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Chemokines represent a large family of polypeptide
signaling molecules that are notable for their role in
chemotaxis, leukocyte homing, directional migration,
and G protein coupled receptor activation. Chemo-
kines have recently been implicated in tumor
progression and metastasis. The demonstration of
chemokine expression and receptor activation in
melanoma tumor cells themselves, and the tumor
in®ltrating leukocytes, may have important implica-
tions in terms of tumor progression and tumor cell
homing to metastatic sites. In addition to their
chemotactic and cell homing properties, chemokines
and their receptors also play a part in other biologic
functions relevant to oncogenesis, including cell pro-
liferation, protease induction, tumor growth, and
angiogenesis. Melanomas, and the cells derived from
them, have been found to express a number of
chemokines, including CXCL8 (interleukin-8),
CXCL1±3 (MGSA-GROa±g), CCL5 (RANTES), and

CCL2 (monocyte chemotactic protein-1), which have
been implicated in tumor growth and progression.
Furthermore, recent studies have demonstrated
organ-speci®c patterns of melanoma metastasis that
correlate with their expression of speci®c chemokine
receptors, including CXCR4, CCR7, and CCR10.
This review will focus on the current biology of
chemokines and chemokine receptors in the context
of understanding their potential roles in melanoma
progression and metastasis, and is not meant to be a
comprehensive review of chemokine biology. Con-
tinued understanding and progress in the determin-
ation of the role of chemokines and their receptors in
tumorigenesis and metastasis, including melanoma,
may lead to novel approaches in the treatment and
management of this disease. Key words: chemokine
receptor/chemokine/G protein-coupled receptor/melanocyte/
melanoma. J Invest Dermatol 118:915±922, 2002

C
ellular transformation, tumor growth, and metastasis
are complex biochemical processes that involve,
among other events, autonomous cell growth and
host±tumor interactions. The molecular basis for
many of these events is increasingly becoming

understood, particularly in understanding deregulation of the cell
cycle, programmed cell death, angiogenesis, extracellular matrix
remodeling, and evasion of host immune surveillance. In
melanoma, some of the mechanisms of cellular transformation
have been identi®ed and a portion of the genetics of familial
melanoma have been determined (Greene et al, 1983; Halpern et al,
1991; Gruis et al, 1993; Hussussian et al, 1994; Newton-Bishop et al,
1994, 2000; Platz et al, 1998, 2000). Similarly, the mechanisms of
melanoma metastasis are under investigation. The metastatic
potential of melanoma contributes to the poor rate of survival
following tumor invasion, together with the lack of effective
systemic therapies. As in other cancers, matrix-degrading matrix
metalloproteinases have been implicated in facilitating melanoma
invasion and dissemination (MacDougall et al, 1999; Hofman et al,
2000). Additionally, an increasing body of literature is accumulating
that identi®es immune evasion as a critical step in melanoma disease

progression (BroÈcker et al, 1988; Giavazzi et al, 1990; Bottazzi et al,
1992; Kirkwood et al, 1996; Brinckerhoff et al, 2000; Torisu et al,
2000; Fishman et al, 2001). Downregulation of major histocom-
patibility complex class I expression (Fishman et al, 2001) and
modulation of the in¯ammatory response via cytokines (Balkwill
and Mantovani, 2001) have been described. Other recent reports
suggest that expression of chemokines and chemokine receptors by
melanoma may contribute to the ability to escape tumor
surveillance and may partially explain preferential patterns of
melanoma metastasis to sites such as lymph nodes, skin, and lungs
(Muller et al, 2001).

Chemokines are structurally related, small (8±14 kDa) polypep-
tide signaling molecules (Zlotnik and Yoshie, 2000) that bind to
and activate a family of seven transmembrane G protein-coupled
receptors, more speci®cally, the chemokine receptors (Murphy,
1996). Chemokines were originally characterized by their ability to
induce chemotaxis of leukocytes. They have since been shown to
act on multiple cell types, including endothelial cells and tumor
cells, where they elicit a broad range of cellular signals that may
affect cell proliferation and the promotion of angiogenesis. The
chemokines and their respective receptors are divided into the
CXC, CC, C, and CX3C families, based upon the positions of their
conserved two N-terminal cys residues. Their genes are clustered
on genomic loci, including chromosome 4q12±q13 (CXC acting
mainly on neutrophils), 4q21, and 17q11.2 (CC chemokines acting
mainly on monocytes) (Zlotnik and Yoshie, 2000). Although a
detailed review of chemokine biology is beyond the scope of this
manuscript, comprehensive overviews may be found in recent
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articles (Belperio et al, 2000). The known human chemokines are
listed in Table I with their systematic name, chromosome location
and receptor(s).

Chemokine receptor gene clusters exist on chromosomes 2 and 3
(Zlotnik and Yoshie, 2000). There is signi®cant redundancy and
promiscuity in chemokine signaling as many chemokines share
common receptors and, conversely, bind to multiple receptors.
Chemokines and their receptors have been implicated in the
regulation of various immune-mediated responses. For example,
chemokines serve as attractant cytokines for T cells, and differential
expression of chemokine receptors may contribute to the homing

and activation of speci®c T cell subsets. Relevant to autoimmune,
allergic, and dermatologic disease, it has been demonstrated that
speci®c chemokine tissue expression pro®les function to recruit
differentially corresponding T cell subtypes (Sebastiani et al, 2001).
Memory T cells differentially express chemokine receptors; T
helper 1 lymphocytes expressing CCR5 and CXCR3, and T
helper 2 lymphocytes CCR3, CCR4, and CCR8 (Gerber et al,
1997; Sallusto et al, 1997, 1998; Bonecchi et al, 1998; D'Ambosio
et al, 1998; Zingoni et al, 1998). More recent investigations
demonstrate a role for chemokines in T cell differentiation (Luther
and Cyster, 2001). In addition, an entirely distinct role for

Table I. CXC, C, and, CX3C chemokine/receptor familiesa

Systematic name
Human
chromosome Human ligand Mouse ligand Chemokine receptor(s)

CSC chemokine/receptor family
CXCL1 4q12±q13 GROa/MGSA-a GRO/KC? CXCR2 > CXCR1
CXCL2 4q12±q13 GROb/MGSA-b GRO/KC? CXCR2
CXCL3 4q12±q13 GROg/MGSA-g GRO/KC? CXCR2
CXCL4 4q12±q13 PF4 PF4 Unknown
CXCL5 4q12±q13 ENA-78 LIX? CXCR2
CXCL6 4q12±q13 GCP-2 CKa-3 CXCR1, CXCR2
CXCL7 4q12±q13 NAP-2 Unknown CXCR2
CXCL8 4q12±q13 IL-8 Unknown CXCR1, CXCR2
CXCL9 4q21.21 Mig Mig CXCR3
CXCL10 4q21.21 IP-10 IP-10 CXCR3
CXCL11 4q21.21 I-TAC Unknown CXCR3
CXCL12 10q11.1 SDF-1a/b SDF-1 CXCR4
CXCL13 4q21 BLC/BCA-1 BLC/BCA-1 CXCR5
CXCL14 Unknown BRAK/bolekine BRAK Unknown
(CXCL15) Unknown Unknown Lungkine Unknown

C chemokine/receptor family
XCL1 1q23 Lymphotactin/SCM-1a/ATAC Lymphotactin XCR1
XCL2 1q23 SCM-1b Unknown XCR1

CX3C chemokine/receptor family
CX3CL1 16q13 Fractalkine Neurotactin CX3CR1

CC chemokine/receptor family
CCL1 17q11.2 I-309 TAC-3, P500 CCR8
CCL2 17q11.2 MCP-1/MCAF JE? CCR2
CCL3 17q11.2 MIP-1a/LD78a MIP-1a CCR1, CCR5
CCL4 17q11.2 MIP-1b MIP-1b CCR5
CCL5 17q11.2 RANTES RANTES CCR1, CCR3, CCR5
(CCL6) Unknown C10, MRP-1 Unknown
CCL7 17q11.2 MCP-3 MARC? CCR1, CCR2, CCR3
CCL8 17q11.2 MCP-2 MCP-2? CCR3
(CCL9/10) Unknown MRP-2, CCF18 MIP-1c Unknown
CCL11 17q11.2 Eotaxin Eotaxin CCR3
(CCL12) Unknown MCP-5 CCR2
CCL13 17q11.2 MCP-4 Unknown CCR2, CCR3
CCL14 17q11.2 HCC-1 Unknown CCR1
CCL15 17q11.2 HCC-2/Lkn-1/MIP-1 Unknown CCR1, CCR3
CCL16 17q11.2 HCC-4/LEC LCC-1 CCR1
CCL17 16q13 TARC TARC CCR4
CCL18 17q11.2 DC-CK1/PARC AMAC-1 Unknown Unknown
CCL19 9p13 MIP-3b/ELC/exodus-3 MIP-3b/ELC/exodus-3 CCR7
CCL20 2q33±q37 MIP-3a/LARC/exodus-1 MIP-3a/LARC/exodus-1 CCR6
CCL21 9p13 6Ckine/SLC/exodus-2 6Ckine/SLC/exodus-2/TCA-4 CCR7
CCL22 16q13 MDC/STCP-1 ABCD-1 CCR4
CCL23 17q11.2 MPIF-1 Unknown CCR1
CCL24 7q11.23 MPIF-2/Eotaxin-2 Unknown CCR3
CCL25 19p13.2 TECK TECK CCR9
CLL26 7q11.23 Eotaxin-3 Unknown CCR3
CCL27 9p13 CTACK/ILC ALP/CTACK/ILC ESkine CCR10*

Reprinted from: Zlnotnick A, Yoshie O: Chemokines: a new classi®cation system and their role in immunity. Immunity 12: 121±127; 2000, with permission from
Elsevier Science. Authors comments follow:
aWe recently identi®ed the receptor for CCL27, which has been named CCR10 (Homey et al, 2000). While we have tried to include most of the names with which a par-
ticular chemokine has been described, we may have missed some; for this we apologize in advance. We have also tried to list the main receptors for each chemokine,
although some may bind other receptors but may not be their primary ligands. A question mark indicates that the listed mouse homolog may not correspond to the listed
human ligand (see text). A systematic name in parenthesis indicates that the human homolog has not yet been identi®ed. This provisional nomenclature proposal has been
submitted to the International Union of Immunological Societies (IUIS) Subcommittee on Chemokine Nomenclature (Chairman R. Thorpe) for consideration as an inter-
nationally approved nomenclature.
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chemokine receptors has been identi®ed with regard to infectious
disease processes. An important example are the chemokine
receptors CCR5 and CXCR4, present on monocytes and resting
T cells, respectively, that bind to their ligands murine macrophage
in¯ammatory protein (MIP) 1-a/b and RANTES (Regulated
upon Activation Normal T cell Expressed and Secreted; CCR5)
and SDF-1a (CXCR4). Interestingly, these chemokine receptors
also act as coreceptors for human immunode®ciency virus, and this
differential utilization partially explains the basis for human
immunode®ciency virus tropism to speci®c cell types.

Such varied utilization of chemokine receptors, their activation
and signaling are integrated into, and partially regulate, complex
in¯ammatory and immune responses. Like other G-protein linked
signal pathways, activation of chemokine receptors, characteristic-
ally by binding of their respective chemokine ligands, initiates a
cascade of downstream biochemical events, including hydrolysis of
phosphotidylinositol triphosphate, PI-3 kinase, protein kinase C
activation, calcium in¯ux, and activation of rac and Rho (reviewed
in Mukaida, 2000). The latter pathway is involved in cell migration
and has recently been implicated through large genomic screens to
be a participant in melanoma metastasis (Clark et al, 2000).

Chemokines have also been implicated in the cellular trans-
formation, tumor growth, invasion, and homing of metastasis to
distant sites (Fig 1) (Strieter et al, 1995) and in the host±tumor
response. The recruitment of leukocytes to the site of a tumor
represents a delicate balance between the host±anti-tumor response
and the elaboration of in¯ammatory mediators that may induce or
facilitate invasion by the primary tumor. The role of in¯ammation
in cancer has recently been reviewed (Balkwill and Mantovani,
2001), with much evidence supporting the theory that, for many
cancers, the presence of leukocytes in a primary tumor negatively
impacts prognosis. Relevant to in¯ammation and tumor biology,
some chemokines have an effect on angiogenesis. More speci®cally,
certain CXC chemokines, including CXCL8 [interleukin (IL)-8],
contain a three amino acid ELR motif (glutamine±leucine±
arginine) (ELR+) between the N-terminus and the ®rst cysteine,
and function as potent promoters of angiogenesis (reviewed by
Belperio et al, 2000). Other members of this family include Groa,
-b, and -g (see below), epithelial neutrophil activating protein-78
(ENA-78), granulocyte chemotactic protein-2 (GCP), and platelet
basic protein-2 (PBP). CXC chemokines lacking this ELR motif
(ELR±) are angiostatic, and include platelet factor-4 (PF-4),
interferon-g inducible protein (IP-10), and monokine induced by

interferon-g (MIG). The relevance of the angiogenesis-promoting
or angiogenesis-inhibiting properties of these chemokines to
melanoma genesis and tumor progression is as yet not established.
In fact, the prognostic signi®cance of angiogenesis in melanoma,
unlike certain other tumors, is unclear. In one study, macrophage
in®ltration has been found to correlate with melanoma tumor
stage and angiogenesis, with the in¯ammatory mediators IL-1a and
tumor necrosis factor (TNF)-a implicated in the pathogenesis of
this effect (Torisu et al, 2000). Although the role of chemokines
was not speci®cally addressed in this study, the leukocyte-derived
in¯ammatory cytokine TNF-a is angiogenic and is also capable of
inducing CXC ELR+ chemokines (SchroÈder et al, 1990). Their
role on angiogenesis aside, given the role of chemokines as
potent chemoattractants for in¯ammatory cells, as well as effectors
in other cell types, recent attention has focused upon the
expression of chemokines and their receptors in tumorigenesis
and metastasis.

CXCL8/IL-8

The ®rst described chemokine, CXCL8, was originally identi®ed as
a neutrophil chemotactic and activating peptide isolated from
mononuclear cells, a cytokine involved in the acute in¯ammatory
response. It was puri®ed from supernatants of lipopolysaccharide-
stimulated human monocyte cultures (SchroÈder et al, 1987; Walz
et al, 1987; Yoshimura et al, 1987; Mrowietz et al, 1999). CXCL8
mRNA is expressed by monocytes, natural killer cells, T lympho-
cytes, neutrophils, endothelial cells, keratinocytes, ®broblasts, and
smooth muscle cells (Baggiolini et al, 1989; SchroÈder et al, 1987,
1990; Walz et al, 1987; Matsushima et al, 1988; Kulke et al, 1998).
There is no known mouse homolog. CXCL8 has been shown to
induce lysosomal degranulation, generation of the free radical burst,
and upregulation of certain adhesion molecules (reviewed in
Mukaida, 2000); thus acting both as a chemoattractant and upon
binding to its receptor, a neutrophil activator. CXCL8 binds with
high af®nity to two distinct receptors, CXCR1 and CXCR2,
primarily expressed on neutrophils (Holmes et al, 1991; Murphy
and Tiffany, 1991), but also on other cell types, including
keratinocytes (Kulke et al, 1998). CXCR1 (IL8RA) binds
CXCL8 (IL-8) and another CXC chemokine NAP-2 (Petersen
et al, 1994; Zlotnik and Yoshie, 2000); CXCR2 is a more
promiscuous receptor, binding multiple CXC ELR+ chemokines,
including CXCL1, and CXCL8 (Zlotnik and Yoshie, 2000). It has

Figure 1. Chemokine role in cellular trans-
formation, tumor growth, invasion and
homing and metastasis to distant preferential
organs. Reprinted with permission from: Strieter
RM: Chemokines: Not just leukocyte chemo-
attractants in the promotion of cancer. Nat
Immunol 2:285±286, 2001.
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been postulated that CXCR2 may, in fact, mediate the angiogenic
activity of ELR+ chemokines (Belperio et al, 2000). Like many of
the chemokine receptors, binding of ligand to CXCR2 not only
leads to receptor activation but may also regulate receptor
availability through receptor desensitization (Mueller et al, 1997),
clathrin-mediated receptor endocytosis (Yang et al, 1999), and
subsequent receptor degradation (Mueller et al, 1995).

Melanoma cells express CXCL8 mRNA (Colombo et al, 1992)
and secrete the protein (FoÈrster et al, 1991). In contrast to
neutrophils, CXCR2 is the major CXCL8 receptor in melanoma.
CXCL8 has been implicated in melanoma progression through
several mechanisms, including the promotion of tumor cell growth
and migration (Wang et al, 1990; Norgauer et al, 1996). In vitro,
CXCL8 has been described as a melanoma cell mitogen
(Schadendorf et al, 1993). In one study, inhibition of CXCL8 via
anti-sense oligonucleotides or neutralizing CXCL8 monoclonal
antibodies decreased melanoma cell proliferation in culture
suggesting a role for CXCL8 as a melanoma growth factor
(Schadendorf et al, 1993). Separate studies utilizing different
melanoma cell lines, however, showed that neutralizing antibodies
to another chemokine, CXCL1 (see below), but not CXCL8,
similarly inhibited cell proliferation (Fujisawa et al, 1999); this
suggested that melanoma may utilize different chemokine ligands,
among other proteins, to support growth. CXCL8 mediates the
haptotactic migration of melanoma cells (Wang et al, 1990) and
induces matrix metalloproteinase-2, facilitating extracellular matrix
degradation and migration (Luca et al, 1997).

Chemokine studies in mice may be dif®cult to translate to the
human system. In the murine system, IL-8 does not exist and the
most likely functional murine equivalent to human IL-8 is MIP-2
(Hogaboam et al, 1999). Interestingly, however, murine MIP-2 is
structurally similar to another chemokine, Gro-a (see below) and
murine Gro is known as KC (Table I). Nonetheless, CXCL8
expression also correlates with metastatic potential in murine
melanoma tumor models using human cell lines (Singh et al, 1994).
In a nude mouse model, induction of ultraviolet-induced mela-
noma cell tumorigenesis and metastasis correlate with CXCL8
mRNA and protein expression (Singh et al, 1995). Using the same
model, it was demonstrated that expression of CXCL8 was
regulated by the tissue microenvironment (Gutman et al, 1995).
CXCL8-expressing human melanoma cells injected into nude mice
and harvested after metastasis to the subcutis, spleen, and liver
differed in their chemokine expression levels. Melanoma cells
metastatic to the skin consistently expressed higher levels of
CXCL8 than cells that engrafted in the liver, and cross-over
experiments demonstrated that highly expressing metastatic cells
isolated from the skin expressed decreased amounts of CXCL8 after
reinjection and isolation from liver metastases. In vitro experiments
with these cells suggested that these ®ndings were the result of
induction of CXCL8 expression by keratinocyte-derived IL-1 and
conversely, inhibition of CXCL8 by hepatic-derived transforming
growth factor-b. These studies suggest a role for paracrine
regulation of chemokines in the clinical behavior of melanoma
in vivo. In fact, recent related work (Muller et al, 2001) demonstrates
that chemokine receptor expression by tumor cells may direct their
homing to metastatic sites (Fig 1).

Understanding chemokine and chemokine receptor regulation
may contribute to our understanding of the metastatic patterns of
melanoma. As indicated above, CXCL8 is constitutively expressed
by some, but not all, melanoma cells in vitro (Schadendorf et al,
1993). CXCL8 expression is upregulated by the in¯ammatory
cytokines IL-1 and TNF-a via AP-1 and NF-kB response elements
in its promoter (Singh et al, 1995; Mohler et al, 1996). Conversely,
interferons a and b inhibit this response (Singh and Varney, 1998).
Potentially relevant to tumorigenesis, the CXCL8 promoter also
contains an Oct1 repressor element (Wu et al, 1997) that is
deactivated through retinoblastoma protein expression (Zhang et al,
1999). Parallel mechanisms of chemokine receptor expression
regulation are similarly beginning to be understood (Mueller et al,

1997; Nieto et al, 1997; Sica et al, 1997; Sozzani et al, 1998;
Romagnani et al, 2001; Zella et al, 1991)

CXCL1±3/MGSA-a±g/GRO-a±g
CXCL1 protein was originally puri®ed as an autocrine growth
factor MGSA (melanoma growth stimulatory activity protein) from
supernatants of Hs29T melanoma cell cultures (Richmond et al,
1985; Richmond and Thomas, 1986; Bordoni et al, 1990) and
described as the product of the growth-related oncogene (gro)
locus (Anisowicz et al, 1987; Richmond et al, 1988), which is
identical to the CXCL1±3 gene cluster on chromosome 4q12±q13.
Later, it was puri®ed from lipopolysaccharide-activated monocytes
as a neutrophil chemoattractant (SchroÈder and Christophers, 1989)
and from similarly stimulated human umbilical vein endothelial
cells (SchroÈder et al, 1990). CXCL1 mRNA expression has also
been demonstrated in keratinocytes of psoriatic skin (Kulke et al,
1998). CXCL1 is clustered on three homologous genes (a, b, and
g; CXCL1, 2, and 3, respectively) on chromosome 4 (Haskill et al,
1990). Some background on nomenclature regarding this group of
related chemokines is necessary to understand the literature.
CXCL1, 2, and 3 are also known as MGSA-a/Gro-a, MGSA-
b/Grob and MGSA-g/Gro-g, respectively. As previously de-
scribed, the murine homolog is Gro/KC (Zlotnik and Yoshie,
2000). Suggesting a role in melanocyte transformation, over-
expression of CXCL1, CXCL2, or CXCL3 in immortalized
melanocytes results in their ability to form tumors (Balentien et al,
1991; Owen et al, 1997).

Whether there are independent biologic roles for the three
ligands (CXCL1±3) is uncertain. In addition to its role as a
purported autocrine growth factor for melanoma (Richmond et al,
1988), CXCL1 promotes angiogenesis in the rat cornea model,
with a less robust angiogenic response generated by CXCL2 and 3
(Strieter et al, 1995). CXCL1±3 promote neutrophil chemotaxis
with similar ef®cacy (Baggiolini et al, 1994), but demonstrate
differing levels of potency with respect to calcium mobilization (an
important indicator of receptor activation), which is dependent
upon cell type (Geiser et al, 1993). CXCL1±3 bind with high
af®nity to a common receptor, CXCR2 (Haskill et al, 1990;
Mueller et al, 1994), with CXCL1 having the highest af®nity
(Hammond et al, 1996). Conversely, CXCL1 binds with a lower
af®nity to CXCR1 (CXCL8 receptor, see above) (Lee et al, 1992).
The biologic signi®cance of multiple receptors for CXCL1 is
unclear, as blocking antibodies to either CXCL1 or CXCR2
inhibit melanoma cell growth in vitro (Lawson et al, 1987; Norgauer
et al, 1996), indicating that CXCR2 may be necessary and suf®cient
for melanoma growth signaling by CXCL1 in these cells. Mice lack
expression of CXCR1, but do express CXCR2 that bind CXC
chemokines (Lee et al, 1995). As previously discussed, human
CXCR1 transcripts are primarily expressed in neutrophils, mela-
noma cells express transcripts for CXCR2 (Muller et al, 2001).

CXCL1 regulation occurs at both the transcriptional and
translational level, although again, in a cell-type-speci®c manner.
Relevant to cells of melanocyte lineage, CXCL1 mRNA is
constitutively expressed in cultured nevocytes from benign and
``dysplastic'' nevi as well as melanoma cells, but is not detectable in
cultured primary melanocytes (Bordoni et al, 1990). This tight
regulation of CXCL1 mRNA expression in ``normal'' melano-
cytes, along with deregulated expression in transformed cells
(melanoma) in vitro is analogous to the expression pro®le of cellular
oncogenes (Campisi et al, 1984). In cells of melanocyte lineage,
CXCL1 protein, unlike CXCL1 mRNA, is constitutively
expressed only by melanoma cells (through activation of NF-kB;
Shattuck-Brandt and Richmond, 1997) and protein release can be
induced in nevocytes as well as melanocytes by exogenous growth
factors (Bordoni et al, 1990). One proposed explanation for these
®ndings is that CXCL1 mRNA contains 3¢ regulatory sequences
that, in a nontransformed cell, normally signal for rapid turnover,
making steady-state detection in normal melanocytes dif®cult
(Bordoni et al, 1990). It has also been proposed that the increased
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level of mRNA observed in melanoma cells is due not only to this
increased mRNA stability but also to transcriptional regulation in
response to exogenous cytokines and growth factors, including
CXCL1 itself (Anisowicz et al, 1987; Richmond et al, 1988).
Finally, translational regulation of CXCL1 has also been demon-
strated, where mRNA±polyribosome association is dependent
upon speci®c growth factors, exogenously derived for melanocytes
and endogenous in melanoma cells (Bordoni et al, 1990). When
multiple melanoma cell lines were examined, it was similarly found
that regulation of chemokine protein expression involves both
transcription and mRNA stability, as well as mechanisms affecting
translation and secretion (Yang and Richmond, 2001). In
the context of these ®ndings, the pattern of expression of the
chemokine CXCL1, in the cellular transformation of the
melanocyte presents a multitiered process that appears to involve
a stepwise regulation of transcriptional and translational control.
Stimulation by exogenous factors such as ultraviolet irradiation, as
well as those yet to be determined, may serve as initiating events in
the circumvention of normal growth control regulatory mechan-
isms in the melanocyte (Singh et al, 1995). If one proposes that
melanocyte transformation progresses from either the melanocyte
directly to melanoma or, in certain instances, the melanocyte to
nevus cell to melanoma, determining such cellular and molecular
characteristics that accompany this transformation may aid our
understanding of the process. In fact, G protein-coupled receptor
overexpression has previously been linked to cellular transform-
ation in another cell type. Overexpression of the Kaposi's sarcoma
virus chemokine-like G protein-coupled receptor (KSHV-G
protein-coupled receptor), having similarities to CXCR2, in
hematopoietic cells in mice leads to the spontaneous development
of angioproliferative lesions resembling Kaposi's sarcoma (Yang et al,
2000).

CCL5/RANTES

Human and murine CCL5, or RANTES, share sequence
homology and chromosomal location (17q11.2) (Zlotnik and
Yoshie, 2000). RANTES, similar to the other chemokines, was
originally identi®ed as a leukocyte chemoattractant protein (Schall
et al, 1990; Schall, 1999). More recently, however, its role in
binding to one of its receptors, CCR5, one of the human
immunode®ciency virus cell entry receptors on CD4+ T cells
(Ward and Westwick, 1998) has received much attention.
RANTES is produced by CD8+ T cells, platelets, epithelial cells,
and ®broblasts, typically in response to in¯ammatory mediators
(Appay and Rowland-Jones, 2001). Its receptors, CCR1, 3, 4, and
5 may be found on a variety of cell types, including T cells,
monocytes, dendritic cells, and mast cells (Schall, 1999), and upon
binding its ligand, mediate the effects of this chemokine at
nanomolar concentrations (Nieto et al, 1997). The expression of
multiple receptors on one cell type (i.e., the macrophage) may
potentially explain the rapid receptor activation, that is, in fact, a
characteristic of this chemokine. Interestingly, at micromolar
concentrations, RANTES acts as a T cell mitogen that is
independent of chemokine binding to its G protein-coupled
receptor (Appay et al, 2000). Also unique to RANTES is its ability
to self-aggregate on the cell surface, having potential implications in
cell±cell cross-linking (Appay and Rowland-Jones, 2001).

With respect to melanoma, a subset of melanoma cells has been
shown to express CCL5/RANTES (Mrowietz et al, 1999). In these
cells, expression of CCL5 was 5±50-fold higher than CXCL8 and
was upregulated by TNF-a. CCL5 expressing melanoma cells
formed increasingly aggressive tumors in nude mice in a concen-
tration-dependent fashion. CCL5-expressing tumors were highly
chemotactic for leukocytes, and transplantation experiments
demonstrated that CCL5 expression favored tumor progression.

CCL2/MCP-1

Monocyte chemotactic protein-1 (MCP-1, CCL2) is another
highly conserved CC chemokine (Yoshimura et al, 1989). CCL2 is

a potent monocyte chemoattractant protein, isolated from cultured
smooth muscle vascular cells (Valente et al, 1988) that also recruits
natural killer cells (Allavena et al, 1994) and certain T lymphocyte
populations (Carr et al, 1994). CCL-2 is expressed in a variety of
``in¯ammatory'' conditions (Kuziel et al, 1997), including athero-
sclerosis (Yla-Herttuala et al, 1991), and its role in tumorigenesis
and progression, including melanoma, has been widely investigated
(Salcedo et al, 2000; Sica et al, 2000; Ueno et al, 2000; Nesbit et al,
2001). The predominant chemokine receptor is CCR2 (Kurihara
et al, 1997). Mice de®cient in this receptor demonstrate a severe
reduction in leukocyte adhesion, monocyte extravasation (Kuziel
et al, 1997) and recruitment (Boring et al, 1997). In ovarian
carcinoma, tumor-associated macrophages isolated from ascites or
solid tumors demonstrated defective CCR2 expression and the
investigators propose that this may represent one mechanism of the
defective immune response seen in advanced cancers (Sica et al,
2000).

Early studies demonstrated the expression of monocyte chemo-
tactic protein (CCL2/MCP-1) by melanoma in vivo (Graves et al,
1992), a ®nding of some interest as macrophages are commonly
found in melanoma as the quantitatively dominant leukocyte type
(BroÈcker et al, 1988; Van Ravenswaay-Claasen et al, 1992). Tumor-
associated macrophages elaborate cytokines and growth factors,
some of which are angiogenic and angiostatic, which can either
promote or inhibit tumor progression (Mantovani et al, 1992)
Along these lines, previous studies on gene transfer of human
CCL2 into murine melanoma cells demonstrated that CCL2-
producing melanoma clones showed a 2-fold increase in the
percentage of tumor-associated macrophages in vivo as well as a 2-
fold decrease in the rate of tumor growth, associated with increased
survival (Bottazzi et al, 1992). This relationship is not straightfor-
ward, however, as inoculation of smaller numbers of CCL2-
expressing cells resulted in increased tumorigenicity. As previously
noted, one group has found that macrophage in®ltration in human
melanoma correlates with tumor stage and angiogenesis (Torisu et
al, 2000). Interestingly, we have found that CCL2, as well as certain
other chemokines, induce matrix-degrading matrix metalloprotei-
nase secretion in macrophages, potentially relevant to tumors
having macrophage in®ltration (LAC, unpublished observations).
Clearly, these relationships are complex, and further studies are
needed to determine the role of these factors in the host immune
response that is speci®c to melanoma.

CHEMOKINE RECEPTORS AND MELANOMA

The coordinated secretion of chemokines, and their binding to
receptors on the cell surface, directs leukocyte cell homing to
speci®c tissue sites. The secretion of chemokines and their receptor
expression by dendritic cells during maturation, migration, and
antigen presentation in the lymph node provides an elegant
example of this homing process (Dieu et al, 1999; FoÈrster et al,
1999; Zlotnik and Yoshie, 2000) as reviewed by Zlotnik and
Yoshie (2000). Similar processes have been suggested in the
homing of transformed cells to speci®c sites (Fig 1). In fact, a role
for chemokine receptors has recently been demonstrated in the
homing of metastatic tumor cells in breast cancer and melanoma
(Muller et al, 2001). Investigators demonstrated that malignant cells
express distinct and nonrandom patterns of chemokine receptors
that guide their metastatic destination determined by the expression
levels of chemokines by target organs. Speci®cally, melanoma cells
were found to express high levels of CXCR4, CCR7, and CCR10
mRNA as compared with normal primary melanocytes. The
respective ligands for these receptors, CXCL12/SDF-1a, CCL21/
6Ckine, and CCL27/CTACK, exhibit peak levels of expression in
lymph node, lung, liver, bone marrow, and skin, in accordance
with the primary metastatic destinations of melanoma. CCL27/
CTACK is a novel skin-speci®c chemokine (Morales et al, 1999)
whose expression can be upregulated by the in¯ammatory
cytokines IL-1 and TNF-a (Homey et al, 2000). The receptor
for CCL27, CCR10, is expressed by melanocytes, melanoma
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tumor cells, dermal ®broblasts, endothelial cells, T cells, and
Langerhans cells (Homey et al, 2000), supporting the role for
CCL27/CCR10 interaction in this, as well as other, immune-
mediated processes of the skin (Rottman et al, 2001).

In the above breast cancer model of metastasis, signaling through
CXCR4 or CCR7 induces actin polymerization, pseudopod
formation, and chemotactic migration in tumor cells. Treatment
of SCID mice with anti-CXCR4 neutralizing monoclonal anti-
body following intravenous or orthotopic injection of human
breast cancer tumor cells signi®cantly inhibited lymph node and
lung metastases (Muller et al, 2001). In these investigations,
however, it was unclear whether this effect was achieved by
disruption of metastatic homing and/or primary inhibition of
tumor cell growth. Prior studies using human melanoma cells in
nude mice have demonstrated that treatment with a synthetic
peptide that competitively inhibits CXC chemokine binding can
inhibit pulmonary metastases in vivo (Fujisawa et al, 1999).
Similarly, preliminary studies in a murine melanoma model using
CCR-7-transduced B16 melanoma cells demonstrated a 200-fold
increase in draining lymph node tyrosinase-related protein-1
mRNA (indicative of B16 tumor cell homing) than their vector-
transduced littermates (Gonzolez et al, 2001). Given the multiple
steps in the pathway toward metastasis, including tumor growth,
cell migration, and engraftment, the actual mechanism for
chemokine receptor dependent homing is undoubtedly more
complex than mere ligand recognition and most likely includes the
local induction of proteases and adhesion molecules, as well as other
factors.

CHEMOKINES AND MELANOMA THERAPY

In addition to melanoma chemokine receptor expression and
potential homing to preferential metastatic sites, the increasing data
on the association of chemokines with dendritic cell maturation and
lymph node homing (Zlotnik and Yoshie, 2000) is in itself also
relevant to melanoma therapy. As previously cited, dendritic cell
expression of chemokine receptors such as CCR7 has been shown
to mediate dendritic cell migration to lymph nodes, an essential
event for antigen-speci®c T cell activation (FoÈrster et al, 1999;
Sallusto et al, 2000) and an important mechanism for mounting an
immune response to certain tumors. Dendritic cells also express
speci®c chemokines such as CCL17 whose receptor CCR4 has
been associated with the T helper 2 phenotype, suggesting that the
particular chemokine secreted determines the subset of T cells
targeted for recruitment and expansion (O'Garra et al, 1998; Imai
et al, 1999). Separate investigations have determined that this
recruitment of dendritic cells to tumor tissue involves chemokines
and receptors that are distinct from those employed in leukocyte
recruitment (tumor-associated macrophages) (Hillibrand et al,
1999). Further research into mechanisms of dendritic chemokine
expression and receptor regulation as it relates to tumor cell antigen
presentation may have signi®cant clinical bene®t relevant to
melanoma vaccine adjuvant therapy (Brinckerhoff et al, 2000).

In the area of infectious disease, chemokine receptor blockade
strategies are currently under investigation in human immuno-
de®ciency virus chemokine receptor recognition and cell entry
(Moore and Trkola, 1997; Hadida et al, 1998; Berger et al, 1999).
Although this does not represent an entirely analogous biologic
system, further investigations linking tissue and tumor cell
chemokine and receptor expression to cellular transformation and
tumor metastasis may provide a scienti®c basis for similar blocking
strategies to be investigated in the area of cancer biology and
metastasis.
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