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We propose a simple �(27) ⊗ Z4 model where neutrinos are predicted to be Dirac fermions. The 
smallness of their masses follows from a type-I seesaw mechanism and the leptonic CP violating phase 
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dark matter candidate associated to the Dirac nature of neutrinos, in that the same Z4 lepton number 
symmetry also ensures dark matter stability.
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1. Introduction

Currently the information on neutrino properties comes mainly 
from neutrino oscillation experiments [1]. These are insensitive to 
whether neutrinos are Dirac or Majorana fermions [2–4]. The fact 
that the weak interaction is V-A turns the quest for lepton num-
ber violation and the Majorana nature of neutrinos into a major 
experimental challenge [5–7]. The detection of neutrinoless double 
beta decay would signify a major step forward in this endeavor. 
According to the black-box theorem [8,9] its observation would 
demonstrate that neutrinos are Majorana fermions and thus lep-
ton number is violated in nature.

Concerning the mechanism responsible for generating small 
neutrino masses, little is known regarding the nature of its as-
sociated messenger particles, their characteristic mass scale or 
other detailed features of the effective operator [10]. The small-
ness of neutrino masses almost always assumes them to be Ma-
jorana fermions. For example, this is the case in the conventional 
high-scale (type-I) [2,11–13] seesaw mechanism. Likewise in low-
scale variants of the seesaw mechanism as well as in radiative 
schemes, neutrinos turn out to be Majorana fermions, as reviewed 
in [14].

Having naturally light Dirac neutrinos requires extra assump-
tions beyond the standard SU(3)c ⊗ SU(2)L ⊗ U(1)Y electroweak 
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gauge invariance. One possibility is to extend the electroweak 
gauge group, for example, by using the SU(3)c ⊗ SU(3)L ⊗ U(1)X

group to exploit its peculiar features [16]. In this framework it has 
recently been shown that one can obtain a type-II seesaw mecha-
nism for Dirac neutrinos [17,18]. One can also use a B − L gauge 
extension with unconventional charges for right handed neutri-
nos, which leads to Dirac neutrinos obtained from type-I seesaw 
mechanism [19–21]. Alternatively one may stick to the simplest 
SU(3)c ⊗ SU(2)L ⊗ U(1)Y gauge structure but use extra symmetries 
implying a conserved lepton number, so as to obtain Dirac neu-
trinos, as suggested in [22]. One can also adopt extra-dimensional 
theory frameworks [15].

Here we focus on the possibility of requiring that neutrino 
masses arise from a simple type-I seesaw mechanism within a 
flavor-symmetric scenario. Moreover we will also require that the 
existence of a viable dark matter particle arises from the same 
symmetry which ensures that neutrinos do not acquire Majo-
rana masses and remain Dirac fermions. In Sect. 2 we sketch in 
some detail the extended particle content required to realize the 
non-Abelian flavor symmetry of the model and demonstrate how 
the Dirac nature of neutrinos and the smallness of their seesaw-
induced masses follow from our non-Abelian discrete flavor sym-
metry. In Sect. 3 we present numerical predictions for CP vio-
lation in terms of the scalar boson alignment patterns. Towards 
the end of the paper, in Sect. 4, we discuss the appearance of 
viable dark matter in this model and give a brief discussion of 
its direct detection potential. Finally we summarize our results in 
Sect. 5.
 under the CC BY license (http://creativecommons.org/licenses/by/4.0/). Funded by 
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Table 1
The �(27) and Z4 charge assignments for leptons, the Higgs scalars (�i , χi ) and 
the dark matter sector scalars (ζ and η). Here z is the fourth root of unity, i.e. 
z4 = 1.

Fields �(27) Z4 Fields �(27) Z4

L̄e 1 z3 νe,R 1 z
L̄μ 1′′ z3 νμ,R 1′ z
L̄τ 1′ z3 ντ,R 1′′ z
li,R 3 z N̄i,L 3 z3

Ni,R 3′ z

�i 3′ 1 χi 3′ 1
ζ 1 z η 1 z2

2. The model

Our model is based on the discrete flavor symmetry �(27) ⊗ Z4
where Z4 is the cyclic group of order four and �(27) is a discrete 
non-Abelian symmetry group isomorphic to (Z3 ⊗ Z3) � Z3. Be-
fore presenting the details of the model, we briefly discuss the 
most relevant features of the �(27) group. The �(27) group be-
longs to the general class of discrete groups denoted by �(3N2), 
with N being a positive integer. The smallest member of �(3N2)

is �(3) which is nothing but the Abelian group Z3. The next mem-
ber is �(12) which is isomorphic to the well-known group A4. The 
third smallest member of the group is �(27) and has 27 elements 
divided into 11 conjugacy classes [22–25]. It has nine singlet irre-
ducible representations 1i ; i = 1, . . . 9 and two triplet irreducible 
representations 3 and 3′ .1 The multiplication rules for �(27) are 
given by

3 ⊗ 3 = 3′ ⊕ 3′ ⊕ 3′ ; 3 ⊗ 3′ =
9∑

i=1

1i . (1)

The particle content of our model along with the �(27) ⊗ Z4
charge assignments of the particles are as shown in Table 1.

In Table 1 Li = (νi, li)
T ; i = e, μ, τ are the lepton doublets 

which also transform as singlets under �(27) and have charge 
z under Z4. The li,R ; i = e, μ, τ are the charged lepton singlets 
which transform as a 3 under �(27) and have Z4-charge z. Apart 
from the Standard Model fermions, the model also includes three 
right-handed neutrinos νi,R transforming as singlets under the 
SU(3)c ⊗ SU(2)L ⊗ U(1)Y gauge group and as singlets under �(27), 
with charge z under Z4. We also add three gauge singlet Dirac 
fermions Ni,L , Ni,R ; i = 1, 2, 3 transforming as triplets of �(27)

and with charge z under Z4, as shown in Table 1.
In the scalar sector the �i = (φ+

i , φ0
i )T ; i = 1, 2, 3 transform 

as SU(2)L doublets, as triplet under �(27) and trivially under Z4. 
On the other hand the scalars χi ; i = 1, 2, 3 are gauge singlets 
transforming as a triplet under �(27) and trivially under Z4. We 
also add two other gauge singlet scalars ζ and η both of which 
transform trivially under �(27) but carry Z4 charges z and z2 re-
spectively. Since z2 = −1, the field η can be real and is taken to 
be real. We comment on the important role of the scalars ζ and 
η towards the end of the paper. The SU(3)c ⊗ SU(2)L ⊗ U(1)Y ⊗
�(27) ⊗ Z4 invariant Yukawa term for the charged leptons is given 
by

LYuk,l = y1
(
L̄e

)
1 ⊗

⎡
⎣

⎛
⎝

le,R

lμ,R

lτ ,R

⎞
⎠

3

⊗
⎛
⎝

�1
�2
�3

⎞
⎠

3′

⎤
⎦

1

1 Here we denote the irreducible representations of �(27) as in [22], instead of 
the alternative “two index” notation used in [25]. The two are related by: 1 ≡ 1(0,0) , 
1′ ≡ 1(2,0) , 1′′ ≡ 1(1,0) , 3 ≡ 3(0,1) , 3′ ≡ 3(0,2) .
+ y2
(
L̄μ

)
1′′ ⊗

⎡
⎣

⎛
⎝

le,R

lμ,R

lτ ,R

⎞
⎠

3

⊗
⎛
⎝

�1
�2
�3

⎞
⎠

3′

⎤
⎦

1′

+ y3
(
L̄τ

)
1′ ⊗

⎡
⎣

⎛
⎝

le,R

lμ,R

lτ ,R

⎞
⎠

3

⊗
⎛
⎝

�1
�2
�3

⎞
⎠

3′

⎤
⎦

1′′

(2)

where yi , i = 1, 2, 3, are the Yukawa couplings which, for simplic-
ity, we take them to be real. After symmetry breaking the scalars 
acquire vacuum expectation values (vevs) 〈�i〉 = vi ; i = 1, 2, 3 so 
the charged lepton mass matrix is given by

Ml =
⎛
⎝

y1 v1 y1 v2 y1 v3

y2 v1 ωy2 v2 ω2 y2 v3

y3 v1 ω2 y3 v2 ωy3 v3

⎞
⎠ . (3)

The corresponding Yukawa term, relevant for generating masses for 
the neutrinos and the heavy neutral fermions NL , NR is given by

LYuk,ν = a1
(
L̄e

)
1 ⊗

⎡
⎣

⎛
⎝

�̃1

�̃2

�̃3

⎞
⎠

3

⊗
⎛
⎝

N1,R

N2,R

N3,R

⎞
⎠

3′

⎤
⎦

1

+ a2
(
L̄μ

)
1′′ ⊗

⎡
⎣

⎛
⎝

�̃1

�̃2

�̃3

⎞
⎠

3

⊗
⎛
⎝

N1,R

N2,R

N3,R

⎞
⎠

3′

⎤
⎦

1′

+ a3
(
L̄τ

)
1′ ⊗

⎡
⎣

⎛
⎝

�̃1

�̃2

�̃3

⎞
⎠

3

⊗
⎛
⎝

N1,R

N2,R

N3,R

⎞
⎠

3′

⎤
⎦

1′′

+ b1

⎡
⎣

⎛
⎝

N̄1,L

N̄2,L

N̄3,L

⎞
⎠

3

⊗
⎛
⎝

χ1
χ2
χ3

⎞
⎠

3′

⎤
⎦

1

⊗ (
νe,R

)
1

+ b2

⎡
⎣

⎛
⎝

N̄1,L

N̄2,L

N̄3,L

⎞
⎠

3

⊗
⎛
⎝

χ1
χ2
χ3

⎞
⎠

3′

⎤
⎦

1′′

⊗ (
νμ,R

)
1′

+ b3

⎡
⎣

⎛
⎝

N̄1,L

N̄2,L

N̄3,L

⎞
⎠

3

⊗
⎛
⎝

χ1
χ2
χ3

⎞
⎠

3′

⎤
⎦

1′

⊗ (
ντ,R

)
1′′

+ M

⎛
⎝

N̄1,L

N̄2,L

N̄3,L

⎞
⎠

3

⊗
⎛
⎝

N1,R

N2,R

N3,R

⎞
⎠

3′
(4)

where ai , bi ; i = 1, 2, 3 are the Yukawa couplings which are taken 
to be real. The parameter M is the gauge and flavor-invariant 
mass term for the heavy leptons. After symmetry breaking the 
scalars χi also acquire vevs 〈χi〉 = ui ; i = 1, 2, 3. The 6 × 6
mass matrix for the neutrinos and the heavy fermions in basis 
(ν̄e,L, ̄νμ,L, ̄ντ,L, N̄1,L, N̄2,L, N̄3,L) and (νe,R , νμ,R , ντ,R , N1,R , N2,R ,

N3,R)T is given by

Mν,N =

⎛
⎜⎜⎜⎜⎜⎜⎝

0 0 0 a1 v1 a1 v2 a1 v3

0 0 0 a2 v1 ωa2 v2 ω2a2 v3

0 0 0 a3 v1 ω2a3 v2 ωa3 v3
b1u1 b2u1 b3u1 M 0 0
b1u2 ωb2u2 ω2b3u2 0 M 0
b1u3 ω2b2u3 ωb3u3 0 0 M

⎞
⎟⎟⎟⎟⎟⎟⎠

(5)

The invariant mass term M for the heavy leptons NL , NR can be 
naturally much larger than the symmetry breaking scales appear-
ing in the off-diagonal blocks, i.e. M 	 vi, ui . In this limit the mass 
matrix in (5) can be easily block diagonalized by the perturbative 
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Fig. 1. The Dirac type-I seesaw mechanism. �i and χi are triplets under �(27).

seesaw diagonalization method given in [26]. The resulting 3 × 3
mass matrix for light neutrinos can be viewed as the Dirac ver-
sion of the well known type-I seesaw mechanism. The above mass 
generation mechanism can also be represented diagramatically as 
shown in Fig. 1.

The 3 × 3 light neutrino mass matrix along with the charged 
lepton mass matrix (3) have enough free parameters to account for 
all the observed mass and mixing parameters in the lepton sector. 
As has been discussed in several previous works [22–24,27–29], for 
�(27) we focus on the vev alignment v1 = v2 = v3 = v and u1 =
u2 = u3 = u as a reference case. Taking this “double alignment” 
limit for the vevs of the scalars the charged lepton mass matrix Ml
is given by

Ml = v

⎛
⎝

y1 y1 y1

y2 ωy2 ω2 y2

y3 ω2 y3 ωy3

⎞
⎠ , (6)

and can be easily diagonalized from right by the familiar “magic 
matrix” Uω given by

Uω = 1√
3

⎛
⎝

1 1 1
1 ω ω2

1 ω2 ω

⎞
⎠ . (7)

This leads to

Ml . U †
ω =

⎛
⎝

√
3v y1 0 0
0

√
3v y2 0

0 0
√

3v y3

⎞
⎠ . (8)

Likewise, the neutral fermion mass matrix Mν,N in the above 
alignment limit is given by

Mν,N =

⎛
⎜⎜⎜⎜⎜⎜⎝

0 0 0 a1 v a1 v a1 v
0 0 0 a2 v ωa2 v ω2a2 v
0 0 0 a3 v ω2a3 v ωa3 v

b1u b2u b3u M 0 0
b1u ωb2u ω2b3u 0 M 0
b1u ω2b2u ωb3u 0 0 M

⎞
⎟⎟⎟⎟⎟⎟⎠

(9)

As mentioned before the invariant mass term M for the heavy 
fermions NL , NR is naturally expected to be much larger than the 
symmetry breaking scale i.e. v, u � M . In such limit the mass ma-
trix in (10) can be easily block-diagonalized. The resulting 3 × 3
mass matrix for the light neutrinos assuming such simplest align-
ment is given by

Mν = u v

M

⎛
⎝

3a1b1 0 0
0 0 3a2b3
0 3a3b2 0

⎞
⎠ (10)

Clearly the light neutrino mass matrix in Eq. (10) is inconsistent 
with the current neutrino oscillation data [30] and needs to be 
modified.

In order to obtain a realistic light neutrino mass spectrum one 
must generalize the above vev-alignment pattern i.e. v1 = v2 =
v3 = v and ui = u j = u, uk �= u where i, j, k = 1, 2, 3. Thus in our 
generalized ansatz we keep the alignment for the isodoublet scalar 
vevs unchanged, but modify the isosinglet scalars vev alignment. 
Such a generalization is not unfounded since the scalar sector of 
our model is much richer than that characterizing the simpler case 
of only one type of scalars transforming as �(27) triplets, dis-
cussed in [22–24,27]. In contrast to previous models we have two 
different types of scalars namely �i and χi both transforming as 
triplets under �(27). The resulting scalar potential is rich enough 
to allow for other possible vev alignments to be realized.

We find that any of the three possible choices namely u1 =
u2 = u, u3 �= u; u2 = u3 = u, u1 �= u; u1 = u3 = u, u2 �= u can give 
realistic neutrino mass matrices. However, for definiteness and to 
avoid unnecessary repetition henceforth we focus on the choice 
u1 = u3 = u, u2 �= u. Towards the end of the discussion we will 
comment on the similarities and differences in results for other 
possibilities.

Since we have kept the vev alignment for the �i fields un-
changed it follows that the charged lepton mass matrix Eq. (6)
also remains unchanged. As a result it can still be diagonalized 
by a “magic” rotation from the right as shown in (8). The 6 × 6
neutral fermion mass matrix now becomes

Mν,N =

⎛
⎜⎜⎜⎜⎜⎜⎝

0 0 0 a1 v a1 v a1 v
0 0 0 a2 v ωa2 v ω2a2 v
0 0 0 a3 v ω2a3 v ωa3 v

b1u b2u b3u M 0 0
b1u2 ωb2u2 ω2b3u2 0 M 0
b1u ω2b2u ωb3u 0 0 M

⎞
⎟⎟⎟⎟⎟⎟⎠

(11)

As before this mass matrix can be block-diagonalized in the ap-
proximation v, u, u3 � M . The resulting light three-neutrino mass 
matrix is

Mν = v

M

×
⎛
⎝

a1b1(2u + u2) a1b2(u + ω2u + ωu2) a1b3(u + ωu + ω2u2)

a2b1(u + ω2u + ωu2) a2b2(u + ωu + ω2u2) a2b3(2u + u2)

a3b1(u + ωu + ω2u2) a3b2(2u + u2) a3b3(u + ω2u + ωu2)

⎞
⎠

(12)

3. CP violation

The neutrino mass matrix in Eq. (12) can be diagonalized nu-
merically and leads to neutrino masses and mixing angles con-
sistent with neutrino oscillation experiments [30] as well as cos-
mological limits [31]. Here we present our numerical results for 
CP violation in this model. Notice that from the beginning, we 
have assumed real Yukawa couplings. If we also take a real scalar 
potential, leptonic CP violation must arise solely by the complex 
nature of the �(27) flavor symmetry. Indeed, one finds that, with 
our generalized alignment the resulting neutrino mass matrix (12)
leads to no CP violation and in terms of standard parametrization 
of neutrino mixing matrix [30], one has δC P = 0, ±π for the CP 
phase. The latter implies that the Jarlskog invariant J C P , which in 
the standard PDG parametrization2 is given by

JC P = 1

8
sin 2θ12 sin 2θ23 sin 2θ13 cos θ13 sin δC P ,

vanishes.
Recent experimental results have predicted a slight preference 

for δC P �= 0, ±π implying CP violation in lepton sector [30]. If this 
indeed is the case then one must consider deviations from the 

2 For a recent discussion of fermion mixing parametrizations see [32].
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Fig. 2. Leptonic CP violation phase δC P versus ε , the deviation from the reference alignment. For the left panel we have taken α = 1.2 whereas in the right panel the α = 2.5
is taken. See text.
generalized alignment limit. For example, if we consider small de-
viation of the type u1 = u, u3 = u(1 + ε), u2 = u(1 +α) then finite 
CP violation can indeed be generated even for real ε and α, as 
shown in Fig. 2 and 3. The source of CP violation can be traced 
to the complex parameter ω, where ω is cube root of unity with 
ω3 = 1.

As can be seen from the figures, when ε = 0, δC P = 0, −π and 
J C P = 0 implying no CP violation. As we deviate from our refer-
ence alignment limit CP violation is generated with J C P �= 0. The 
magnitude of the CP violation parameter is directly proportional to 
the deviation ε from the alignment limit as well as the parameter 
α which measures the deviation of u2 from u1 i.e. u2 = u1(1 + α). 
In plotting Fig. 2 we have randomly varied all other free param-
eters, namely the vevs and Yukawa couplings. All the Yukawa 
couplings are varied between −0.5 to 0.5, the u1 vev is varied 
between 700 to 800 GeV and the u2 vev is taken to be u1(1 + α).

For a given value of α the magnitude of CP violation is directly 
correlated to ε as is clear from Fig. 2 and Fig. 3. In Fig. 2 we show 
the deviation of δC P with respect to ε for fixed values of α. The 
dependence of the Jarlskog invariant J C P with respect to ε , for 
fixed values of α, is shown in Fig. 3. For the left panel of both fig-
ures, we have fixed α = 1.2 while for right panel we took α = 2.5. 
As is clear from a comparison of the two panels, the magnitude 
of CP violation not only depends on ε but also on the value of α. 
For smaller values of α the deviation is sharper than for larger val-
ues. In the left panels of the two figures, where a relatively smaller 
value of α is taken, the δC P as well as J C P changes rapidly with 
ε and maximal CP violation corresponding to δC P = −π/2 is ob-
tained for ε ≈ 0.45. Further increase in ε values results in decrease 
in CP violation as can be inferred from the decreasing value of J C P

in Fig. 3. The J C P eventually falls back to zero with δC P = 0, −π/2, 
when ε = α which again corresponds to the reference alignment 
with u3 now being equal to u2. In the right panels of Fig. 2 and 
Fig. 3, the δC P and J C P are plotted with respect to ε for a fixed 
values of α = 2.5. The nature of the departures of both δC P and 
J C P is similar to what is seen in the left panels, but now the slope 
of the deviation is smaller. For α = 2.5 maximal CP violation is 
achieved for higher value of ε ≈ 0.95. Just like for the left panels, 
further increase in ε beyond 0.95 leads to decrease in CP violation 
with the case of no CP violation i.e. J C P = 0 with δC P = 0, −π/2
again achieved for ε = α corresponding to the alignment u3 = u2. 
Notice that, although here we are presenting results only for pos-
itive values of ε we mention that negative values of ε are equally 
viable. If we take ε < 0 then the essential features of Fig. 2 and 3
are reproduced but for positive values of δC P and J C P . This means 
that as ε deviates more and more from zero on the negative side, 
both δC P and J C P start deviating more and more from the CP con-
serving case but along the positive direction. Again the departure 
depends also on the value of α with smaller values of α leading 
to sharper deviation with respect to ε .

Finally before closing this section let us briefly remark on 
other possible alignment choices, e.g. u1 = u, u2 = u(1 + ε′), u3 =
u(1 + α′) where ε′ and α′ parametrize the deviations of u2, u3
from u, respectively. As in the previous case, here also for the case 
of perfect alignment i.e. for ε′ = 0 we have no CP violation with 
δC P = 0, ±π and J C P = 0. Also as before when ε′ deviates from 
zero in either direction we generate CP violation. However, unlike 
the previous case, the nature of the correlation in this case is dif-
ferent, since for ε′ > 0 both δC P and J C P acquire positive values, 
whereas for ε′ < 0 both δC P , J C P < 0. This behaviour is opposite to 
that found in previous, case where for ε > 0 we had δC P , J C P < 0
and for ε < 0 we had δC P , J C P > 0. Apart from this, other features 
of the previous case like the dependence on ε′ and α′ are qual-
itatively realized in this case also. Finally, for the third alignment 
choice i.e. u2 = u, u3 = u(1 + ε′), u1 = u(1 + α′) the qualitative 
nature of CP violation with respect to alignment deviation is essen-
tially the same as shown in Fig. 2 and Fig. 3. To avoid unnecessary 
repetition we refrain from discussing these two alignment choices 
in more detail.

4. WIMP scalar dark matter candidate

Here we recall the dark matter features of the model, which 
employs similar ingredients as the simplest prototype model con-
sidered in [33]. In this section we briefly consider the role of the 
scalars ζ and η, which are singlets under the SU(3)c ⊗ SU(2)L ⊗
U(1)Y gauge group, transform trivially under �(27), but carry Z4
lepton quarticity charges z and z2 respectively. If ζ and η are 
removed, the Lagrangian of the model presents a larger symme-
try associated to SU(3)c ⊗ SU(2)L ⊗ U(1)Y ⊗ �(27) ⊗ U (1) where 
U (1) is a continuous global symmetry which may be interpreted 
as a generalized global lepton number. However, in the presence 
of the scalars ζ and η one can write following Z4 invariant terms 
in the scalar potential

η2, η ζ 2, η4, ζ 4, η2 ζ ∗ ζ + h.c. (13)

Notice that all these terms are Z4 invariant but break the global 
U (1) invariance so the remaining family symmetry group is just 
�(27) ⊗ Z4.3 On the other hand note that the field η also couples 
to the right handed neutrinos through a Z4 invariant term

ν̄c
i,R ν j,R η + h.c. (14)

3 We do not bother writing the other scalar potential terms which are also in-
variant under the global U(1).
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Fig. 3. The Jarlskog invariant J C P versus the deviation from alignment ε . The range of variation of other free parameters is the same as in 2. For the left panel we have taken 
α = 1.2 whereas in the right panel we take α = 2.5.
Fig. 4. Interaction between the dark matter candidate ζ and the right handed neu-
trinos, mediated by the exchange of the scalar η.

Since this Yukawa coupling is only Z4 invariant, it breaks the con-
tinuous U (1) symmetry. Due to the couplings of η to the scalar ζ
in Eq. (13) and to right handed neutrinos as in Eq. (14), the latter 
also couple to ζ as shown in Fig. 4.

Note that the flavor symmetry �(27) breaks spontaneously 
when the �(27) triplet scalars �i and χi acquire nonzero vevs. 
However, since neither �i nor χi carries the Z4 charge, and ζ and 
η are assumed not to acquire any vev, one finds that the Z4 re-
mains unbroken. This implies that the neutrinos retain their Dirac 
nature, since Majorana mass terms are forbidden by the unbro-
ken Z4.

As a result one finds that the field ζ can act as a stable particle 
and hence a potential candidate for the cosmological dark matter. 
This implies that there is no term of the form ζρiρ j or of the 
form ζψiψ j , where ρi , ρ j stand for other scalars and ψ j , ψi denote 
generic fermions. Thus, the residual Z4 symmetry responsible for 
the Dirac nature of neutrinos also ensures the stability of the ζ
making it a potentially viable dark matter candidate.

Although ζ is stable, and without direct tree level coupling to 
fermions, due to the model symmetry, it still interacts with other 
scalars through quartic potential terms of the type ζ ∗ζρ

†
i ρ j and 

also couples to right handed neutrinos through exchange of η as 
shown in Fig. 4. These terms imply that two dark matter parti-
cles can annihilate into two other scalars, potentially leading to 
the correct relic density for dark matter [21,37]. Also, the dark 
matter interaction with the Higgs (h)4 can be used to detect it by 
experiments searching for nuclear recoil [21] induced by Higgs bo-
son exchange. Moreover, if the dark matter mass obeys mζ < mh/2
then it can lead to invisible decay of Higgs. Both nuclear recoil 
experiments such as LUX [34] and PandaX [35] as well as LHC 
searches for invisibly decaying Higgs boson [36,38] lead to strin-
gent constraints on the Higgs dark matter coupling as shown in 
Fig. 5. In plotting Fig. 5, we have taken the constraints from the 
latest ATLAS searches for invisible Higgs decays [36], since the 

4 We denote the 125 GeV scalar discovered at LHC in 2012 as the Higgs. In our 
model it will be an admixture of the scalars �i and χi .
Fig. 5. The experimental sensitivity of our WIMP scalar dark matter candidate to 
invisible Higgs decay and direct detection. The light shaded region is ruled out by 
LUX (black continuous line) [34] and PandaX (blue dashed line) [35] data whereas 
the dark shaded region is ruled out by the bound on the Higgs invisible decay width 
from the LHC [36].

ATLAS constraint is more stringent than that of CMS [38]. Con-
cerning constraints from nuclear recoil experiments, the LUX [34]
and PandaX [35] experimental constraints are taken, assuming that 
the nucleon Higgs coupling and the nucleon mass parameters are 
the same as in [33]. Our treatment for dark matter constraints fol-
lows closely Ref. [33] which should be consulted for further details. 
Thus ζ realizes a “Higgs portal” dark matter scenario. This type of 
dark matter, charged under a given discrete symmetry, has been 
previously studied in several papers and shown to provide a vi-
able dark matter scenario [21,37,39,40]. Another implication of our 
model is the conservation of the Z4 charge in the presence of lep-
ton number violation [41,42]. The fact that η is a real scalar field 
which couples to right handed neutrinos, means that its decay to 
two neutrinos or two antineutrinos would potentially generate a 
lepton asymmetry in the Universe. The possibility of leptogenesis 
with a conserved Z4 lepton number has indeed been pointed out 
in [43]. Clearly this scenario deserves more work.

5. Discussion and summary

We have suggested a simple flavor model based on the �(27)

group, in which the light neutrinos are Dirac fermions and the 
smallness of their masses results from a type-I seesaw mechanism. 
Leptonic CP violation is related to the pattern of flavor symmetry 
breaking, described through the Higgs vacuum expectation values 
alignment, as shown in Figs. 2 and 3 above. The scheme naturally 
leads to a WIMP dark matter candidate which is made stable by 
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the same discrete lepton number Z4 symmetry which makes neu-
trinos to be Dirac particles. In short, dark matter stability emerges 
from the lepton quarticity which also ensures the Dirac nature of 
neutrinos. A detailed study of its discovery potential in direct and 
indirect detection experiments will be presented elsewhere. Before 
closing let us also mention that our model can easily be gener-
alized by including vector-like quarks, so as to accommodate the 
recent diphoton hint seen by the ATLAS and CMS collaborations. 
It would be identified with one of the scalars in the χ multiplet, 
very much along the lines of Refs. [44,45]. In this paper we have 
discussed leptons only. Quarks can be introduced in a trivial way 
as flavor singlets, along with a new Higgs scalar multiplet. This 
Higgs scalar can be forbidden to couple with leptons by an addi-
tional Z2 symmetry in a way akin to the lepton specific two Higgs 
doublet model [46]. This way the quark and lepton sectors would 
be clearly independent, without any predictions for the CKM ma-
trix. In contrast, obtaining successful CKM predictions by assigning 
non-trivial charges in the quark sector constitutes a challenge be-
yond the scope of this paper.
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