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Abstract

We show how a certain type of CW simplicial resolutions of spaces by wedges of spheres may
be constructed, and how such resolutions yield an obstruction theory for a given space to be a loop
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1. Introduction

A simplicial resolution of a spac& by wedges of spheres is a simplicial spd¥g
such that (a) each spad¥, is homotopy equivalent to a wedge of spheres, and (b) for
eachk > 1, the augmented simplicial group W, — m; X is acyclic (see Definition 3.5
below). Such resolutions, first constructed by Chris Stover in [36, Section 2], are dual to
the “unstable Adams resolutions” of [11, I, Section 2], and have a number of applications:
see Section 3 below and [36,13,14,1,5-7].

However, the Stover construction yields very large resolutions, which do not lend
themselves readily to computation, and no other construction was hitherto available. In
particular, it was not clear whether one could find minimal resolutions of this type. The
purpose of this note is to show that any spacéas simplicial resolutions by wedges of
spheres, which may be constructed from purely algebraic data, consisting of an (arbitrary)
simplicial resolution ofr, X as alT-algebra—that is, as a graded group with an action on
the primary homotopy operations on it (see Definition 3.1 below):
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Theorem A. Every free simpliciall7-algebra resolution of a realizablél -algebraw, X
is realizable topologically as a simplicial resolution by wedges of spheres.

In fact such resolutions can be given a convenient “CW structure” (Definition 3.11).
There is an analogous result for maps (Theorem 3.17).

Sincenosuch resolution of a non-realizahblie-algebra can be realized (see Remark 3.12
below), this completely determines which free simplicidtalgebra resolutions are
realizable.

Theorem A implies that in the spectral sequences of [36,1,13] we can work with minimal
resolutions, and allows us to identify the higher homotopy operations of [5—7] as lying in
appropriate cohomology groups (compare [6, 4.17] and [8, Section 6]). A generalization
of Theorem A to other model categories appears in [9].

As an application of such CW resolutions, we describe an obstruction theory for deciding
whether a given spack is a loop space, in terms of higher homotopy operations. One such
theory was given in [7], but the present approach does not require aliggace structure
on X, and may be adapted also to the existenca,gbtructures (and thus subsumes [6]).
Itis summarized in

Theorem B. A spaceX with trivial Whitehead products is homotopy equivalent to a
loop space if and only if the higher homotopy operations of DefinBigbelow vanish
coherently.

Notation and conventions. Gp will denote the category of group$, that of topological
spaces, and, that of pointed topological spaces with base-point preserving maps. The full
subcategory of 0-connected spaces will be denoted. lay 7,.. The category of simplical
sets will be denoted by and that of pointed simplicial sets I#; we shall use boldface
letters:X, S”, ...to denote objects in any of these four categorieg..IX — Y isamapin

one of these categories, we denotefayr. X — n.Y the induced map in the homotopy
groups.

Organization. In Section 2 we review some background on simplicial objects and
bisimplicial groups, and in Section 3 we recall some factsIbralgebras, and prove

our main results on CW resolutions of spaces by wedges of spheres: Theorem A
(= Theorem 3.16) and Theorem 3.17. In Section 4 we define a certain cosimplicial
simplicial space up-to-homotopy, which can be rectified if and onk i§ a loop space. In
Section 5 we construct a certain collectiorfade-codegeneracy polyhedreahich are used

to define the higher homotopy operations refered to in Theorem BHeorem 5.6). We

also show how the theorem may be used in reverse to calculate a certain tertiary operation
in .S’

2. Simplicial objects

We first provide some definitions and facts on simplicial objects:
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Definition 2.1. Let A denote the category of ordered sequences(0, 1, ..., n) (n € N),
with order-preserving maps. gimplicial objeciover a categorg is a functorX : A°? — C,
usually writtenX,, which may be described explicitly as a sequence of objeGty’? ; in
C, equipped with face mapﬁi" X — Xy—1 and degeneracieﬁ ' X — Xg41 (usually
written simply d;, s;, for 0 < i, j < k), satisfying the usual simplicial identities [26,
Section 1.1]. Ifl = (i1, i2, ..., i,) is some multi-index, we writd; ford;; od;, o --- o d;,,
with dy :=id; and similarly fors;. An augmentedimplicial object is one equipped with
an augmentation: Xo — Y (for Y € C), with edp = ¢d;.

The category of simplicial objects ovéris denoted bysC. We write s.,,C for the
category:-simplicial objectoverC (that is, objects of the forriX; }; _,, with the relevant
face maps and degeneracies), and denote the truncation fuicters,,C by t,.

For technical convenience in the next two sections we shall be working mainly in the
category of simplicial groups, denoted gy(rather than'Gp); objects inG will be denoted
by capital lettersX, Y, and so on. A simplicial objecX, = (Xo, X1, ...) in sG is thus
a bisimplicial group, which has aexternalsimplicial dimension (the: in X, € G), as
well as theinternal simplicial dimensiork (insideG), which we shall denote b@(n)ikm, if
necessary.

Simplicial sets and groups. The standara-simplex inS is denoted byA[r], generated
by o, € Aln],. Aln] denotes the sub-object af(n] generated byl;o,, (0<i < n). The
simplicialn-sphere is

S™:= A[n)/Aln],
and then-disk is

D :=cs" L

Let F:S — G denote the (dimensionwise) free group functor of [28, Section 2], and
G :S — G be Kan’s simplicial loop functor (cf. [26, Definition 26.3]), with :G — S
the Eilenberg—MacLane classifying space functor (cf. [26, Section 21]). Recall that if
S:7T — S is the singular set functor arjg— || : S — 7 the geometric realization functor
(see [26, Section 1,14]), then the adjoint pairs of functors

T2s852g (2.1)
=1 w
induce isomorphisms of the corresponding homotopy categories (see [29, |, Section 5]), so
that for the purposes of homotopy theory we can wor¥ irather thar .
Definition 2.2. In particular,8” := F§" 1 € G for n > 1 (and8® := G S° for n = 0) will
be called the:-dimensionalj-sphere in as much as
[8",GX]; =m X =[S", X]

for any Kan complexX € S. Similarly, D" := FD"~* will be called then-dimensional
G-disk
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Definition 2.3. In any complete categoiy, thematching objectunctor M : S x sC —
C, written M4 X, for a (finite) simplicial setA € S and X, € sC, is defined by requiring:
(@) MapyXe := X,, and (b) if A = colim; A;, then M4 X, = lim; M4, X, (see [15,
Section 2.1]). In particular, m’,; is the subcomplex ofi[n] generated by the lagt —k + 1)
faces(dioy, ..., dyo,), we WriteM,’fx. for MA;nc X.: explicitly, in G we have

MEXo={(xk, .o x0) € Xp)" P dixj =dj_axi forallk <i < j<n}  (2.2)

and the map¥ : X,, — M*X, induced by the inclusiom® < A[n] is defineds® (x) =
(drx,...,dyx). The original matching object of [11, X, Section 4.5] was,g’x. =
MA[n]X., which we shall further abbreviate #, X,; each face map: X,,11 — X,
factors througls, := 8,?. See also [20, XVII, 87.17].

Remark 2.4. Note that forX € G andA € S we haveM 4 X = Homg(F A, X) € Gp (cf.
Section 2), so foX, € sG also

(MaX)x = Homg (FA, (Xo)M)

in each simplicial dimensioh.

Definition 2.5. X, € sG is calledfibrantif each of the map$,,: X,, > M, X, (n > 0) is

a fibration inG (that is, a surjection onto the identity component—see [29, II, 3.8]). This
is just the condition for fibrancy in the Reedy model category (see [31]), as well as in that
of [14], but we shall not make explicit use of either.

By analogy with Moore’s normalized chains (cf. [26, 17.3]) we have:

Definition 2.6. Given X, € sG, we define the:-cyclesobject of X,, written Z,, X,, to be
the fiber ofs,: X, > M, X., S0 Z,Xe ={x € X,,| dix =0 fori =0,...,n} (cf. [29,
I, Section 2]). Of course, this definition really makes sense only wkigris fibrant
(Definition 2.5). Similarly, thez-chainsobject of X,, written C, X,, is defined to be the
fiber of61: X, — M!X,.

If X, € sG is fibrant, the mapdy = dolc,x,:CnXe — Z,-1X. is the pullback of
8, X, — M, X, along the inclusion: Z,_1X, > M, X, (Where:t(z) = (z,0,...,0)), so
dg is afibration (inG), fitting into a fibration sequence

. drl
ZpXe L CoXe —> Zp_1X.. (2.3)

Proposition 2.7. For any fibrant X, € sC, the inclusion::C,X, — X, induces an
isomorphism, : 7,C, Xo = C, (7. X,) for eachn > 0.

Proof. (a) First note that ifj: A — B is a trivial cofibration inS, then j*: MpX, —
M4 X, has a natural section: My X, — MpX, (with j* o r =id) for any X, € sG.
This is because by Remark 2.4y 4 X,)r = Homg(F A, (X.)}(m) for A € S; sinceFA
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is fibrant in G, we can choose a left inverse: FB — FA for Fj:FA — FB, so
J* 1 (MpXe)M — (M4 X.)I™ has a right invers@*, which is natural in(X,)!"; so these
mapsp™ fit together to yield the required map

This need not be true in general jfis not a weak equivalence, as the example of
MiX,— MOX, shows.

(b) Givenn € C,m,, X, represented by : 8" — X, with dyh ~ 0 (1< k < n), consider
the diagram:

M§+1X,

J¥=(dk,...,dx)
k
kaflx'

in which j* is a fibration by (a) ik > 1, so the lower left-hand square is in fact a homotopy
pullback square (see [25, Section 1]). By descending induction©i ¥ n — 1 (starting
with 87 = d,,), we may assum&+toh:8" — M T1x, is nullhomotopicirC, as isdi o &,
so the induced pullback mayj o 1 : 8™ — MXX,, is also nullhomotopic by the universal
property. We conclude thaf o 2 ~ 0, and sinces}: X, — M1X, is a fibration by (a),
we can choosé :8" — X,, so thatslh = 0. Thush lifts to C, X. = Fib(}), and, is
surjective.

(c) Finally, the long exact sequence in homotopy for the fibration sequence

81
CuXe — Xp —> M1X,

implies thatiy: 7,C,, Xo — 74X, IS monic, sa, : 7,C, Xe — Cy (7 X,) IS, t00. O

Definition 2.8. The dual construction to that of Definition 2.3 yields the colimit

LiXe:= [] Xu-1/~
o<ign—-1
where for anyx € X,—» and 0<i < j <n — 1 we sets;x in the ith copy of X,,_1
equivalent undet to s; x in the (j + 1)st copy ofX,_1. L, X, has sometimes been called
the “nth latching object” ofX,. The mapo, : L, Xe — X, is definedo, x;y = s;x, where
x() is in theith copy ofX,,_1.
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3. IT-algebras and resolutions

In this section we recall some definitions and prove our main resulf$-algebras and
resolutions:

Definition 3.1. A [T-algebrais a graded grou . = {G};2, (abelian in degrees 1),
together with an action o, of the primary homotopy operations (i.e., compositions
and Whitehead products, including the;*action” of G1 on the higherG,’s, as in [38,

X, Section 7]), satisfying the usual universal identities. See [3, Section 2.1] for a more
explicit description. These are algebraic models of the homotopy grau¥sof a space

(or Kan complex)X, in the same way that an algebra over the Steenrod algebra models its
cohomology ring. The category @éf-algebras is denoted by -Alg.

We say that a space (or Kan complex, or simplicial groip)ealizesan (abstract)
IT-algebraG, if there is an isomorphism of7-algebrasG, = =, X. (There may be
non-homotopy equivalent spaces realizing the sdmalgebra—cf. [5, Section 7.18].)
Similarly, an abstract morphism df-algebrasp: 7. X — 7.Y (between realizablél-
algebras) isealizableif there is a mapf : X — Y such thatr, f = ¢.

Definition 3.2. The free IT-algebra generatedy a graded sely = {T;};2, is m. W,
where

o
w=\/\ s,

k=1teTy

(and we identifyr e Ty with the generator of; W representing the inclusiofff) — W).
If we let F c I1-Alg denote the full subcategory of fre@-algebras, andT the

homotopy category of wedges of spheres (insidd, or hoS,—or equivalently, the
homotopy category of coproducts gfspheres imogG), then the functorr, : IT — F is
an equivalence of categories. Thus aiyalgebra morphisnp : G. — H, is realizable
(uniquely, up to homotopy), ;. and H,. are freelI-algebras (actually, onl{ . need be
free).

Definition 3.3. Let T: [T-Alg — IT-Alg be the “freelT-algebra” comonad (cf. [24, VI,
Section 1]), defined

o0
TG, = ]_[ ]_[ ”*S](Cg)‘

k=1geGy
The counit
e=¢¢g, TG, — Gy

is defined byz’(‘g) — g (where L’(‘g) is the canonical generator of*S’(‘g)), and the
comultiplication ¥ = ¢, : TGy — T2G, is induced by the natural transformation

v :idr — T|7 defined byxx — ¢, .
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Definition 3.4. An abelian/T-algebra is one for which all Whitehead products vanish.

These are indeed the abelian objectélefdlg—see [3, Section 2]. In particular, ¥ is
an H -space, them, X is an abelianT-algebra (cf. [38, X, (7.8)]).

Definition 3.5. A simplicial IT-algebraA, is calledfreeif for eachn > 0 there is a graded
setT € A, suchthatd, is the freelT-algebra generated 1y’ (Definition 3.2), and each
degeneracy mapy : A, — A,41 takesT! to T/ +1.

A free simplicial resolutiorof a IT-algebraG, is defined to be an augmented simplicial
IT-algebraA, — G, such that

(i) A, isafree simpliciall7-algebra,

(ii) in each degreé& > 1, the homotopy groups of the simplicial grogp, ), vanish in

dimensions: > 1, and the augmentation induces an isomorphigtd,); = Gy.

Such resolutions always exist, for afy-algebraG.—see [29, Il, Section 4], or the
explicit construction in [1, Section 4.3].

Definition 3.6. ForanyX € G, a simplical objecW, € sG equipped with an augmentation
¢:Wpo — X is called aresolution ofX by spheres#f eachW, is homotopy equivalent to a
wedge ofG-spheres, ang,. W, — 7. X is a free simplicial resolution aff-algebras.

Example 3.7. One example of such a resolution by spheres is provided by Stover’s
construction; we shall need a variantdn(as in [7, Section 5]), rather than the original
version of [36, Section 2], i,. (The argument from this point on would actually work
equally well in7,; but we have already chosen to workgnin order to facilitate the proof
of Proposition 2.7.)

Define a comonadl : G — G for G € G by

V=] [T s;v]] 11 P (3.1)

k=0 ¢ecHomg (8¥,G) k=0 @eHomg (D¥+1,G)

whereD4H theG-disc indexed byp : D¥1 — G, is attached t8%, theG-sphere indexed
by ¢ = ®|,pe+1, by identifyingd D¥+1 := Fa D* with 8¢ (see Definition 2.2 above). The
coproduct here is just the (dimensionwise) free product of groups; the calf@ — G
of the comonad’ is “evaluation of indices”, and the comultiplicatidh: VG < V3G is
as in Definition 3.3.

Now givenX e G, defineQ, € sG by settingQ, = V"+1X, with face and degeneracy
maps induced by the counit and comultiplication, respectively (cf. [17, App., Section 3]).
The counit also induces an augmentatior®, — X; and this is in fact a resolution of
by spheres (see [36, Proposition 2.6]).

Remark 3.8. Note that we need not use tBesphere and dis&* andD* of Definition 2.2
in this construction; we can replace it by any other homotopy equivalent cofibrant pair
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of simplicial groups, so in particular byFﬁk, F§k_1) for any pair of simplicial sets
(D*, Y ~ (Dk, sk-1),

The Quillen spectral sequence A resolution by sphere®, — X is in fact a resolution
(i.e., cofibrant replacement) for the constant simplicial objétt € sG (i.e.,c(X), = X,

d; =sj =idy) in an appropriate model category structureegr—see [14,9]. However, we
shall not need this fact; for our purposes it suffices to recall that for any bisimplicial group
W, € sG, there is a first quadrant spectral sequence with

E?, = n,(mW,) = my, diagW, (3.2)

converging to the diagonal did¥, € G, defined(diagW,), = (Wk)}{“ (see [30]). Thus if

W, — X is a resolution by spheres, the spectral sequence collapses, and the natural map
Wo — diagW, induces an isomorphism, X = m,.(diagW,). Combined with the fact that

7« W, is a resolution (irs I7-Alg) of . X, this simple result has many applications—see,

for example, [1,13,36].

Definition 3.9. A CW complexover a pointed categorg is a simplicial objectr, €
sC, together with a sequence of obje®s (n =0, 1,...) such thatR, = R, LI L,R,
(Definition 2.3), and?}’ Iz, = Ofor1<i<n.The objects{ﬁn);’;o are called &€W basis
for R,, andJ{)’ := do|, is called thenth attaching map for,.

One may then describg, explicitly in terms of its CW basis by

R, = ]_[ ]_[ R, (3.3)

0<A<n 1€7, ,

whereJ, , is the set of sequencdsof A non-negative integerg < i> < --- < i, (< n),
with s; =54, o --- o 55, the corresponding-fold degeneracy (i =0, s; = id). See [2,
5.2.1]and [26, p. 95(i)].

Such CW bases are convenient to work with in many situations; but they are most useful
when each basis object g, in an appropriate sense. In particularCie IT-Alg, we
have the following

Definition 3.10. A CW resolutionof a IT-algebraG, is a CW complexA, € sIT-Alg,
with CW basis(4,)%° , and attaching map#} : A, — Z,_1A., such that eacli,, is a free

IT-algebra, and each attaching m#fic, 4, is ontoZ, 1A, (for n > 0, where we Ieﬂg
denote the augmentatien A, — G, andZ_1A, := G,). Compare [2, Section 5].

Every IT-algebra has a CW resolution (Definition 3.10), as was shown in [1, 4.4]: for
example, one could take the graded set of generi{pmr A, to be equal to the graded
setn,Z, 1A,.

Definition 3.11. Q, € sG is called aCW resolution by spherasf X e G if Q, —> X is a
resolution by spheres (Definition 3.6), agd is a CW complex with CW basi&D,)% ),
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such that eachp,, € F (i.e., Q, is homotopy equivalent to a wedge of spheres). The
concept is defined analogously f&ire S or X € 7,.

Remark 3.12. Closely related to the problem of realizing abstrattalgebras (Defini-
tion 3.1) is that of realizing a free simplicial -algebraA, € sIT-Alg: this is because, as
noted in Definition 3.5, everg ., € I1-Alg has a free simplicial resolutioA, — G; if

it can be realized by a simplicial spa®é, € s7.—or equivalently, via (2.1), by a bisim-
plicial space or group—then the spectral sequence (3.2) impliestitdiagW, = G..
However, not everyT-algebra is realizable (see [5, Section 8] or [4, Proposition 4.3.6]).

It would nevertheless be very useful to know the converse: namely, that any free
resolution of arealizable IT-algebra is itself realizable. This was mistakenly quoted as
a theorem in [5, Section 6], where it was needed to make the obstruction theory for
realizing IT-algebras described there of any practical use—and appeared as a conjecture
in [6, Section 4], in the context of an obstruction theory for a space to li¢-apace.

In order to show that this conjecture is in fact true, we need several preliminary results:

Proposition 3.13. Every CW resolutiom, — 7, X of a realizablelT-algebra embeds in
4+ Q. for some resolution by spherés, — X.

Proof. To simplify the notation, we work here with topological spaces, rather than
simplicial groups, changing back &if necessary via the adjoint pairs of Section 2.
Given a free simplicial7-algebra resolutiom, — J, with CW basis(Zn);’;O, where
J. =mn.X for someX e 7., andA, is the freelT-algebra generated by the graded &gt
let u denote the cardinality df[;- o[ [;=o 7}, and set

X’::X\/@ \/D".

n=0 A<u

Define new “spheres” and “disks” of the form

[e¢)
S =8"v \/ VD" and D" :=8" v D"
n=0A<pu
(This is to ensure that there will be at leastlifferent representatives for each homotopy
class inr, X’ or 7. S".)

By Remark 3.8 above, if we use the construction of Example 37 ifor in G, mutatis
mutandi$ with these “spheres” and “disks”, and apply it to the spX¢gerather than toX,
we obtain a resolution by sphergs — X'.

We define¢: A, — m.Q, by induction on the simplicial dimension; it suffices to
produce for eaclh > 0 an embedding, : A, — C,m.Q. commuting withdg. If we
denotes” 1 Ag — 7. X = 7. X' bydY: CoAe — Z_1A, =: A_1 and setp_1 = id,, x, then
we may assume by induction we have a monomorphism : A,—1 < 7. Q0,1 (taking
generators to generators, and commuting with face and degeneracy maps).
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For eachiT-algebra generatay, in (A,)x, if do(iy) # 0 theng, _1(do(te)) € Zn_171k Qe
is represented by somg:@k — Q,-1, and we can choose distinct (though perhaps
homotopic) mapsg for different generators, by our choice ofS*. Then by (3.1)
there is a wedge summan'ff; in 0, = VQ,-1 (with no disks attached), and the
corresponding fred7-algebra coproduct summam@fé in 7. Q,, generated by,, has
do(tg) =gl € Mk Qn—1 aNdd; (tg) =g, 14 =0 € m Qu—1 for 1 <i < n by Example 3.7,
sincelg] = ¢u—1(do(ty)) € Z,—171 Qe and thusi;[g] = [d; g] = 0, and spheres indexed by
nullhomotopic maps have disks attached to them. We see dl&@aC, i Q., SO we may
defined, (to) = tq.

If do(1) = 0, then all we need are enough distinttalgebra generators i, 7, Q,: we
cannot simply take, for nullhomotopicg : S¥ — 0,_1, because of the attached disks; but
we can proceed as follows:

Since

o
D'=c8'vD" and x'=xv\/ \/ D',
i=0 A<p
we haveu distinct nonzero maps
LRk ’ : _
F,:D" — X' with F)L|C'§k = *.
DefineH, = F;, H_ = %, then
=~k ~k
SI;_I = DH* Ugf:l DHf
is, up to homotopy, a sphere wedge summan@dnand thus g, € 7x Qo is all-algebra
generator mapping to 0 under the augmentation. Similalry, define

k. Dk =~k
SG)L = DG+ U’S\i—l DG7

in Ql by Gt =%, G_ =% L ¥ where/* is a homoeomorphism onto the summah#

in DHf ThenG, ~ % andG, # * but H o G = x; thus.y, is aIT-algebra generator in

Zy7y Q. By thus alternating the- and— we produceu distinct IT-algebra generators in
Z,m+Q, foreachn. O

Remark 3.14. The referee has suggested an alternative proof of this proposition, which
may be easier to follow: rather than “fattening” the spheres and disks, we can modify
the Stover construction of (3.1) by usingcopies of each sphere or disk for eagle

Homg (8, G) or ® € Homg(D*+1, G), respectively. The proof of [36, Proposition 2.6]
still goes through, and so does the argument for embeddljrig . O, above.

Proposition 3.15. Any free simpliciallT-algebraA, has a(free) CW basis(Xn);o:O.

Proof. Start withAg = Ag. Forn > 1, assume

A, = ]_[ ]_[ .S,

k=0zeT}
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By Definition 3.5,

=T u | B
0<Agn 1€7, ,
(as in Definition 3.3), so we can set
o0
A, = ]_[ ]_[ 78K
k=0reTy
butd;|z need not vanish for> 1.

However, givenr T, we may definer; € (A,,)}ft inductively, starting withzg = 7,
by ti41 = Tisn—i—1dn—i rl._l (face and degenergcy maps taken in the external direction);
we find that? := 7, is in C, A,. If we defineg: T]' — A, by ¢(r) = 7, by the universal
property of freelT-algebras this extends to a maan — A,, which together with the
inclusiono, : L, A, — A, yields a mapy: A, — A, which is an isomorphism by the
Hurewicz Theorem (cf. [7, Lemma 2.5]). Thus we may agt:= <p(;f,,), that is, the free
IT-algebra generated Hy}, .7». Compare [23, Section 3].0

Theorem 3.16. Every free simplicial7-algebra resolutioM, — =, X of a realizablelT-
algebrarn, X is itself realizable by a CW resolutioR, — X in sG.

Proof. By Propositions 3.13 and 3.15 we may assutgéhas a (free) CW bas'(s?n)gozo,
and that there is a resolution by sphe@s— X (in sG) and an embedding of simplicial
IT-algebrasp: A, — Q.. We may also assume tha, is fibrant (Definition 2.5), with
¢2: 00 — X a fibration. We shall actually realiz¢ by a map of bisimplicial groups
f : Ro - Qo-

Note that onceR, has been defined through simplicial dimensigrior anyk > 0 we
have a commutative diagram

(do)# Un—D# (do)# (n—2)#
7kCnRe g Zn—1Rs 7kCpr—1Re Tk Zn—2R, 7k Cr—2R,

[N J% Pnl{ le {% pnz{ Lx {
dg inc. dar1 inc.

Cumi R, Zy_am Ry Co-17k Re—> Zy_pmx Ri—— Cy_27k R,

11

(obtained by fitting together three of the long exact sequences of the fibrations (2.3)). The
vertical maps are induced by the inclusiansk, < R,, and so on—see Proposition 2.7.
The only difficulty in constructingr, is that Proposition 2.7 does not hold f@dy,—
i.e., the mapg, in the above diagram in general need not be isomorphisms—so we may
have an element i, A, represented by € C, 4Ry = m.Cy, Re With (d(j)u(er) # O (but
of course(j,—1)#(dg)#(e) = 0). In this case we could not hayec 7.Cy11Re = Cpy14,
with (jn)#(d6’+1)#(ﬂ) = «, Som, R, Would not be acyclic.
Itis in order to avoid this difficulty that we need the embeddingince by definition
this cannot happen fap,: we know thatdj : C, 7w Qs — Z, 17 Q, is surjective for each
n>0, S00,-1:7+Z,-10e — Z,_17+ Q. iS, 100, Which implies that for each> 0:
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Im{(d(r)lJrl)#:”*Cn-‘rlQo — Wy Zy Qo} N Ker{(jn)#: 4 Zp Qe —> m4Cy Qo} =0 (3-4)

which we shall callProperty (3.4) for Z, Q.. (This implies in particular thaZ, 7. Q. =
Ker{(dg)#: xCn Qe — Zn-10.}.)

Note that given any fibrark, € sG having Property (3.4) foE,, K, foreach O<m <n
if we consider the long exact sequence of the fibrattfn C,, Ko — Z,1—1Ko:

(dghH# m—
< k4+1Cn Ko L>7'[k+;|_Zm 1Ke —)ﬂkz Ke (j v Tk Cp1Ke -+, (3.5)

we may deduce that
3" |jm(ym-1y is one-to-one, and surjects onto(irt) (3.6)

for0<m < n.

We now construcR, by induction on the simplicial dimension:

(i) First, choose a fibration® : Ry — X realizings® : Ag — 7, X. By Definition 3.2,
there is a magfy: Ry — Qo realizinggo, sos? o f§ ~ &¥; sinces€ is a fibration,
we can changg; to fo: Ro — Qo with € o f} = &X.

(i) Let ZoR. denote the fiber of:R. Since ef = ¢4 is a surjection, we have
m.ZoRe = Ker(ef) = ZoA., andds mapsCiA, onto ZoA., sodj : A1 — Ag
factors throughr,.ZoR,, and we can thus realize it by a md_ﬁ :R1— ZoR..
SetR] := Ri U L1R. (somy R} = Ay), with 87 : R] — M1R. = Ro x Ro equal to
dR,0) L A, and changé] to a fibrationss : Ry — M1R,. Again we can realize
¢1:A1— 7w, Q1 by f1:R1 — Q1 with alQ ofi=foo 5f, sincealQ is a fibration;
so we have defineth f : 1R, — 110, realizingrio.

(i) Now assume we have, f:1,Re — 1,0, realizing t,¢, with Property (3.4)
holding forZ,, R, for 0 < m < n.

For eachiT-algebra generatar € A, 1 (in degreek, say), (3.4) implies that

dit () e Ker(dl) = Ker((dg")#) C (CuAd)k = 1k Cy R,

so by the exactness of (3.5) we can chogse nxZ, R, such that(j,)#8 =
d"+l(oe) ThIS allows us to defmdo R,+1— ZnR,. SO that(;n)#(d(f)# realizes
(inc) o df! 1 Aps1 — Cy A, as well asfyi1: Ryy1 — Cu Qe reaI|Z|ng¢n+l|A
BecauseA, 1 = m«R,41 is a free IT-algebra, this implies the homotopy-
commutativity of the outer rectangle in

_ fos1
Ryt1 Cnt10.
ag ag
\ Znf
Zn R. ............... » Zn Q.
Jn .an
A Cuf
CuR. CnQe
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(as well as_the lower square, by the induction hypothesis). fi,ﬁusZ,,f o c?c’f ~
an o dOQ o fa+1, SO
(an)# °(Znflgo (‘7(1)?)# = (an)# °© (doQ)# © (-fn+1)#'

By (3.4) this implieS(Z, )4 0 (d8)# = (d&)# 0 (fa+1)#, SO (Sincer, R, 41 is a free
M-algebra) als@, f o df ~ d§ o f,+1—which means that we can choofg 1 S0
thatZ, f o df =df o fu11 (sincedd is afibration). Thus if we set

55+1:En+l — Muyt1R,
to be(d®.0,...,0), we have
Myy1f o S,If+1 = 5,,Q+1 o fus1.
If YR =68 ,00k, (inthe notation of Definition 2.3 and 2.8) we set
R, q:=Rpr1ULyy1R,,
and define
8pi1i R 1 —> Myy1R., and fr iR, 3 — Onyt,
respectively by
;/1+1 = (Sf+1J—Wf+l) and fr:+l = (ﬁz+liLn+lf)~

We see thatf,:H)# =¢us1 andM, 11 f o 5;+1 = 6,%1 o f,:H, and this will still
hold if we changes;lﬂ into a fibration, and extengI,:Jrl t0 fu+1: Ru+1 —> On+1.
This defines;, 111 : thr1Re — Tut+1Q, realizingr, 1.

(iv) It remains to verify thatr,+1 R, S0 defined satisfies (3.4). However, (3.6) implies
that we have a map of short exact sequences:

inc.

0—Im@@% 1) 7k ZnRe Im((jf)e) = Z,Ae — 0
lf* (Zn )4 Zno
0—=Im@}y ") — mZa Q. IM((i2)) = Zymx Qe — O

in which the left vertical map is an isomorphism and the right map is one-to-one,
so(Z, f)# is one-to-one, too. Therefore,

Ker((jR)4) = Ker((j)4) N s Zy R,

which implies that Property (3.4) holds far, R,, too.
This completes the inductive constructionRy. 0O

We also have an analogous result for maps:
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K L
Theorem 3.17.1f K, —— 7 X and L, £ .Y are two free simpliciallT-algebra
resolutions,g: X — Y is a map inG, and¢: K, — L, is @ morphism of simplicial7-
algebras such that” o gg = 7, g 0 £X, theng is realizable by amag : A, — B, in sG.

Proof. Choose free CW bases f&f, andL,, and realize the resulting CW resolutions by
A, and B,, respectively, where (as in the proof of Theorem 3.16) we may assume

do:Cp,Be —> Z,_1B,

is a fibration for eaclh > 0. f,, : A,, — B, will be defined by induction on: ¢o: Ko — Lo
may be realized by a mafy: Ao — Bo (Definition 3.2), and since? is a fibration and
g8 o fj~goe?, we can choose a realizatigh for ¢g such that? o fo = g o e?.

In general,g, = (pn|fn2K,, — C,L, may be realized by a map,:A, — C,B,
(Proposition 2.7), and sincéy: C,B, — Z,_1B, is a fibration, we may choosg, so
dpo f,, =Z,_1f odo: A, — Z,_1B.. By induction this yields a map

fo=L,f1lf,:A,=L,A,UA, - L,B,11B, =B,
such that
8o fy=M,fos2:A, - M,B,,

so f is indeed a simplicial morphism (realizigg. O

4. The simplicial bar construction

As an application of Theorem 3.16, we describe an obstruction theory for determining
whether a given spack is, up to homotopy, a loop space (and thus a topological group—
see [27, Section 3]). In the next two sections we no longer need to work with simplicial
groups, so we revert to the more familiar category of topological spaces; we can still utilize
the results of the previous section via the adjoint pairs of (2.1).

Definition 4.1. A A-cosimplicial objectE, over a category is a sequence of objects
EC E1 ..., together withcoface maps/’ : E” — E"t1 for 1< 1< n satisfyingd’/d’ =
did/=1 for i < j (cf. [32]). Given an ordinary cosimplicial objedf® (cf. [11, X,
2.1]), we letE", denote the underlyingi-cosimplicial object (obtained by forgetting the
codegeneracies).

The cosimplicial James construction.Given a spac&X € 7, we define aA-cosimplicial
spacel %, = U (X)$, by settingU" = X"+1 (the Cartesian product), am(xo, . .., x,) =
(x0, ..., Xj—1, %, X, ...,Xx,). Note that colinl/(X)$ = JX (the James reduced product
construction), and

Fact4.2.If (X,m) is a (strictly) associativeH-space, we can extend$, to a full
cosimplicial spacd/* by settings/ (xo, ..., x,) = (xo, . . ., m(Xj,Xj—1),...,%Xn)-
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Definition 4.3. Let A, be a CW resolution of thdT7-algebraw,X = 7.U% as in
Definition 3.10. We construct 4-cosimplicial augmented simpliciél -algebra(E,)$, —
mU%, such that eactE} is a CW resolution ofr, U" = (X", with CW basis
{E/'}> . We start by settinge. = C° =4, forall r >0, and then defin&" by a double
induction (onr > 0 and then om > 0) as

I L. 4.1)

0<Agn 1€7,,

whereJ; , isasin (3.3)andy =0= 59 forall m,r > 0.
The coface mapé' : E"~1 — E” are determined by the cosimplicial identities and the

. . . . —n—A\ e . .
requirement thaﬂl|[€n M ) be an isomorphism om[cff Vg ooy 10 > 0.
r 15mees in

The only summand in (4.1) which is not defined is tl[ﬁ,g;]w, which we denote simply
by E” We require that it be anth cross-termin the sense thafo|5n does not factor

through the image of any coface mai: E'” 1 — E7_;. Other than thatf’,1 may be any
free IT-algebra which ensures that (4. 1) deflnes a CW basis for a CW resolifien
m,U". We shall call the double sequen(c(é,‘ o2 1)i2 4 across-term basifor (E,)%.

Note thatA, is a retract of£?2 in two different ways (under the two coface maif¥sd?),
corresponding to the fact that is a retract ofX x X in two different ways; the presence
of the cross-termEf indicates thatd, x A, is a resolution ofr, X2, but not a free one,
while A, LI A, is a free simpliciallT-algebra, but not a resolution.

Similarly, X x X embeds inX® in three different ways, and so on.

Example 4.4. For anyA, — 7, X we may set

—2 p+q—1
a= I I sty
SPes A sles Al

with do|sp+q 1 = [1y, ty] (in the notation of Definition 3.3). The higher cross- terﬁls_ 0

(x,y)
for n > 3, since anykth order cross-term elementin ]_[jzoAé’) (k > 3) is a sum of
elements of the form

2= [y ) ) i)
and then

7= do(é‘#[ ... [t&jizz)il, SoL(XS)] , S()ngk)]).

Definition 4.5. Let h(W-)Z — U¢, be the A-cosimplicial augmented simplicial space
up-to-homotopy which corresponds t&,)% — m.U% via Definition 3.2. Thus the
various (co)simplicial morphisms exist, and satisfy the (co)simplicial identities, only in
the homotopy category (we may choose representativ@s,ibut then the identities are
satisfied only up to homotopy). Eadk” is homotopy equivalent to a wedge of spheres,
and has a wedge summaﬁf — W’ corresponding to the CW basis frég-algebra



166 D. Blanc / Topology and its Applications 100 (2000) 151-175

summandE. < E”. We letC, denote the wedge summand Bf, corresponding to
Cl—E,.

Definition 4.6. An simplicial space&V, € s7, is called arectificationof a simplicial space
up-to-homotopy' W, if V,, ~ W, for eachn > 0, and the face and degeneracy maps of
V. are homotopic to the corresponding mapg ¥f,. See [12, Section 2.2], e.g., for a
more precise definition; for our purposes all we require is that, be isomorphic (as a
simplicial I7-algebra) tar, (" W,). Similarly for rectification of (A-)cosimplicial objects,
and so on.

By considering the proof of Theorem 3.16, we see that we can make the following

Assumption 4.7. (E,)$, maps monomorphically inte, V,(U?Y), andh(W.)'A — U can
be rectified so as to yield a strigt-cosimplicial augmented simplicial spad#,)$, — U*,
realizing(E,)$ — m.U*,.

Definition 4.8. Now assume that, X is an abelian/7-algebra (Definition 3.4)—this is
the necessaryl-algebra condition in order foX to be anH -space—and let

Wi X X me X > m X

be the morphism ofl7-algebras defined levelwise by the group operation (see [6,
Section 2]). Thigu is of course associative, in the sense that

po(w,id) = o (id, 1) (X3 — m.X,

so it allows one to extend thei-cosimplicial [T-algebra F} := 7.(U%) to a full
cosimplicialIT-algebraF®, defined as in Fact 4.2.

SinceE} — F" = m,U" is a free resolution of7-algebras, the codegeneracy maps
s/:F" — F"1 induce maps of simplicialT-algebrass{ : E? — E!~!, unique up to
simplicial homotopy, by the universal property of resolutions (cf. [29, I, p. 1.14]; [Il,
Section 2, Proposition 5]). Note, however, that the individual map&” — E”~ are not
unique, in general; in fact, different choices may correspond to difféfentultiplications
onX.

These maps/ make (E,)S, — F} into a full cosimplicial augmented simplicidl -
algebrakE? — F*, and thus'w? — U*, into a cosimplicial augmented simplicial space
up-to-homotopy (for which we may assume by Assumption 4.7 that all simplicial identities,
and all the cosimplicial identities involving only the coface maps, hold precisely).

Proposition 4.9. The cosimplicial simplicial space up-to-homotdgy'¢ of Definition4.8
may be rectified if and only X is homotopy equivalent to a loop space.

Proof. If X is aloop space, it has a strictly associatiyemultiplicationm : X x X — X
which inducesu on 7,.(—) (cf. [18, Proposition 9.9]), s&/$, extends to a cosimplicial
spacel/* by Fact 4.2. Applying the functorial construction of [36, Section 2Q/tbyields
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a (strict) cosimplicial augmented simplicial spade,)$, — U*, and since we assumed
. W’ embeds int, V" for eachn, "W? may also be rectified.

Conversely, ifW} is a (strict) cosimplicial simplicial space realizirif, then we may
apply the realization functor for simplicial spaces in each cosimplicial dimemsio0 to
obtain||W” | ~ U" = X"** (by Section 3). The realization of the codegeneracy map

[s°] [ wal — w2
induces
u:n*(Xz) - 1. X,

S0 it corresponds to aH -space multiplicatiom: : X* — X (see [6, Proposition 2.7]).
The fact that| W2|| is a (strict) cosimplicial space means that all composite codegener-
acy maps

||s0 osflo. .. gin-1 || : || wi ” - ” W(.)”

are equal, and thus all possible composite multiplicatiofts™* — X (i.e., all possible
bracketings in (2.2)) are homotopic, with homotopies between the homotopies, and so
on—in other words, théf-space(X, m) is an A, space (see [35, Definition 11.2])—so
that X is homotopy equivalent to loop space by [35, Theorem 11.4]. Note that we only
required that the codegeneracie$ Bf¢ be rectified; after the fact this ensures that the full
cosimplicial simplicial space is rectifiable o

In summary, the question of whethdr is a loop space reduces to the question of
whether a certain diagram in the homotopy category, corresponding to a diagram of free
IT-algebras, may be rectified—or equivalently, may be madbomotopy commutative.

5. Polyhedra and higher homotopy operations

As in [5, Section 4], there is a sequence of higher homotopy operations which serve as
obstructions to such a rectification, and these may be described combinatorially in terms
of certain polyhedra, as follows:

Definition 5.1. The N-permutohedronP” is defined to be the convex hull iRV of
the pointsp, = (0(1),0(2),...,0(N)), whereo ranges over all permutatiorse Xy
(cf. [39, Section 9]). Itis § — 1)-dimensional.

For any two integers & n < N, the corresponding\, n)-face-codegeneracy polyhe-
dron PY is a quotient of theV-permutohedror®” obtained by identifying two vertices
po andp, to a single vertexp, = p, of P whenevew = (i,i + 1)o’, where(i, i + 1)
is an adjacent transposition aadi), o (i + 1) > n.

Since each facet of PV is uniquely determined by its vertices (see below), the facets
in the quotient P are obtained by collapsing those Bf' accordingly.
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Note thatP® , is theN-permutohedro®”, and in fact the quotient map: PNV—>P2
is homotopic to a homeomorphism (though not a combinatorial isomorphism, of course)
for n > 1. On the other handPé)V is a single point. For non-trivial examples of face-
codegeneracy polyhedra, see Figs 1 and 2 below.

Fact 5.2. From the description of the facets of the permutohedron givdagh we see
that PV has an edge connecting a vertgx to any vertex of the form ; 1), (unless
o(i),o(i +1) > n, in which case the edge is degenejate

More generally, letp, be any vertex ofP). The facets ofP) containing j, are
determined as follows

Let

P=(12....00a+1 ..., 02| - [ lica+1, ... 6| | &_1+1,...,N)

be a patrtition ofl, ..., N into r consecutive blocs, subject to the condition that for each
1< j <r atleast one ob(¢;), o(¢;11) is < n. Denote byr; the number ofj’s in the

ith bloc(i.e., £;_1 + 1< j < ¢;) such thaio (j) < n. ThenPY will have a subpolyhedron
Q(P) (containingp,) which is isomorphic to the product

_ G0 N—t,_
Pflifoé B ox P o Py L

This follows from the description of the facets of tfigoermutohedron iifi5, Section 4.3].

We denote byPY)® the union of all facets oP” of dimension< . In particular,
for n > 1 we haved P := (PY)V=2 = §¥=2 since the homeomorphisjn P¥ — PV
preserves PV .

Factorizations. Given a cosimplicial simplicial objecE? as in Definition 4.8, any
composite face-codegeneracy mép Efﬁ’} — Ef has a (unique) canonical factorization
of the formy = ¢ o 0, whered : Elt% — EX ., may be writterd = s/ 0 5/2 0 - - s/ for
O<ji<jo<--<jon<n+k and¢>:El’;’JrZ — E¥ may be writtenp = d;, odj, 0 ---dj,
forO<it<io< - <ip<m-+L.

Let D(yr) denote the set of all possible (not necessarily canonical) factorizatiops of
as a composite of face and codegeneracy mapsi,, 1, o - - - o A1. We define recursively
a bijective correspondence betweR(w,) and the vertices of am(+ m)-permutohedron
P"t™ as follows (compare [5, Lemma 4.7]):

The canonical factorizatiog = d;, o di, o ---d;, o s/t 0 s/2 0 ---s/n corresponds to
the vertexp;s. Next, assume that the factorizatigh= 1,4, o --- o A1 corresponds to
ps. Then the factorization corresponding pg/, for o = (i,i + 1)o”’, is obtained from
Y =XA10---0Aupm by switchingi; andi; 1, using the identity/ o s' = si~1 o s/ for
i > j if A; andA;41 are both codegeneracies, and the identityd; =d;_104d; fori < j
if they are both face maps.

Passing to the quotient face-codegeneracy polyhedron, we see that the verft¢:g¥ of
are now identified with factorizations gf of the form

-1 -1
n J
n+k S on+k—1 n+1 st ny 0 ne ny
Em+6—)Em+Z -~-Em_~_£—>Em_~_£—>Emr-uEml
0 0
51 710 6o

BRI pr o BN (5.1)
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dos Sldl doSosodl

051d0d1 Sosodod1

0 S1 dodo 3080 dodo

dod1 s%s' dody s°s°"

doalosos1 dodos°s°
%dostdo ..

do 80 doso

Py

0 ".0.0
dos®stdo dos’s°do

Fig. 1. The face-codegeneracy polyhed®fidodys%s?).

wheref; is a composite of face maps (i.e., we do not distinguish the different ways of
decomposing; asd, o - - -di, ). The collection of such factorizations ¢fwill be denoted

by D(y)/~, where~ is the obvious equivalence relation dn(yr). We shall denote
the face-codegeneracy polyhedrBfj™ with its vertices so labelled by”*" (). An
example fory = dod1s%s! appears in Fig. 1.

Notation. For : Efni’; — E" as above, we denote bg(y) the collection of all
composite face-codegeneracy maps

. n(p)+k(p) k(p)
P Enipyieio) ™ Euip)

such thatp is of the formp =& o--- 0 & (1 < s <t < v) for some decomposition
v =&, o~-~o$1=900sj’?0 o~-~osj’(‘)1 001006 05/ 0.+ oshn of (5.1). That is,
we allow only those subsequences ..., A, of a factorizatiomy = A4, 0 -+~ 0 Ag in
D(y) which are compatible with the equivalence relatielin the sense that, 1 anda,
are not both face maps, and similarly for_1 andx,. Such ap will be calledallowable

Higher homotopy operations. Given a cosimplicial simplicial space up-to-homotopy
h"we as in Section 4, we now define a certain sequence of higher homotopy operations.
First recall that thdnalf-smastof two spaceX,Y € 7, is

XxY:=(Xx Y)/(X X {*})§

if X is a suspension, there is a (non-canonical) homotopy equivaleicE ~ X AY Vv X.

Definition 5.3. Given a composite face-codegeneracy marwzlﬂ‘e — Wk as above, a

compatible collection fo€(y) and” W, is aset{g’},ec(y) Of maps

p . pn(p)+m(p) n(p)+k(p) k(p)
8" Pty O X Wotorriin) ™ Wegp)

for eachp € C(v), satisfying the following condition:
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Assume that for such a e C(y¥) we have some decomposition
0 0 ot p
p:&vo~~~o§l=9()os]”0o~~~osj”1 0hr0---00;0810-- 05
in D(p)/~, asin (5.1), and let
P=(1...€1] - [€a+L.... 6| |61+l ...,v)

be a partition of(1,...,v) as in Fact 5.2, yielding a sequence of composite face-
codegeneracy maps € C(p) CC(y) fori=1,...,r.

Let
~ bi—4i_ —l_
QP)= Py(p1) x -+ x Py Hpi) x -+ x Pr” M (pr)

be the corresponding sub—polyhedrorfdnf{’;)+m(p)(,o). Then we require that

o
g’ () +k(p)
O®YXW oy rein)

be the composite of the corresponding mafisin the sense that

g'o(x]_, e Xy, w) — gpl(xl’ gpz(xz’ e gp" (_xr, w) .. )) (52)
0i—t;_ k
forx; e P, '(p;j) andw € WZ({;):M(([;))'

We further require that ifp = A1 is of length 1, then g” must be in the prescribed
homotopy class of the face or codegeneracy maprhus in particular, for each vertex
po Of P (yr), indexed by a factorizationy = &, o --- 0 & in D(y)/ ~, the map
gp|{ﬁg}xwﬁjfk represents the clagg, o - - - 0 £1].

Fact 5.4. Any compatible collection of mags”} ,cc(y) for C() induces a map

f=fVoprtm W;‘ﬂ‘eewlg

(since all the facets of P2 are products of face-codegeneracy polyhedra of the form
PP ) for p e C(y), and condition(5.2) guarantees that the mapg agree on

= n(p) )
intersectiony

Definition 5.5. Given”W? as in Definition 4.8, for each > 2 and each composite face-
codegeneracy map: W;ﬂ‘z — W’g, thekth order homotopy operaticassociated tdW?

andy is a subsety) of the track grounz"*’”*zw”mﬂ}, W’g], defined as follows:

LetS C[0P!T" x WZ;"E W’g] be the set of homotopy classes of maps

f=fVoPrm W;‘ﬂ‘eewlg

which are induced as above by some compatible colle¢t6, ¢y for C(¥).
Now choose a splitting

AP (Yr) ) Wi = gntm=2 Witk ~ (gtm=2 A why v W (5.3)

and let (y) c [Z"+"—2W"t5 Wk be the image of the subsetunder the resulting
projection.



D. Blanc / Topology and its Applications 100 (2000) 151-175 171

It is clearly a necessary condition in order for the suligetto be non-empty that all
the lower order operationg) vanish(i.e., contain the null class) for gl e C(y) \ {¢/}—
because otherwise the various maps

P W W)

cannot even extend over the interiorBfn(fp))“Lm(p)(p). A sufficientcondition is that the
operationgp) vanishcoherentlyin the sense that the choices of compatible collections for
the variousp be consistent on common subpolyhedra (see [5, Section 5.7] for the precise
definition, and [5, Section 5.9] for the obstructions to coherence).

On the other hand, if W¢ is the cosimplicial simplicial space up-to-homotopy of
Definition 4.3 (corresponding to the cosimplicial simplicidl-algebra(E,)$, with the
CwW basis{F’f}oo ), then the vanishing of the homotopy operatigf|z»)—with

r,n=0
restricted to ther(, r)-cross-term—implies the vanishing ¢f), for any : W;‘;L’jZ — W’g
(assuming lower order vanishing). This is because outside of the wedge surﬁ_i”mand
the mapy is determined by the mapse C(y) and the coface and degeneracy maps of
hwe, which we may assume tso-homotopy commute by induction and Assumption 4.7,
respectively.

We may thus sum up the results of this section, combined with Proposition 4.9, in:

Theorem 5.6. A spaceX < 7,, for which 7, X is an abelian/T-algebra, is homotopy
equivalentto a loop space if and only if all the higher homotopy operatipis:) defined
above vanish coherently. '

Remark 5.7. As observed in Section 4, for any € 7, the space/X is the colimit of
the A-cosimplicial spacel (X)$, and in fact thenth stage of the James construction,
Jy X, is the (homotopy) colimit of th&n — 1)-coskeleton ofU$,. Thus if we think of
the sequence of higher homotopy operations “in the simplicial direction” as obstructions
to the validity of the identity [7, Theorem 5.7)] (up to co-homotopy commutativity), then
thenth cosimplicial dimension corresponds to verifying this identity fosis: A — F B
of James filtratiom + 1 (cf. [22, Section 2]).

In particular, if we fixk = ¢ =0, n =1 and proceed by induction om, we are
computing the obstructions for the existence offsmultiplication onX, as in [6]. (Thus
if X is endowed with arff -space structure to begin with, they must all vanish.) Observe
that the face-codegeneracy polyhed#®his an (2 — 1)-cube, as in Fig. 2, rather than the
(n — 1)-simplex we had in [6, Section 4]—so the homotopy operations we obtain here
are more complicated. This is because they take value in the homotopy groups of spheres,
rather than those of the spake

As a corollary to Theorem 5.6 we may deduce the following result of Hilton (cf. [19,
Theorem CJ):

Corollary 5.8. If (X,m) is a (p — 1)-connectedd -space withr; X = 0 for i > 3p, then
X is aloop space, up to homotopy.
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dos®doda Jdodo s%dy
e dody 80 d»

d05°d1d03=o

SO dod1 d(). . 80 do do dz

$%dododes = ¢s°dodrd, . d°30d1d2_
Sodododf 'Sododldl dosodld;
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_. ............................... dod1do$0‘:°dod1d150
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widos®dodo dod15%dss
dos®dode - o dodos®d;

Fig. 2. The face-codegeneracy polyhedﬂbfl(dodldzso).

Proof. Choose a CW resolution of.X which is (p — 1)-connected in each simplicial
dimension, and leE? be as in Definition 4.3. By definition of the cross-teffalgebras

C?! in Definition 4.3, they must involve Whitehead products of elements fatinrower

order cross-terms; but sincé is an H-space by assumption, all obstructions of the form
(W|El) vanish (see Remark 5.7). Thus, the lowest-dimensional obstruction possible is a

third-order operatiorwf|€z) (r = 2), which involves a triple Whitehead product and thus

takes value in; W’g fori > 3p. If we apply the (3 — 1)-Postnikov approximation functor
to "W¢ in each dimension, to obtaitiZ?, all obstructions to rectification vanish, and
from the spectral sequence of Section 3 we see that the obviouXmapW?l| — || Z1|
induces an isomorphism i fori < 3p. Since||Z}|| is a loop space by Theorem 5.6, so
is its (3p — 1)-Postnikov approximation, namel. O

Example 5.9. The 7-sphere is aH -space (under the Cayley multiplication, for example),
but none of the 120 possiblé-multiplications onS’ are homotopy-associative; the first
obstruction to homotopy-associativity is a certain “separation element38’ (cf. [21,
Theorem 1.4 and Corollary 2.5]).

Sincern, S’ is a freelT-algebra, it has a very simple CW resolutidg — 7,.S, with
Ao = 7, 8" (generated by’), andA, = 0 for r > 1. A cross-term basis (Definition 4.3)
for the cosimplicial simplicial7-algebrat? of Definition 4.8 is then given in dimensions
< 24 by:

o Cy=m, S8, with doi® = [0, dL/7;

° 6; = 7,819, with doit® = [d913, s0d2d™ 7] — [dY23, sd2dP 7] + [d223, sod*d%7];

o« Clis at least 24-connected for all otherr.

We sets,’|a1 =0 for all n < 2; this determine<? in degrees< 21 and cosimplicial
dimensions< 2.
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By Remark 5.7, the two secondary operati¢ig®|-:) and <dls0|81) must vanish; on
1

=1
¢
the other hand, by Corollary 5.8 all obstructionstbbeing a loop space are in degrees
> 21, so the only relevant cross—term@z, with three possible third-order operations

(¥lz2), for v = dod1s%s?, dodps®st, or didosOst. The corresponding face-codegeneracy
2

polyhedraP; (y) is as in Fig. 2.
It is straightforward to verify that the operationm@z) are trivial fory = dod»s%? or
2

d1d»s%? (in fact, many of the maps”, for p € C(¥), may be chosen to be null). On may
also show that there is a compatible collectigfi} ,cc () for ¢ = dod1s%1, in the sense
of Definition 5.3, so that the corresponding sub(sﬁ%z) C 2187 is non-empty; in fact,

2

it contains the only possible obstruction to the 21-Postnikov approximatic$fay be a
loop space.
The existence of the tertiary operati(xpﬂ@z) corresponds to the fact that the element
2

71,07 = [, 1,01 4 11, 071,071 € w2187 s trivial “for three different reasons™
because of the Jacobi identity, because all Whitehead products varis$‘irand because
of the linearity of the Whitehead product—i.g0, o] = 0.

On the other hand, we know that theésea 3-primary obstruction to the homotopy-
associativity of anyH -multiplication onS’, namely the elemenntf4r7 e 12187 (see [21,
Theorem 2.6]). We deduce that¢0(<p|€§), and in fact (modulo 3) this tertiary operation

consists exactly of the elemenisrf4r7.
For a detailed calculation of such higher order operations using simplicial resolutions of
IT-algebras, see [6, Section 4.13].

Remark 5.10. Our approach to the question of whett¥is a loop space is clearly based

on, and closely related to, the classical approaches of Sugawara and Stasheff (cf. [33,34,
37]. One might wonder why Stasheff’s associahddrécf. [33, Section 2,6]) do not show

up among the face-codegeneracy polyhedra we describe above. Apparently this is because
we do not work directly with the spack, but rather with its simplicial resolution, which

may be thought of as a “decomposition” ¥finto wedges of spheres.
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