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Abstract

We introduce a notion of join for (augmented) simplicial sets generalising the classical join
of geometric simplicial complexes. The de�nition comes naturally from the ordinal sum on the
base simplicial category �. c© 2000 Elsevier Science B.V. All rights reserved.

MSC: 18G30

1. Introduction

The theory of joins of (geometric) simplicial complexes as given by Brown [2], or
Spanier [13], reveals the join operation to be a basic geometric construction. It is used
in the development of several areas of geometric topology (cf. [8]) whilst also being
applied to the basic properties of polyhedra relating to homology.
The theories of geometric and abstract simplicial complexes run in a largely parallel

way and when describing the theory, expositions often choose which aspect – abstract
combinatorial or geometric – to emphasise at each step. Historically in algebraic topol-
ogy geometric simplicial complexes, as tools, were largely replaced by CW complexes
whilst the combinatorial abstract complex became part of simplicial set theory. In the
process, joins were neglected and there does not seem to be a well known de�nition
of the join of two simplicial sets.
Within the setting of simplicial set theory, the ordinal sum plays a strange rôle. This

operation takes two ordinals and concatenates them, so [m]or[n] = [m+ n+ 1], where
[m] = {0¡1¡ · · ·¡m}, so it is fundamental for the combinatorics of ordinals. In the
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literature on simplicial set theory it seems rarely to be mentioned, yet it is sometimes
there but hidden, for instance, in the W -construction for simplicial groups (see [11])
or simplicial groupoids (see [6]).
In this context it occurs through the use of the Artin–Mazur codiagonal [1], which

assigns to a bisimplicial set or group, a much smaller model of the homotopy type than
does the diagonal. (The diagonal is intuitively easier to use and tends to be “wheeled
out” whenever passage from bisimplicial objects to simplicial objects is needed; how-
ever, it may not always be the most e�cient tool to use.) This codiagonal is linked
with the total DEC functor [3, 5, 9, 12], which can be given explicitly in terms of the
ordinal sum.
In this brief note, it is shown that the ordinal sum leads naturally to a “join” oper-

ation on augmented simplicial sets, and the relation of this join to the geometric join
is studied.

2. De�nitions

It will be assumed that the reader is conversant in general with basic simplicial set
theory, in particular, the de�nition of the singular complex of a topological space, and
the geometric realisation of a singular complex. On the subject of notation, note that
the simplicial set which is called the n-simplex, 4[n], is the representable functor,
�(−; [n]). The simplicial set 4[n] will be referred to as the standard n-simplex.
The category of �nite ordinals will be denoted �: the ordinal {0¡1¡ · · ·¡n} will

be denoted [n] with the empty set being denoted by [−1].

De�nition 2. (i) Let fi : [pi] → [qi] for i=0; 1. De�ne the “ordinal sum” functor,
or : �2→�, as follows:-

or ([p0]; [p1])= [p0 + p1 + 1];

or (f0; f1)=
{
f0(k) if 0≤ k ≤p0;
f1(k − p0 − 1) + q0 + 1 if p0 + 1≤ k:

Note that [−1] is a two sided identity for the operation on objects.
(ii) An augmented simplicial set is a simplicial set, X , together with an augmenta-

tion, that is, a set X−1 and a morphism qX :X0→X−1, where qX d0 = qX d1.
There is an obvious forgetful functor from the category, ASS, of augmented simplicial

sets to that SS, of simplicial sets, cf. [5].
(iii) The canonical augmentation of a simplicial set has X−1 = �0(X ) and qX the

coequaliser of

X1
d0−→
d1−→
X0:

This augmentation is left adjoint to the forgetful functor.
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(iv) The trivial augmentation of a simplicial set has X−1 = ∗, the one point set, and
qX the unique (trivial) morphism X0→∗. This augmentation is right adjoint to the
forgetful functor.
(v) The geometric realisation de�ned on augmented simplicial sets is the compo-

sition of the forgetful functor to simplicial sets and the usual geometric realisation
functor to topological spaces.
(This is the only reasonable de�nition of a geometric realisation on augmented sim-

plicial sets, as the codomain of the augmentation is, in some sense, the image of the
empty set.)
(vi) The singular complex functor from topological spaces to augmented simplicial

sets is the composition of the normal singular complex functor, which is right adjoint
to the geometric realisation functor, with the trivial augmentation functor, right adjoint
to the forgetful functor.

It is automatic that the two functors so de�ned are adjoint.

3. Combinatorial join

The following is our proposed de�nition for a join of augmented simplicial sets.

De�nition 3. Let the join of two augmented simplicial sets X and Y be denoted X �Y .
The set of n-simplices, (X �Y )n, is

n⊔
i=−1

Xn−1−i×Yi

the face maps are given by

dni (x; y)=

{
(dpi x; y) if 0≤ i≤p;
(x; dn−p−1i−p−1 y) if p¡i≤ n;

where (x; y)∈Xp×Yn−p−1, and d00 is the augmentation (of X or Y ); lastly, the degen-
eracies are

sn−1i (x; y)=

{
(spi x; y) if 0≤ i≤p;
(x; sn−p−2i−p−1 y) if p¡i≤ n− 1;

where (x; y)∈Xp×Yn−p−2.
There is also a coend de�nition for �:

X �Y ∼=
∫ p; q

(Xp×Yq) · 4([p]or[q]):

Remark. It is trivial to prove that 4[n]�4[m]∼=4[n+m+1]. It is also true that �
is an associative operation, but the simplest proof requires a number of constructions
and results associated with the join which are not of immediate interest here.
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4. Topological join

The following de�nition is a generalisation of the concept of join for two suitable
subspaces of a vector space. The topological join thus de�ned is discussed in some
detail in chapter 5, Section 7 of [2]. Results proved there will be used here without
proof: the notation for this section is largely taken from there. We work within the
category of compactly generated spaces.

De�nition 4. Consider two topological spaces U and V; and construct a set of 4-tuples
(r; u; s; v), where u∈U; v∈V; r; s∈ [0; 1] and r + s=1: in the case that r=0, the u
will be ignored, and in the case that s=0, the v will be ignored. This set will be
suggestively called U ∗V.
There are obvious projections from this set of 4-tuples:

pU : U ∗V → U; pV : U ∗V → V; pr : U ∗V → (0; 1] and ps : U ∗V → (0; 1]
which are termed the coordinate functions of U ∗ V. The �rst two are obviously
de�ned, the last two take a point (r; u; s; v)∈U ∗V to r and s, respectively.
The topological join of U and V is de�ned as the set U ∗ V together with the

initial topology with respect to the coordinate functions. Thus a function with codomain
U∗V is a continuous function if and only if its composite with each of the coordinate
functions is continuous.
To compare the combinatorial and topological join operations, we will need more

precision on the construction of the geometric realisation. There are a number of dif-
ferent constructive de�nitions of geometric realisation. The process is essentially the
following:
(i) take one copy of 4n for each non-degenerate n-simplex of X ;

and then
(ii) glue them all together using the face and degeneracy maps of the simplicial set

X (see [10]). Explicitly we have
Let X be a simplicial set. De�ne RX by

RX =
⊔
n∈N

⊔
x∈Xn

4n
x :

De�ne an equivalence relation on RX as generated by the following relation: writing
(p; x) for (p0; : : : ; pm)∈4m

x and (q; y) for (q0; : : : ; qn)∈4n
y then (p; x) ∼ (q; y) if either

dix=y and �i(q0; : : : ; qn)= (p0; : : : ; pm) or

six=y and �i(q0; : : : ; qn)= (p0; : : : ; pm);

where the �i and �i are the continuous maps given by face inclusion and folding in
the usual way. Then |X | ∼=RX =∼ where RX =∼ has the identi�cation topology.

Proposition 4.1.

4p ∗ 4q∼=4p+q+1



P.J. Ehlers, T. Porter / Journal of Pure and Applied Algebra 145 (2000) 37–44 41

Proof. Consider the vector space Rp+q+1 and the two compact convex subsets

X =


(x0; x1; : : : ; xp; 0; : : : ; 0)

∣∣∣∣∣∣
p∑
i=0

xi=1


 ;

Y =


(0; : : : ; 0; y0; y1; : : : ; yq)

∣∣∣∣∣∣
q∑
j=0

yj =1


 :

First note that X ∼=4p and Y ∼=4q. Furthermore, it is clear that no two lines in the
set U = {rx + (1 − r)y | 0≤ r≤ 1; x∈X; y∈Y} intersect except at endpoints. Thus
X ∗ Y =U . However, U is the subset of Rp+q+1 given by

(rx0; : : : ; rxp; (1− r)y0; : : : ; (1− r)yq)
∣∣∣∣∣∣
p∑
i=0

rxi +
q∑
j=0

(1− r)yj =1

 :

That is, U is the a�ne (p+ q+ 1)-simplex. Therefore 4p ∗ 4q∼=4p+q+1.

When we form 4[p]�4[q], we obtain, on varying p and q, a bicosimplicial object
in SS. (In general if C is a category, a cosimplicial object in C is a functor from �
to C, whilst a bicosimplicial object is a functor from �×� to C.) Similarly 4p ∗4q

is a bicosimplicial space.

Lemma 4.2. There is a natural isomorphism

|4[p]| ∗ |4[q]| ∼= |4[p]�4[q]|
of bisimplicial spaces.

Proof. Recall |4[m]| :=4m. Since 4[p]�4[q]∼=4([p]or[q])=4[p + q + 1], the
isomorphism exists for each pair (p; q). Now {4n}n∈N has an obvious cosimplicial
structure, and the isomorphism is easily seen to be an isomorphism of bicosimplicial
spaces.

Theorem 4.3. Let X and Y be trivially augmented simplicial sets. Then

|X �Y | ∼= |X | ∗ |Y |:

Proof. (The following is a direct geometric proof: we will comment later on the cat-
egorical aspects.)
Recall that

|X | ∗ |Y | :=



r[(p0; : : : ; pm)x] s:t:

∑m

i=0
pi=1;

∑n

i=0
qi=1;

+s[(q0; : : : qn)y] x∈Xm; y∈Yn; r + s=1
pi; qi; r; s≥ 0
and [−] denotes equivalence class


 :
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It should also be noted that if r=0, the point from |X | is ignored and similarly, if
s=0; the point from |Y | is ignored.
De�ne a map f : |X | ∗ |Y |→ |X �Y | as follows:

f(r[(p0; : : : ; pm)x] + s[(q0; : : : ; qn)y]) 7→ [(rp0; : : : ; rpm; sq0; : : : ; sqn)x;y]:

The function f is well de�ned since if r=0, the point x is ignored, similarly if s=0.
This means that for any y, it must be true that (0; : : : ; 0; q0; : : : ; qn)(x;y)∼ (0; : : : ; 0; q0; : : : ;
qn)(x′ ;y) for all x; x′ ∈X . This will be true exactly when the augmentation of both X
and Y are trivial as was required. A moment’s thought then will show that the function
f respects the relation and so is well de�ned. Continuity is also trivial to check. The
obvious inverse function is also continuous under the de�nition of the topology on
|X | ∗ |Y |. Thus the two spaces are homeomorphic.

Remarks. (i) It may seem slightly contrived that the condition “trivially augmented”
should be needed, however consider the following example:
Let X :=4[0]t4[0] together with the canonical augmentation, and consider X �X .

The result is the disjoint union of four unit intervals – that is, 4[1]t4[1]t
4[1]t4[1]: Ideally, the result should be homotopically equivalent to a 1-sphere.
(ii) The Theorem above is in fact a simple consequence of a categorical argument

which shows a di�erent aspect of the necessity for having a trivial augmentation.
The singular complex functor to augmented simplicial sets needs to specify an aug-

mentation, and for the functor to be right adjoint to the geometric realisation functor,
the augmentation must be the trivial one (since the trivial augmentation is right adjoint
to the forgetful functor from augmented simplicial sets to simplicial sets). Thus the
condition “trivially augmented” merely requires that the augmented simplicial sets are
related to the geometric realisation functor upon which the theorem depends. The result
is now seen to depend just on left adjoints interacting nicely with the coends in the
geometric realisation and join functors.

5. Simplicial spheres

Recall (from [2]) that

Sp ∗ Sq∼=Sp+q+1:

This essentially says that the n-sphere in the category of topological spaces is the join
of n+ 1 copies of the 0-sphere.
There are several simplicial models for the n-sphere. For instance, Gabriel and Zis-

man [7, p. 26], de�ne the simplicial circle, 
, to be the coequaliser of the pair of
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morphisms

4[0]
�0−−−−−→

−−−−−→
�1

4[1];

and the suspension of a pointed simplicial set X to be 
 ∧ X . This gives an n-sphere
as being

∧n 
, obtained from the n-cube 4[1]n by collapsing the “boundary” of the
cube to a point. Other authors form a simplicial sphere by collapsing the boundary
@4[n] of the n-simplex to a point.
The join operation suggests another form. Consider the simplicial set formed as the

disjoint union of two copies of 4[0] and augmented trivially. This will be denoted
by S0 and will be referred to as the simplicial 0-sphere. Then S0�S0 has four non-
degenerate 1-simplices connected to each other in a “diamond” as below

De�ne the simplicial n-sphere, Sn ∈ obASS, as follows:
Sn := S0� · · ·� S0︸ ︷︷ ︸

n+1

:

It is clear from the de�nition of combinatorial join and of the simplicial 0-sphere that
the simplicial n-sphere is a triangulation of the topological n-sphere. In fact, Theo-
rem 4.3 gives explicitly that

|Sn| ∼=Sn:
Moreover, this model clearly satis�es

Sp� Sq∼= Sp+q+1

unlike the other models. Thus if we write �n=4[n]=@4[n] then �p��q has one
non-degenerate simplex in each of the dimensions 1; p+ 1; q+ 1, and p+ q+ 1, and
two non-degenerate simplices in dimension 0 and so “looks” totally unlike �p+q+1.
The combinatorial join forms part of a closed monoidal structure on the category of

augmented simplicial sets, ASS. (The “internal hom” is given by

[X; Y ]n=ASS(X;Decn+1Y );
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where Dec is the d�ecalage functor (see [5]).) It is therefore possible to de�ne aug-
mented analogues of the loopspace construction that are compatible with the join.
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