Φ(0) = 0;
2. ∀u ∈ Uo , ∃α > 0, Φ(αu) < ∞;
3. ∀u ∈ Uo , u 	= 0, ∃t ∈ R, Φ(tu) > 0.

(HT ) 1. T ∗
o (Yo) ⊂ Uo;

2. ker T ∗
o = {0}.

(HC ) C ∩X is a convex σ(X ,Y)-closed subset of X .

The definitions of the vector spaces X and Y which appear in the last hypothesis are stated below. For the moment, let us
only say that if C is convex and σ(Xo,Yo)-closed, then (HC ) holds.

Several primal and dual problems
These variants are expressed below in terms of new spaces and functions. Let us first introduce them.

– The norms | · |Φ and | · |Λ. Let Φ±(u) = max(Φ(u),Φ(−u)). By (HΦ1) and (HΦ2), {u ∈ Uo; Φ±(u) � 1} is a convex
absorbing balanced set. Hence its gauge functional which is defined for all u ∈ Uo by |u|Φ := inf{α > 0; Φ±(u/α)) � 1}
is a seminorm. Thanks to hypothesis (HΦ3), it is a norm.
Taking (HT 1) into account, one can define

Λo(y) := Φ
(
T ∗

o y
)
, y ∈ Yo. (5.1)

Let Λ±(y) = max(Λo(y),Λo(−y)). The gauge functional on Yo of the set {y ∈ Yo; Λ±(y) � 1} is |y|Λ := inf{α > 0;
Λ±(y/α) � 1}, y ∈ Yo . Thanks to (HΦ) and (HT ), it is a norm and

|y|Λ = |T ∗
o y|Φ, y ∈ Yo.

– The spaces. Let

U be the | · |Φ-completion of Uo and let

L := (
Uo, | · |Φ

)′
be the topological dual space of

(
Uo, | · |Φ

)
.
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Of course, we have (U , | · |Φ)′ ∼=L⊂Lo where any � in U ′ is identified with its restriction to Uo . Similarly, we introduce

Y the | · |Λ-completion of Yo and

X := (
Yo, | · |Λ

)′
the topological dual space of

(
Yo, | · |Λ

)
.

We have (Y, | · |Λ)′ ∼=X ⊂Xo where any x in Y ′ is identified with its restriction to Yo .
We also have to consider the algebraic dual spaces L∗ and X ∗ of L and X .

– The operators T and T ∗. Let us denote T the restriction of To to L⊂Lo . One can show that under (HΦ&T ),

ToL⊂X . (5.2)

Hence T : L → X . Let us define its adjoint T ∗ : X ∗ → L∗ for all ω ∈ X ∗ by 〈�, T ∗ω〉L,L∗ = 〈T �,ω〉X ,X ∗ , ∀� ∈ L. We
have the inclusions Yo ⊂ Y ⊂X ∗ . The adjoint operator T ∗

o is the restriction of T ∗ to Yo .
– The functionals. They are

Φ̄(ζ ) := sup�∈L
{〈ζ, �〉 − Φ∗(�)

}
, ζ ∈L∗,

Λ(y) := Φ̄
(
T ∗ y

)
, y ∈ Y,

Λ(ω) := Φ̄
(
T ∗ω

)
, ω ∈X ∗,

Λ∗
o(x) := supy∈Yo

{〈y, x〉 − Λo(y)
}
, x ∈Xo,

Λ∗(x) := supy∈Y
{〈y, x〉 − Λ(y)

}
, x ∈X .

– The optimization problems. They are

minimize Φ∗(�) subject to To� ∈ C, � ∈Lo, (Po)

minimize Φ∗(�) subject to T � ∈ C, � ∈L, (P)

maximize infx∈C∩X 〈y, x〉 − Λ(y), y ∈Y, (D)

maximize infx∈C∩X 〈x,ω〉 − Λ(ω), ω ∈X ∗. (D)

Statement of the results
It is assumed that (HΦ), (HT ) and (HC ) hold.

Theorem 5.3 (Primal attainment and dual equality).

(a) The problems (Po) and (P) are equivalent: they have the same solutions and inf(Po) = inf(P) ∈ [0,∞]. In particular,
dom Φ∗ ⊂L and dom Λ∗ ⊂X .

(b) We have the dual equalities

inf(Po) = inf(P) = sup(D) = sup(D) = inf
x∈C

Λ∗
o(x) = inf

x∈C∩X
Λ∗(x) ∈ [0,∞].

(c) If in addition {� ∈ Lo; To� ∈ C} ∩ dom Φ∗ 	= ∅, then (Po) is attained in L. Moreover, any minimizing sequence for (Po) has
σ(L,U)-cluster points and every such cluster point solves (Po).

Theorem 5.4 (Dual attainment and representation. Interior convex constraint). Assume that C ∩ icor(To dom Φ∗) 	= ∅. Then, the
primal problem (Po) is attained in L and the extended dual problem (D) is attained in X ∗ . Any solution �̂ ∈L of (Po) is characterized
by the existence of some ω̄ ∈X ∗ such that⎧⎪⎨⎪⎩

(a) T �̂ ∈ C,

(b)
〈
T ∗ω̄, �̂

〉
�

〈
T ∗ω̄, �

〉
for all � ∈ {� ∈L; T � ∈ C} ∩ dom Φ∗,

(c) �̂ ∈ ∂LΦ̄
(
T ∗ω̄

)
.

(5.5)

Moreover, �̂ ∈L and ω̄ ∈X ∗ satisfy (5.5) if and only if �̂ solves (Po) and ω̄ solves (D).

The assumption C ∩ icor(To dom Φ∗) 	= ∅ is equivalent to C ∩ icordom Λ∗
o 	= ∅ and the representation formula (5.5(c)) is

equivalent to Young’s identity

Φ∗(�̂) + Φ̄
(
T ∗ω̄

) = 〈ω̄, T �̂〉 = Λ∗(x̂) + Λ(ω̄). (5.6)

Formula (5.5(c)) can be made a little more precise by means of the following regularity result.
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Theorem 5.7. Any solution ω̄ of (D) shares the following properties:

(a) ω̄ is in the σ(X ∗,X )-closure of dom Λ;
(b) T ∗ω̄ is in the σ(L∗,L)-closure of T ∗(dom Λ).

If in addition the level sets of Φ are | · |Φ -bounded, then

(a′) ω̄ is in Y ′′ . More precisely, it is in the σ(Y ′′,X )-closure of dom Λ;
(b′) T ∗ω̄ is in U ′′ . More precisely, it is in the σ(U ′′,L)-closure of T ∗(dom Λ),

where Y ′′ and U ′′ are the topological bidual spaces of Y and U . This occurs if Φ , or equivalently Φ∗ , is an even function.

5.4. Convex conjugates in a Riesz space

The following results are taken from [22,24]. For the basic definitions and properties of Riesz spaces, see [8, Chapter 2].
Let U be a Riesz vector space for the order relation �. Since U is a Riesz space, any u ∈ U admits a nonnegative part:

u+ := u ∨ 0, and a nonpositive part: u− := (−u) ∨ 0. Of course, u = u+ − u− and as usual, we state: |u| = u+ + u− .
Let Φ be a [0,∞]-valued function on U which satisfies the following conditions:

∀u ∈ U , Φ(u) = Φ(u+ − u−) = Φ(u+) + Φ(−u−), (5.8)

∀u, v ∈ U ,

{
0 � u � v �⇒ Φ(u) � Φ(v),

u � v � 0 �⇒ Φ(u) � Φ(v).
(5.9)

Clearly (5.8) implies Φ(0) = 0, (5.8) and (5.9) imply that for any u ∈ U , Φ(u) = Φ(u+) + Φ(−u−) � Φ(0) + Φ(0) = 0.
Therefore, Φ∗ is [0,∞]-valued and Φ∗(0) = 0.

For all u ∈ U , Φ+(u) = Φ(|u|), Φ−(u) = Φ(−|u|). The convex conjugates of Φ , Φ+ and Φ− with respect to 〈U , U∗〉 are
denoted Φ∗ , Φ∗+ and Φ∗− . Let L be the vector space spanned by domΦ∗ . The convex conjugates of Φ∗ , Φ∗+ and Φ∗− with
respect to 〈L, L∗〉 are denoted Φ̄ , Φ+ and Φ− . The space of relatively bounded linear forms on U and L are denoted by U b

and Lb , whenever L is a Riesz space.
One writes a± ∈ A± for [a+ ∈ A+ and a− ∈ A−].

Proposition 5.10. Assume (5.8) and (5.9) and suppose that L is a Riesz space.

(a) For all � ∈ U∗ ,

Φ∗(�) =
{

Φ∗+(�+) + Φ∗−(�−) if � ∈ U b,

+∞ otherwise.

(b) Denoting L+ and L− the vector subspaces of L spanned by dom Φ∗+ and dom Φ∗− , we have

Φ̄(ζ ) =
{

Φ+(ζ+|L+ ) + Φ−(ζ−|L− ) if ζ ∈ Lb,

+∞ otherwise,

which means that Φ±(ζ±) = Φ±(ζ ′±) if ζ± and ζ ′± match on L± .
(c) Let � ∈ L, ζ ∈ L∗ be such that � ∈ ∂LΦ̄(ζ ). Then, �± ∈ ∂L±Φ±(ζ±|L± ) ⊂ L± .

Proof. (a) and (b) are proved at [22, Proposition 4.4] under the additional assumption that for all u ∈ U there exists λ > 0
such that Φ(λu) < +∞. But it can be removed. Indeed, if for instance Φ− is null, Φ∗− is the convex indicator of {0} whose
domain is in U b . The statement about Φ̄ is an iteration of this argument.

The last statement of (b) about ζ±|L± directly follows from dom Φ∗± ⊂ L± .
For (c), see the proof of [24, Proposition 4.5]. �

6. Proofs of Theorems 3.2 and 4.2

Theorem 3.2 is a direct corollary of Theorem 4.2.

Proof of Theorem 3.2. Let us assume for the moment that Theorem 4.2 is proved. If

lim|t|→∞γ ∗
z (t)/|t| = ∞, (6.1)

for R-a.e. z ∈ Z , λ is a finite function and Proposition 2.5 insures that whenever (A∀
θ ) holds T −1

o C ∩ L′
λ� = ⋂

y∈Y {� ∈ L′
λ� ;

〈θ, �〉 � ay} = ⋂
y∈Y { f R ∈ Lλ∗ R; ∫ 〈y, θ〉 f dR � ay}. In particular the problems (PC ) and (PC ) are equivalent.
� Z
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On the other hand, one shows as at Remark 3.5(a) that θ(z) = 0 for any z for which (6.1) fails. Hence, the problems (PC )
and (PC ) are equivalent under (A∀

θ ) and Theorem 3.2 follows from Theorem 4.2. �
The remainder of this section is devoted to the proof of Theorem 4.2. It is an application of Theorems 5.3 and 5.4.

Lemma 6.2. Assume (AR ) and (A1
γ ∗ ). We have

I( f R) = sup
u∈Lλ�

{〈u, f 〉Lλ� ,Lλ∗�
− Iγ (u)

}
, f ∈ Lλ∗� , (6.3)

Ī(�) = sup
u∈Lλ�

{〈u, �〉Lλ� ,L′
λ�

− Iγ (u)
}
, � ∈ L′

λ� . (6.4)

Moreover, I is σ(Lλ∗� R, Lλ� )-lower semicontinuous and Ī is σ(L′
λ� , Lλ� )-inf-compact.

If in addition (6.1) holds for R-a.e. z ∈Z ,

I( f R) = sup
u∈Eλ�

{〈u, f 〉Lλ� ,Lλ∗�
− Iγ (u)

}
, f ∈ Lλ∗� , (6.5)

and I is σ(Lλ∗� R, Eλ� )-inf-compact.

In other words, (I, Iγ ) and ( Ī, Iγ ) are respectively convex conjugate to each other for the dualities 〈Lλ∗� R, Lλ� 〉 and 〈L′
λ� , Lλ� 〉.

It follows that Ī is the greatest convex σ(L′
λ� , Lλ� )-lower semicontinuous extension of I from Lλ∗� R to L′

λ� .

Proof. Under the assumptions (AR ) and (A1
γ ∗ ), γ ∗ is a normal convex integrand. It follows that Iγ ∗ on Lλ∗� and Iγ on Lλ�

are convex conjugate to each other, see [26], which is (6.3). One obtains (6.5) similarly.
Let us prove (6.4). Fix � ∈ L′

λ� . Clearly, supu∈Lλ� {〈u, �〉 − Iγ (u)} = supu∈Lλ� {〈u, �a + �s〉 − Iγ (u) − ιdom Iγ (u)} �
supu∈Lλ� {〈u, �a〉 − Iγ (u)} + supu∈Lλ� {〈u, �s〉 − ιdom Iγ (u)} = Ī(�).

Let us prove the converse inequality. For each ε > 0 there exists a measurable set Sε such that R(Sε) � ε and
〈u1Sc

ε
, �s〉 = 0 for all u ∈ Lλ� . Hence,

sup
u∈Lλ�

{〈u, �〉 − Iγ (u)
} = sup

u,v∈Lλ�

{〈
u1Sc

ε
+ v1Sε , �

a + �s〉 − Iγ (u1Sc
ε
+ v1Sε )

}
= I

(
1Sc

ε
�a) + sup

v∈Lλ�

{〈
v1Sε , �

a〉 − Iγ (v1Sε ) + 〈
v, �s〉 − ιdom Iγ (v1Sε )

}
.

Taking vδ ∈ Lλ� such that vδ1Sε ∈ dom Iγ and 〈vδ, �
s〉 � min(ι∗dom Iγ

(�s) − δ,1/δ) with δ > 0, one obtains supu∈Lλ� {〈u, �〉 −
Iγ (u)} � min(I(1Sc

ε
�a) + ι∗dom Iγ

(�s) + 〈vδ1Sε , �
a〉 − Iγ (vδ1Sε ) − δ,1/δ). By dominated convergence, letting ε tend to zero,

we see that supu∈Lλ� {〈u, �〉 − Iγ (u)} � min(I(�a) + ι∗dom Iγ
(�s) − δ,1/δ) for any δ > 0. As δ > 0 is arbitrary, supu∈Lλ� {〈u, �〉 −

Iγ (u)} � Ī(�). This completes the proof of (6.4).
Because of these variational representations, I and Ī are lower semicontinuous with respect to the corresponding weak

topologies and the compactness of their level sets is a standard consequence of Banach–Alaoglu theorem and the strong
continuity of Iγ , see [22, Corollary 2.2] for instance.

Note that assuming (6.1) in the last statement is necessary for Eλ� not to be reduced to the null space. �
Proof of Theorem 4.2. One applies the abstract results of Section 5.3 with

Φ(u) = Iλ(u) :=
∫
Z

λ(u)dR, u ∈ Uo :=Lλ� . (6.6)

This gives U = Lλ� with the Orlicz norm |u|Φ = ‖u‖λ� and L = L′
λ� = Lλ∗� R ⊕ Ls

λ� , by Theorem 2.3. The spaces Y and X
match with the definitions of Section 2.5.

• Reduction to m = 0. We have seen at (2.10) that the transformation Q � � = Q −mR corresponds to the transformations
γ � λ and (PC ) � (2.10). This still works with (PC ) and one can assume from now on without loss of generality that
under (A2

γ ∗ ), m = 0 and γ = λ.

The hypothesis (A2
γ ∗ ) will not be used during the rest of the proof. This allows Remarks 3.5(b) and 4.6(d).

• Verification of (HC ). It is equivalent to (4.3).
• Verification of (HT ). The hypothesis (HT 1) is (A∃

θ ) while (HT 2) is (A2
θ ).

• Verification of (HΦ). Suppose that W = {z ∈ Z; λ(z, s) = 0, ∀s ∈ R} is such that R(W ) > 0. Then, any � such that
〈u1W , �〉 > 0 for some u ∈ Lλ� satisfies Φ∗(�) = +∞. Therefore, one can remove W from Z without loss of generality.
Once, this is done, the hypothesis (HΦ) is satisfied under the hypothesis (A1 ∗ ).
γ
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With (5.2), this implies that

T L′
λ� ⊂X (6.7)

and by Theorem 5.3(a)

dom Γ ∗ ⊂X . (6.8)

With (6.6) and Theorem 5.3(a), dom Φ∗ ⊂L= L′
λ� . Hence, with Lemma 6.2 one obtains

Ī(�) = Φ∗(�), � ∈ L′
λ� . (6.9)

• The computation of Φ̄ in the case where λ is even. Since Φ is even, Theorem 5.7 tells us that dom Φ̄ is included in the
σ(L′′

λ, L′
λ)-closure of dom Φ . Thanks to the decomposition (4.1) and Lemma 6.2 applied with λ∗ instead of γ , the exten-

sion Φ̄ is given for each ζ ∈ L′′
λ by

Φ̄(ζ ) = ( Īλ∗ )∗(ζ1, ζ2) = I∗λ∗ (ζ1) + ι∗∗
dom Iλ

(ζ2)

= Īλ(ζ1) + ιD(ζ2) = Iλ
(
ζ a

1

) + ι∗dom Iλ∗
(
ζ s

1

) + ιD(ζ2),

where D is the σ(Ls′
λ , Ls

λ)-closure of dom Iλ .
• Extension to the case where λ is not even. By Proposition 5.10(b), we have Φ̄(ζ ) = Φ̄+(ζ+|L′

λ+∩L′
λ�

) + Φ̄−(ζ−|L′
λ− ∩L′

λ�
) if

ζ ∈ L′b
λ� and +∞ otherwise. It follows that

Φ̄(ζ ) = Ī∗λ(ζ ) = Iλ
(
ζ a

1

) + ι∗dom Iλ∗
(
ζ s

1

) + ιD(ζ2) (6.10)

if ζ ∈ K ′′
λ and +∞ otherwise. In particular, we have

Λ(y) = Iλ
(〈y, θ〉), y ∈ Y,

Λ(ω) =
{

Iλ([T ∗ω]a
1) + ι∗dom Iλ∗ ([T ∗ω]s

1) + ιD([T ∗ω]2) if ω ∈ Ŷ,

+∞ otherwise,
ω ∈X ∗,

where Ŷ ⊂ X ∗ is the extension of Yo which is isomorphic to the σ(K ′′
λ, L′±)-closure T ∗

oYo of T ∗
oYo in the sense that

T ∗Y = T ∗
oYo . Considering the maximization problem

maximize inf
x∈C∩X

〈ω, x〉 − Iλ
([

T ∗ω
]a

1

) − ι∗dom Iλ∗
([

T ∗ω
]s

1

) − ιD
([

T ∗ω
]

2

)
, ω ∈ Ŷ, (6.11)

this provides us with the dual problems (D) = (DC ) and (D) = (6.11).
• Proof of (a) and (b). Apply Theorem 5.3.

Let us go on with the proof of (c). By Theorem 5.4, ((PC ), (6.11)) admits a solution in L′
λ� × Ŷ and (�̂, ω̄) ∈ L′

λ� × Ŷ
solves ((PC ), (6.11)) if and only if⎧⎪⎨⎪⎩

(a) x̂ ∈ C ∩ dom Γ ∗,
(b) 〈ω̄, x̂〉 � 〈ω̄, x〉, ∀x ∈ C ∩ dom Γ ∗,
(c) �̂ ∈ ∂L′

λ�
Φ̄

(
T ∗ω̄

)
,

(6.12)

where x̂ � T �̂ is defined in the weak sense with respect to the duality 〈Y,X 〉. Since domΓ ∗ ⊂ X , the above dual
brackets are meaningful.

• The computation of ∂L′
λ
Φ̄(ζ ). Let us first assume that λ is even. For all u ∈ Lλ , ua

1 = u2 = u and us
1 = 0. This gives

Φ̄(ζ + u)− Φ̄(ζ ) = Iλ(ζ a
1 + u1)− Iλ(ζ a

1 )+ ιD(ζ2 + u2)− ιD(ζ2) where u1 = u and u2 = u act respectively on Lλ∗ R and Ls
λ .

This direct sum structure leads us to

∂L′
λ
Φ̄(ζ ) = ∂Lλ∗ R Iλ

(
ζ a

1

) + ∂Ls
λ
ιD(ζ2), (6.13)

which again is the direct sum of the absolutely continuous and singular components of ∂L′
λ
Φ̄(ζ ). Differentiating in the

directions of U = Lλ , one obtains ∂Lλ∗ R Iλ(ζ a
1 ) = {λ′(ζ a

1 )R}. The computation of ∂Ls
λ
ιD(ζ2) is standard: ∂Ls

λ
ιD(ζ2) = D⊥(ζ2)

is the outer normal cone of D at ζ2.
Now, consider a general λ. By Proposition 5.10(a), �̂+ ∈ ∂L′

λ+
Φ̄+([T ∗ω̄]+) and �̂− ∈ ∂L′

λ−
Φ̄−([T ∗ω̄]−). Therefore, (6.13)

becomes

∂L′
λ�

Φ̄(ζ ) = ∂Kλ∗ R Iλ
(
ζ a

1

) + ∂K s
λ
ιD(ζ2).
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• From (6.11) to (DC ). The solution (�̂, ω̄) ∈ L′
λ� × Ŷ of ((PC ), (6.11)) satisfies �̂a ∈ ∂Lλ∗� RΦ̄a([T ∗ω̄]1) where Φ̄a([T ∗ω]1) =

Iλ([T ∗ω]a
1) + ι∗dom Iλ∗ ([T ∗ω]s

1). This implies that [T ∗ω̄]s
1 ∈ ∂ι∗∗

dom Iλ∗ (�̂a). But under the assumption (4.4), �̂a is an interior
point so that[

T ∗ω̄
]s

1 = 0. (6.14)

Now, plug the identity [T ∗ω]s
1 = 0 into (6.11) and note that maximizing −ιD amounts to restrict the problem to D to

see that one can replace (6.11) with (DC ) under the assumption (4.4).
• Representation of [T ∗ω̄]a

1 . One still has to prove that[
T ∗ω̄

]a
1(z) = 〈

θ(z), ω̃
〉

(6.15)

for R-a.e. z ∈Z and some linear form ω̃ on Xo .
If W− := {z ∈ Z; λ(z, s) = 0, ∀s � 0} satisfies R(W−) > 0, dom Ī is a set of linear forms which are nonnegative on W
and γ ′

z(s) = 0 for all s � 0, z ∈ W . Hence, one can take any function for the restriction of [T ∗ω̄]a
1− to W− without mod-

ifying (6.12)(c). As a symmetric remark holds for W+ = {z ∈Z; λ(z, s) = 0, ∀s � 0}, it remains to consider the situation
where for R-a.e. z, there are s−(z) < 0 < s+(z) such that λ(z, s±(z)) > 0. This implies that lims→±∞ λ(z, s)/s > 0.
By Theorem 5.4, T ∗ω̄ is in the σ(K ′′

λ, L′±)-closure of T ∗(dom Λ). Therefore, [T ∗ω̄]a
1 is in the σ(Kλ, L′±)-closure of

T ∗(dom Λ). As T ∗(dom Λ) is convex, this closure is its strong closure in Kλ . Since there exists a finite measurable
function c(z) such that 0 < c(z) � lims→∞ λ(z, s)/s, one can consider the nontrivial Young function ρ(z, s) = c(z)|s| and
the corresponding Orlicz spaces Lρ and L′

ρ = Lρ∗ . If R is a bounded measure, we have Lλ� ⊂ Lρ and Lρ∗ ⊂ Lλ∗� , so that
[T ∗ω̄]a

1 is in the strong closure of T ∗(dom Λ) in Lρ .
As a consequence, [T ∗ω̄]a

1 is the pointwise limit of a sequence (T ∗ yn)n�1 with yn ∈ Y . As T ∗ yn(z) = 〈yn, θ(z)〉, we see
that [T ∗ω̄]a

1(z) = 〈θ(z), ω̃〉 for some linear form ω̃ on Xo . If R is unbounded, it is still assumed to be σ -finite: there
exists a sequence (Zk) of measurable subsets of Z such that

⋃
k Zk = Z and R(Zk) < ∞ for each k. Hence, for each k

and all z ∈Zk , (T ∗ω̄)a(z) = 〈θ(z), ω̃k〉 for some linear form ω̃k on Xo , from which (6.15) follows.
• Proof of (c). It follows from the previous considerations and Theorem 5.4.
• Proof of (d). Statement (d)1 follows from Theorem 5.3. Statement (d)2 is immediately deduced from (c). Finally, (d)3

is (5.6). �
7. Examples

Examples of entropy minimization problems are presented.

7.1. Some examples of entropies related to the Boltzmann entropy

The entropies defined below occur naturally in statistical physics, probability theory, mathematical statistics and infor-
mation theory.

Boltzmann entropy
The Boltzmann entropy with respect to the positive measure R is defined by

H B(Q |R) =
{ ∫

Z log( dQ
dR )dQ if 0 � Q ≺ R,

+∞ otherwise,

for each Q ∈ MZ . It corresponds to

γ ∗
z (t) =

⎧⎪⎨⎪⎩
t log t if t > 0,

0 if t = 0,

+∞ if t < 0.

But this γ ∗ takes negative values and is ruled out by our hypotheses. A way to circumvent this problem is to consider the
variant below.

A variant of the Boltzmann entropy
Let m :Z → (0,∞) be a positive measurable function. Considering

γ ∗
z (t) = t log t − [

1 + logm(z)
]
t + m(z), t > 0,

one sees that it is nonnegative and that γ ∗
z (t) = 0 if and only if t = m(z). Hence γ ∗ enters the framework of this paper and

λz(s) = m(z)
[
es − s − 1

]
, s ∈ R. (7.1)

It is easily seen that
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H B(Q |R) = Iγ ∗ (Q ) +
∫
Z

(1 + log m)dQ −
∫
Z

m dR

which is meaningful if Q integrates 1+ log m where m ∈ L1(R). As an application, let R be the Lebesgue measure on Z = Rd

and minimize H B(Q |R) on the set C = {Q ∈ PZ ; ∫
Z |z|2 Q (dz) = E} ∩ Co . Taking m(z) = e−|z|2 , one is led to minimizing Iγ ∗

on C .

A special case
It is defined by

H(Q |R) =
{ ∫

Z [ dQ
dR log( dQ

dR ) − dQ
dR + 1]dR if 0 � Q ≺ R,

+∞ otherwise,
Q ∈ MZ . (7.2)

It corresponds to

γ ∗
z (t) =

⎧⎪⎨⎪⎩
t log t − t + 1 if t > 0,

1 if t = 0,

+∞ if t < 0,

m(z) = 1 and λz(s) = es − s − 1, s ∈ R for all z ∈Z . Note that H(Q |R) < ∞ implies that Q is nonnegative.

Relative entropy
The reference measure R is assumed to be a probability measure and one denotes PZ the set of all probability measures

on Z . The relative entropy of Q ∈ MZ with respect to R ∈ PZ is the following variant of the Boltzmann entropy:

I(Q |R) =
{ ∫

Z log( dQ
dR )dQ if Q ≺ R and Q ∈ PZ ,

+∞ otherwise,
Q ∈ MZ .

It is (7.2) with the additional constraint that Q (Z) = 1:

I(Q |R) = H(Q |R) + ι{Q (Z)=1}.

When minimizing the Boltzmann entropy Q �→ H B(Q |R) on a constraint set which is included in PZ , we have for all
P , Q ∈ PZ ,

H B(Q |R) = I(Q |P ) +
∫
Z

log

(
dP

dR

)
dQ

which is meaningful for each Q ∈ PZ which integrates dP
dR .

Extended relative entropy
Since λ(s) = es − s − 1 and R ∈ PZ is a bounded measure, we have λ�(s) = τ (s) := e|s| − |s| − 1 and the relevant Orlicz

spaces are

Lτ ∗ =
{

f :Z → R;
∫
Z

| f | log | f |dR < ∞
}
, Eτ =

{
u :Z → R; ∀α > 0,

∫
Z

eα|u| dR < ∞
}
,

Lτ =
{

u :Z → R; ∃α > 0,

∫
Z

eα|u| dR < ∞
}
.

The extended relative entropy is defined by

Ī(�|R) = I
(
�a

∣∣R
) + sup

{〈
�s, u

〉; u,

∫
Z

eu dR < ∞
}
, � ∈ E(Z), (7.3)

where � = �a + �s is the decomposition into absolutely continuous and singular parts of � in L′
τ = Lτ ∗ ⊕ Ls

τ , and E(Z) =
{� ∈ L′

τ ; � � 0, 〈�,1〉 = 1}. Note that E(Z) depends on R and that for all � ∈ E(Z), �a ∈ PZ ∩ Lτ ∗ R .
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Reverse relative entropy
The reference measure R is assumed to be a probability measure. The reverse relative entropy is

Q ∈ MZ �→
{

I(R|Q ) if Q ∈ PZ ,

+∞ otherwise
∈ [0,∞].

It corresponds to

γ ∗
z (t) =

{
−log t + t − 1 if t > 0,

+∞ if t � 0,
m(z) = 1 and

λz(s) =
{

−log(1 − s) − s if s < 1,

+∞ if s � 1,
(7.4)

for all z ∈Z , with the additional constraint that Q (Z) = 1.

7.2. Some examples of constraints

Let us consider the three standard constraints which are the moment, marginal and Fredholm constraints. We are going
to give a precise formulation of (1.7)–(1.9) by specifying the adjoint operator T ∗

o at (7.5), (7.6) and (7.9).

Moment constraints
Let θ = (θk)1�k�K be a measurable function from Z to Xo = RK . The moment constraint is specified by the operator

To� =
∫
Z

θ d� =
(∫
Z

θk d�

)
1�k�K

∈ RK ,

which is defined for each � ∈ MZ which integrates all the real-valued measurable functions θk . The adjoint operator is

T ∗
o y(z) =

∑
1�k�K

ykθk(z), y = (y1, . . . , yK ) ∈ RK , z ∈Z. (7.5)

Marginal constraints
Let Z = A × B be a product space, M AB be the space of all bounded signed measures on A × B and U AB be the space of

all measurable bounded functions u on A × B . Denote �A = �(· × B) and �B = �(A × ·) the marginal measures of � ∈ M AB .
The constraint of prescribed marginal measures is specified by∫

A×B

θ d� = (�A, �B) ∈ M A × MB , � ∈ M AB ,

where M A and MB are the spaces of all bounded signed measures on A and B . The function θ which gives the marginal
constraint is

θ(a,b) = (δa, δb), a ∈ A, b ∈ B,

where δa is the Dirac measure at a. Indeed, (�A, �B) = ∫
A×B(δa, δb)�(da db).

More precisely, let U A , U B be the spaces of bounded measurable functions on A and B and take Yo = U A × U B and
Xo = U∗

A × U∗
B . Then, θ is a measurable function from Z = A × B to Xo = U∗

A × U∗
B . It is easy to see that the adjoint of the

marginal operator

To� = (�A, �B) ∈ U∗
A × U∗

B , � ∈Lo = U∗
AB ,

where 〈 f , �A〉 := 〈 f ⊗ 1, �〉 and 〈g, �B〉 := 〈1 ⊗ g, �〉 for all f ∈ U A and g ∈ U B , is given by

T ∗
o ( f , g) = f ⊕ g ∈ U AB , f ∈ U A, g ∈ U B , (7.6)

where f ⊕ g(a,b) := f (a) + g(b), a ∈ A, b ∈ B .

Generalized Fredholm integral constraints
In addition to (Z, R) and the function γ , we consider a measure space (R,ρ) where ρ is a nonnegative measure on

R and a pair (X, Y ) of vector spaces in separating duality. Let θ : R × Z → X be an X-valued function on R × Z and
x = (xr)r∈R be an element of XR . We are going to give some meaning at (7.9) to the following formal expression of the
Fredholm integral constraint〈

θ(r, ·), �〉 = xr for ρ-almost every r ∈R, � ∈ L′
λ . (7.7)
�
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To do this, let us consider a vector space Yo of functions y : R → Y and a vector space Xo of functions x : R → X . Denote
y = (yr)r∈R ∈ Yo ⊂ YR , x = (xr)r∈R ∈Xo ⊂ XR and assume that for any x ∈Xo and y ∈Yo ,

r ∈R �→ 〈yr, xr〉 ∈ R is measurable and
∫
R

∣∣〈yr, xr〉
∣∣ρ(dr) < ∞. (7.8)

In other words 〈y·, x·〉 ∈ L1(R,ρ). This property allows us to define the dual bracket between Yo and Xo: 〈y, x〉Yo,Xo =∫
R〈yr, xr〉ρ(dr). One identifies Xo as a subset of Y∗

o . In order that Yo separates Xo , x, x′ ∈ Xo are identified if: 〈y, x −
x′〉Yo,Xo = 0, ∀y ∈Yo . We assume that the function θ :R×Z → X appearing in (7.7) satisfies the following conditions:

(1) for any z ∈Z , the function θ(·, z) : r �→ θ(r, z) belongs to Xo;
(2) for any y ∈Yo , the function 〈y, θ(·)〉Yo,Xo : z �→ ∫

R〈yr, θ(r, z)〉ρ(dr) is measurable;
(3) for any y ∈Yo , there exists α > 0 such that

∫
Z λ�(α〈y, θ(·)〉Yo,Xo )dR < ∞.

In other words, for all y ∈ Yo , 〈y, θ(·)〉Yo,Xo ∈ Lλ� . Finally, if Yo is a rich enough space in the sense that
∫
R〈yr, xr〉ρ(dr) = 0

for all y ∈Yo implies that xr = 0 for ρ-a.e. r, one can reformulate correctly (7.7) by

∀y ∈Yo,
〈
�,

〈
y, θ(·)〉Yo,Xo

〉
L′
λ� ,Lλ�

=
∫
R

〈yr, xr〉Y ,X ρ(dr).

This corresponds to

T ∗
o y(z) =

∫
R

〈
yr, θr(z)

〉
Y ,X ρ(dr), y ∈ Yo, z ∈Z. (7.9)

The moment constraints (7.5) are recovered choosing R = {1, . . . , K } with the counting measure ρ = ∑
1�r�K δr for all

z ∈Z and r ∈R.
The marginal constraint (7.6) is recovered with R= {0,1}, ρ = δ0 + δ1, θ0(a,b) = δa and θ1(a,b) = δb for each z = (a,b) ∈

Z = A × B and y = (y0, y1) ∈Yo = U A × U B .

A Fredholm constraint for a random path
Let Z = C([0,1], Z) be the set of all continuous paths from [0,1] to the topological state space Z . Take Φ : Z → R

a measurable function and consider the constraint
∫
Z Φ(ζr)dP = xr for each r ∈ [0,1] with x = (xr)0�r�1 ∈ R[0,1] where

ζr(z) = zr is the position at time r of the path z = (zr)0�r�1. Applying (7.9), one sees that the constraint(∫
Z

Φ(ζr)dP

)
0�r�1

∈ C, P ∈ PC([0,1],Z), (7.10)

with C a convex subset of R[0,1] , is determined by

T ∗
o y(z) =

1∫
0

yrΦ(zr)dr, y ∈Yo, z = (zr)0�r�1 ∈ C
([0,1], Z

)
, (7.11)

with Yo = C([0,1],R) or Yo = S([0,1]): the space of simple functions on [0,1].
7.3. Relative entropy under good constraints

We considerer the minimization of the relative entropy I(·|R)

minimize I(P |R) subject to

∫
Z

θ dP ∈ C, P ∈ PZ , (7.12)

under marginal constraints and under (7.10).

(a) Since the marginal constraint is bounded, see (7.6), (A∀
θ ) holds. Applying Theorem 3.2 with C a singleton, one recovers

the results of [10] and [23] where this problem is solved in details with a different approach. In particular, γ ′(s) = es

and by Theorem 3.2(c), the solution of (7.12) is

P̂ (da db) = f (a)g(b) R(da db) (7.13)

where f , g are functions on A and B such that f ⊗ g is R-measurable. In fact, Theorem 3.2 tells us that P̂ (da db) =
eω̃(a,b)R(da db) with ω̃ R-measurable in the σ(Kτ , Kτ ∗ )-closure of {ϕ ⊕ ψ; ϕ ∈ U A, ψ ∈ U B} and one can prove that
ω̃ = u ⊕ v for some u and v . Note that it is not stated that f = eu and g = ev are measurable. The product form of (7.13)
plays an important role in Euclidean quantum mechanics [9,14,28].
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(b) Let us have a look at the minimization of the relative entropy with respect to R ∈ PC([0,1],Z) under the constraint (7.10).
Again, if Φ is bounded, T ∗

o y given by (7.11) is bounded for any y ∈ Yo and (A∀
θ ) holds. The solution of (7.12) is

P̂ (dz) = 1

N exp

( ∫
[0,1]

ω̃rΦ(zr)dr

)
R(dz)

where N > 0 is a normalizing constant and ω̃ is a measurable function on [0,1]. This still holds true if Φ satisfies∫
Z eα

∫
[0,1] |Φ(zr )|dr R(dz) < ∞ for all α � 0.

7.4. Extended relative entropy under critical constraints

We considerer the minimization of the extended relative entropy Ī(·|R) under some simple critical constraints:

minimize Ī(�|R) subject to 〈θ, �〉 ∈ C, � ∈ E(Z). (7.14)

(a) Take the probability measure R(dz) = e−z dz on the space Z = [0,∞) and θ(z) = z, z ∈ Z . The constraint to be consid-
ered is

〈θ, �〉 � c, � ∈ E(Z), (7.15)

for some c �
∫
[0,∞)

θ dR = 1. In restriction to PZ this gives
∫
[0,∞)

θ dP � c, P ∈ PZ . By (7.5), we have T ∗
o y(z) = yz for

each real y. This constraint is critical since
∫
[0,∞)

e yz R(dz) = 1/(1 − y) if y < 1 and +∞ if y � 1. In other words, θ

belongs to Lτ (R) but not to Eτ (R).
For each y < 1, denote P y(dz) := e yz−Λ(y) R(dz) with the normalizing factor Λ(y) := log

∫
[0,∞)

e yz R(dz) = − log(1 − y).
By Theorem 4.2, the unique solution of (7.14) is P y(c) where y(c) < 1 is the solution of the equation

Λ′(y) =
∫

[0,∞)

θ dP y = c (7.16)

that is y(c) = 1 − 1/c. We have shown that P̂ (dz) = e−z/c/c dz on [0,∞). Although the constraint is critical, P̂ has no
singular component.

(b) Consider almost the same problem where e−z dz is replaced by R(dz) = a
1+z3 e−z dz with a the unit mass normalizing

constant and where the constraint (7.15) holds for some c � co := ∫
[0,∞)

θ dR . It is shown in [11], by means of arguments
which are specific to the relative entropy, that (7.12) is not attained whenever c is large enough. Let us treat this
example with the results of the present paper in hand.
One sees that the constraint is critical since

∫
[0,∞)

e yz R(dz) < ∞ if y � 1 and +∞ if y > 1. Keeping the same notation

as in (a), one has to solve (7.16). As
∫
[0,∞)

θ dP y is an increasing function of y, one obtains
∫
[0,∞)

θ dP y �
∫
[0,∞)

θ dP1 =∫
[0,∞)

z
1+z3 dz/

∫
[0,∞)

dz
1+z3 := c∗ < ∞ for all y � 1 and (7.16) has no solution for c > c∗ . Nevertheless, the dual equality

states that the value of the minimizing problem with c � c∗ is equal to supy,s{yc + s − ∫
[0,∞)

(e yz+s − 1) R(dz)} =
supy{yc − Λ(y)} = c − Λ(1) which is finite for all c. Therefore, the problem (7.14) is attained and Theorem 4.2 tells us

that its solutions must have a nonzero singular part whenever c > c∗ . More precisely, in this case the solutions �̂ have
the following form

�̂ = P1 + �̂s

with �̂s ∈ Ls
τ and 〈�̂s, θ〉 = c − c∗ . Keeping the notation of Example 4.7, it has been seen at (4.8) that

∫
Sε

e yz R(dz) = ∞,

for any y > 1 and ε > 0. With R(Sε) < ε , this shows that one can choose Sε = [zε,∞) with limε→0 zε = +∞. With a
lot of abuse, one might say that the “support” of �̂s is “at infinity.”
Note that �̂ has a unit mass since 〈�̂s,1〉 = 0. It also follows from these considerations that the corresponding problem
(7.12) with the usual relative entropy shares the same unique solution with (7.14) when c � c∗ and has no solution
when c > c∗ .

(c) This is a variant of example (b). Consider du to be the uniform probability measure on [0,1] and the minimization
problem of the extended relative entropy Ī(π |du), π ∈ E([0,1]) under the constraint

∫
[0,1] Φ(u)π(du) � c. Taking

Φ = F −1 (7.17)

to be the reciprocal of the distribution function F (x) = ∫ x
0

a
1+z2 e−z dz of R as in (b), one sees that the solution π̂ = �̂ # F

admits a nonzero singular part if c > c∗ (�̂ # F is the image of �̂ by the mapping F ) and that the “support” of �̂s is {1}
in the sense that one can choose Sε = [1 − ε,1].
By means of this example, one can show that for any probability measure R with an infinite support (so that Eτ (R) �
Lτ (R)), one can find a real-valued constraint function θ which is critical and such that for some constraint interval
C = [c,∞), (7.12) has no solution while (7.14) admits solutions with a nonzero singular component.
Clearly, this also holds for any γ ∗ such that λ does not satisfy the Δ2-condition, see (2.6) and the comment below.



204 C. Léonard / J. Math. Anal. Appl. 346 (2008) 183–204
(d) This is a variant of example (c). Take the framework of example (b) at Section 7.3 with R the law of a Brownian motion
on the unit circle Z = R/Z with the uniform distribution du as its initial law. Clearly, this law is stationary: Rt(du) = du
for all 0 � t � 1, where Rt = R # ζt is the law of the position ζt at time t under R . In particular, R1(du) = du. We look
at problem (7.14) under the constraint〈

Φ(ζ1), �
〉
� c, � ∈ E(Z).

As a consequence of (c) above, if Φ is given at (7.17) this constraint is critical.
On the other hand, if Φ satisfies

∫
[0,1)

eα|Φ(u)| du < ∞ for all α, then the constraint is good and the unique solution
to (7.12) and (7.14) is

P̂ (·) =
∫

R/Z

Ru(·) π̂ (du) (7.18)

where Ru(dz) is the conditional law R(dz|z1 = u) (i.e. R uniquely disintegrates as R(·) = ∫
R/Z

Ru(·) R1(du)) and π̂ is
the unique solution to

minimize I(π |du) subject to

∫
R/Z

Φ dπ � c, π ∈ PR/Z,

whose solution is π̂ (du) = 1
N eω̃Φ(u) du for some real ω̃. The representation (7.18) is a direct consequence of the ten-

sorization property of the relative entropy: I(P |R) = I(P # ζ1|R # ζ1) + ∫
R/Z

I(P u |Ru)P # ζ1(du) together with the fact
that I(P u |Ru) = 0 if and only if P u = Ru .
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