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1. Introduction

Constructing small-area straight-line drawings of planar graphs is a classical research topic in Graph Drawing. Ground-
breaking works of the end of the 80’s have shown that every planar graph admits a planar straight-line drawing on a grid
whose size is quadratic in the number of vertices of the graph [2,3]. It turns out that such an area requirement is worst-
case the best possible [4,2,5]. Consequently, the problem of finding non-trivial sub-classes of planar graphs that admit
sub-quadratic area drawings has been widely investigated. For example, it is known that every n-node tree can be drawn
in O (n log n) area (a simple modification of the h–v drawing algorithm in [6]) and that every n-node tree whose degree is
O (

√
n ) can be drawn in O (n) area [7].

One of the classes of graphs that has attracted more research interest is the one of outerplanar graphs. An outerplanar
graph is a graph that admits a planar drawing in which all vertices are on the same face. Almost thirty years ago, Dolev
and Trickey [8] showed that every n-vertex outerplanar graph whose degree is bounded by four admits a poly-line drawing
in O (n) area. The techniques presented in [8] can be modified in order to obtain poly-line drawings of outerplanar graphs
with degree d in O (d2n) area, as pointed out in [1]. More recently, the problem of obtaining minimum-area drawings
of outerplanar graphs has been tackled by Biedl [1], who first provided a sub-quadratic area upper bound for poly-line
drawings of general outerplanar graphs. Namely, she proved that outerplanar graphs admit poly-line drawings in O (n log n)

area. Moreover, she conjectured that there exists a class of outerplanar graphs called “snowflake graphs” requiring Ω(n log n)

area in any planar straight-line or poly-line drawing.
Concerning straight-line drawings, in [9] (further published in [10]) Garg and Rusu have shown that every n-vertex

outerplanar graph with degree d has a straight-line drawing with O (dn1.48) area. The first sub-quadratic area upper bound
has been proved in [11] (further published in [12]), where Di Battista and Frati showed that O (n1.48) area always suffices for
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Fig. 1. (a) The leftmost and the rightmost path of an ordered rooted binary tree. (b) The left–right path and the right–left path of a node v in an ordered
rooted binary tree.

straight-line drawings of outerplanar graphs. For restricted classes of outerplanar graphs, namely outerplanar graphs whose
dual tree has a small diameter [1], “complete outerplanar graphs” [12], and “label-constrained outerplanar graphs” [13],
better area bounds are known.

In this paper we show an algorithm for obtaining straight-line drawings of outerplanar graphs in O (dn log n) area. Clearly,
this improves the upper bound on the area requirement of all the outerplanar graphs whose degree is O (n0.48/ logn).
Further, we prove that snowflake graphs admit linear-area straight-line drawings, settling in the negative the above cited
conjecture appeared in [1].

The rest of the paper is organized as follows. Section 2 contains some preliminaries. Section 3 presents an algorithm
for constructing straight-line drawings of outerplanar graphs in O (dn log n) area. Section 4 presents an algorithm for con-
structing straight-line drawings of snowflake graphs in O (n) area; in the same section we give conclusions and a conjecture
concerning the area requirement of straight-line drawings of outerplanar graphs.

2. Preliminaries

We assume familiarity with Graph Drawing. For basic definitions see also [14].
A drawing of a graph is a mapping of each vertex to a point of the plane and of each edge to a Jordan curve between its

endpoints. A drawing is planar if no two edges cross, but, possibly, at common endpoints. A grid drawing is such that all the
vertices have integer coordinates. A straight-line drawing (resp. a poly-line drawing) is such that each edge is represented by
a segment (resp. by a sequence of consecutive segments). Clearly, a straight-line drawing of a graph is fully determined by
the placement of its vertices. In the following, unless otherwise specified, for drawing we always mean planar straight-line
grid drawing. The area of a drawing is the number of grid points in the smallest rectangle with sides parallel to the axes
that covers the drawing completely.

A planar drawing of a graph determines a circular ordering of the edges incident to each vertex. Two drawings of
the same graph are equivalent if they determine the same circular ordering around each vertex. A planar embedding is an
equivalence class of planar drawings. A planar drawing partitions the plane into topologically connected regions, called faces.
The unbounded face is the outer face. Two equivalent drawings of the same graph have the same faces. An embedding of a
graph G determines its dual graph, that is the graph with one vertex per face of G and with one edge between two vertices
if the corresponding faces share an edge in G .

An outerplanar embedding is a planar embedding in which all the vertices are incident to the same face, say the outer
face. An outerplanar graph is a graph that admits an outerplanar embedding. The dual graph of an outerplanar embedded
graph is a tree when not considering the vertex corresponding to the outer face. A maximal outerplanar graph is a graph
that admits an outerplanar embedding in which all the faces, except for the outer one, are triangles. The dual graph of a
maximal outerplanar embedded graph is a binary tree.

The degree of a vertex is the number of edges incident to the vertex. The degree of a graph is the maximum degree of one
of its vertices. A binary tree is a tree such that each node has degree at most three. A rooted tree is one with a distinguished
node, called root. A tree is ordered if a left-to-right order of the children of each node is fixed. A drawing Γ of an ordered
tree T is order-preserving if the order in which the edges are incident to each node in Γ is the same as specified in T .

Let T be an ordered binary tree rooted at node r. Let T (v) denote the subtree of T rooted at node v . The leftmost path
L(T ) (resp. the rightmost path R(T )) of T is the path v0, v1, . . . , vk such that v0 = r, vi+1 is the left child (resp. the right
child) of vi , ∀i: 0 � i � k − 1, and vk does not have a left child (resp. a right child). See Fig. 1(a).

The left–right path (resp. the right–left path) of a node v ∈ T is the path v0, v1, . . . , vk such that v0 = v , v1 is the left
(resp. right) child of v0, and v1, v2, . . . , vk is the rightmost (resp. leftmost) path of T (v1). See Fig. 1(b).

Consider any drawing Γ of T . The left polygon of the neighbors Pl(v) (resp. the right polygon of the neighbors Pr(v)) of a
node v ∈ T is the polygon of the segments representing in Γ the edges of the left–right path (resp. of the right–left path)
plus a segment connecting vk and v0.
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Fig. 2. (a) A star-shaped drawing of a tree T , dual to an outerplanar graph G . (b) A straight-line drawing of the internal subgraph I of G . (c) A straight-line
drawing of G .

A planar straight-line order-preserving drawing Γ of an ordered rooted binary tree T is star-shaped if:

1. For each node v ∈ T , Pl(v) = (v, v1, . . . , vk) and Pr(v) = (v, u1, . . . , up) are simple polygons and each segment (v, vi),
with 2 � i � k − 1 (resp. (v, u j), with 2 � j � p − 1), belongs to the interior of Pl(v) (resp. of Pr(v)), except for its
endpoints.

2. For each pair of nodes va, vb ∈ T , each of Pl(va) and Pr(va) does not intersect Pl(vb) and Pr(vb), except, possibly, at
common endpoints or at common edges.

3. There exist points pl and pr from which it is possible to draw edges to each node of L(T ) and to each node of R(T ),
respectively, and to draw edge (pl, pr), without creating crossings with the edges of Γ .

Fig. 2(a) shows an example of a star-shaped drawing of an ordered rooted binary tree.
Let E be an outerplanar embedding of a maximal outerplanar graph G and let T be the dual binary tree of E . Select any

edge (ul, ur) on the outer face of E and root T at the internal face containing (ul, ur). We call vertices ul and ur poles of G
and we also call internal subgraph the graph obtained by deleting ul , ur , and their incident edges from G .

In [11,12] the straight-line drawability of an n-vertex outerplanar graph G was strictly related to the star-shaped drawa-
bility of its dual tree T , by means of the following lemma.

Lemma 1. (See Di Battista and Frati [11,12].) If T admits a star-shaped drawing with f (n) area, then G has an outerplanar straight-line
drawing where the area of the drawing of the internal subgraph of G is f (n).

The proof of the previous lemma is based on the observation that the dual binary tree T of an embedded maximal
outerplanar graph G is a subgraph of G itself. The internal subgraph I of G can be obtained by adding to T , for each
node v ∈ T , edges connecting v to the nodes of the left–right path of v and of the right–left path of v (see Fig. 2(b)). The
outerplanar graph G can be obtained by further adding to I two extra vertices (the poles of G) and the edges connecting the
two poles to the nodes of the leftmost and rightmost path of T (see Fig. 2(c)). Such a relationship is stated in the following
lemma.

Lemma 2. (See Di Battista and Frati [11,12].) Let T be an ordered rooted binary tree dual to a maximal outerplanar graph G. Add to T
edges connecting each node v ∈ T to the nodes of its left–right path and to the nodes of its right–left path, and add to T two extra
vertices connected to the nodes of the leftmost and rightmost path of T , thus obtaining a graph T + . Then, T + = G.

It can be observed that a star-shaped drawing of T satisfies conditions sufficient for placing the poles of G and drawing
the edges necessary to augment T to G , still maintaining a planar drawing. Further, in a star-shaped drawing of T with
area f (n), it is sufficient to guarantee a placement for the poles of G not asymptotically increasing f (n) to be able to
construct a drawing of G in O ( f (n)) area.

Further, observe that if a maximal outerplanar graph G has degree d, then, for each node v ∈ T , L(T (v)) and R(T (v))

have each at most d nodes, as all the nodes in L(T ) (resp. all the nodes in R(T )) are connected to the same node of G .
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Fig. 3. The strip H , the upper and the lower part of the drawing Γ , the placement of L(T ) and R(T ) in Γ .

3. The algorithm

In this section we show an algorithm for constructing straight-line outerplanar drawings of outerplanar graphs with
degree d in O (dn log n) area. The algorithm consists of the following steps.

(i) Augment the input outerplanar graph G to a maximal outerplanar graph G ′ .
(ii) Select any edge (ul, ur) incident to the outer face of the outerplanar embedding E of G ′ and root the dual binary tree

T of E at the internal face r of E containing (ul, ur); construct a star-shaped drawing Γ of T .
(iii) Insert the poles of G ′ and the edges that are needed to augment Γ in a drawing Γ ′ of G ′ .
(iv) Remove the dummy edges inserted during step (i) to obtain a drawing of G .

Step (i) can be performed by means of an algorithm described in [15], where it is shown how to augment an outerplanar
graph to maximal by inserting dummy edges that do not asymptotically increase the degree of the graph.

Now we describe how to perform step (ii), that is, we describe how to construct a star-shaped drawing Γ of T . The
outline of such a construction is as follows. A path S is removed from T , together with the edges incident to the vertices
of S . The subtrees that are disconnected from the removal of S are recursively drawn. Path S is chosen so that each one
of such subtrees is “small”, that is, has at most n/2 nodes. The drawings of the recursively drawn subtrees are horizontally
aligned, namely they are all contained in a horizontal strip H . The vertical extension of such a strip is given by the height
of the highest drawing of a subtree recursively drawn. The nodes of S are drawn in the upper part and in the lower part
of the drawing, that is, in the 4d + 1 horizontal grid lines above and below H , respectively. In particular, S is partitioned
into subpaths, and each subpath “cuts” H , that is, the subpath is drawn in part above and in part below H . The drawing is
constructed to satisfy the visibility properties of a star-shaped drawing. In particular, the leftmost and the rightmost path
of T are placed on the lowest line intersecting the drawing.

Denote by h1 and h2 the horizontal grid lines delimiting H with h1 above h2 at a vertical distance that will be deter-
mined later. The 4d + 1 horizontal grid lines above h1 (resp. below h2), that compose the upper part (resp. the lower part)
of the drawing, are labeled by u1, u2, . . . , u4d+1 (resp. by l1, l2, . . . , l4d+1) from the lowest to the highest (resp. from the
highest to the lowest). All the nodes of L(T ) and of R(T ) lie on l4d+1. See Fig. 3.

Assume T is rooted at any node v0 of degree at most two. Select a spine S = (v0, v1, . . . , vm) in T , that is a path such
that, for 1 � i � k, vi is the child of vi−1 that is root of the heaviest subtree of vi−1. The nodes of T belonging to S (not
belonging to S) are spine nodes (resp. non-spine nodes). We call left edge (right edge) an edge (vi−1, vi) of S such that vi is
the left child of vi−1 (resp. the right child of vi−1). We prove that each non-spine node ui child of a spine node vi is root of
a subtree with no more than n/2 nodes. Let vi+1 be the spine node child of vi (notice that vi+1 exists, otherwise ui would
be chosen as a spine node). Suppose, for a contradiction, that T (ui) has at least 1 + n/2 nodes. However, by the way in
which the spine is chosen, T (vi+1) has also at least 1 +n/2 nodes. Hence, T would have more than n nodes, thus providing
a contradiction.

Path S is partitioned into vertex-disjoint subpaths S0, S1, . . . , Sq , so that, for 0 � j � q, path S j = (v j
k, v j

k+1, . . . , v j
l ,

v j
, . . . , v j

, v j
) is defined as follows:
l+1 f −1 f
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• v0
k = v0 and, for 1 � j � q, v j

k is the node after v j−1
f in S .

• If (v j
k, v j

k+1) is a right edge, then let v j
l be the first node after v j

k in S such that (v j
l , v j

l+1) is a left edge.

– If (v j
l+1, v j

l+2) is a left edge then let v j
f be the first node after v j

l in S such that (v j
f , v j

f +1) is a right edge.

– If (v j
l+1, v j

l+2) is a right edge then let v j
f be the first node after v j

l in S such that (v j
f , v j

f +1) is a left edge.

• If (v j
k, v j

k+1) is a left edge, then let v j
l be the first node after v j

k in S such that (v j
l , v j

l+1) is a right edge.

– If (v j
l+1, v j

l+2) is a right edge then let v j
f be the first node after v j

l in S such that (v j
f , v j

f +1) is a left edge.

– If (v j
l+1, v j

l+2) is a left edge then let v j
f be the first node after v j

l in S such that (v j
f , v j

f +1) is a right edge.

Notice that Sq could have no vertex vq
l or vq

f if the spine ends before a left edge or a right edge is encountered. Roughly

speaking, a path S j starts from the vertex v j
k of S following the one where path S j−1 ends; further, S j ends where the

second or the third alternation among left and right edges of S is found starting from v j
k . In particular, S j ends at the third

alternation when the second alternation comes immediately after the first one, i.e., when S contains a sequence (left edge,
right edge, left edge) or a sequence (right edge, left edge, right edge) providing the first and the second alternation among
left and right edges of S starting from v j

k .
Tree T is also subdivided into subtrees: For 0 � j � q, tree T j is the subtree of T induced by the nodes in S j and the

nodes in the subtrees rooted at non-spine nodes children of spine nodes in S j .
Now we show how to construct a drawing Γ j of each T j , for 0 � j � q. First, we show how to draw path S j together

with some other nodes of T j . We distinguish eight cases, based on whether:

• j is even (Cases 1–4) or odd (Cases 5–8).
• (v j

k, v j
k+1) is a right edge (Cases 1, 2, 5, 6) or a left edge (Cases 3, 4, 7, 8).

• (v j
l+1, v j

l+2) is a right edge (Cases 1, 3, 5, 7) or a left edge (Cases 2, 4, 6, 8).

In the cases in which j is even and j > 0 (resp. j = 0), draw L(T j) and R(T j) on l2d+1 (resp. on l4d+1) so that the each
node of L(T j) is one unit to the right of its left child and each node of R(T j) is one unit to the left of its right child. In the
cases in which j is odd, draw L(T j) and R(T j) on u2d+1 so that the each node of L(T j) is one unit to the left of its left child

and each node of R(T j) is one unit to the right of its right child. Denote by hl the vertical grid line passing through v j
l , and

denote by hl+1, hl+2, hl−1, and hl−2 the vertical grid lines one unit to the right, two units to the right, one unit to the left,
and two units to the left of hl , respectively.

Case 1. Draw v j
f at the intersection between hl+1 and u2d+2; draw R(T (v j

f )) on hl+1, with any node one unit above its right

child. Draw v j
f −1 at the intersection between hl−2 and u4d+1. Draw R(T (v j

l+1)) until v j
f −1 on hl−2, with any node one unit

below its right child; draw L(T (v j
l+1)) on hl−2, with any node one unit above its left child.

Case 2. Draw v j
f at the intersection between hl−2 and u4d+1; draw L(T (v j

f )) on hl−2, with any node one unit above its left

child. Draw v j
f −1 at the intersection between hl+1 and u2d+2. Draw L(T (v j

l+1)) until v j
f −1 on hl+1, with any node one unit

below its left child; draw R(T (v j
l+1)) on hl+1, with any node one unit above its right child.

Case 3. Draw v j
f at the intersection between hl+2 and u2d+2; draw R(T (v j

f )) on hl+2, with any node one unit above its

right child. Draw v j
f −1 at the intersection between hl−1 and u4d+1. Draw R(T (v j

l+1)) until v j
f −1 on hl−1, with any node one

unit below its right child; draw L(T (v j
l+1)) on hl−1, with any node one unit above its left child.

Case 4. Draw v j
f at the intersection between hl−1 and u4d+1; draw L(T (v j

f )) on hl−1, with any node one unit above its left

child. Draw v j
f −1 at the intersection between hl+2 and u2d+2. Draw L(T (v j

l+1)) until v j
f −1 on hl+2, with any node one unit

below its left child; draw R(T (v j
l+1)) on hl+2, with any node one unit above its right child.

Case 5. Draw v j
f at the intersection between hl−1 and l4d+1; draw R(T (v j

f )) on hl−1, with any node one unit below its right

child. Draw v j
f −1 at the intersection between hl+2 and l2d+2. Draw R(T (v j

l+1)) until v j
f −1 on hl+2, with any node one unit

above its right child; draw L(T (v j
l+1)) on hl+2, with any node one unit below its left child.
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Fig. 4. Thick segments represent the edges of S . An edge between a node and its left child (resp. between a node and its right child) is labeled by l (resp.
by r).

Case 6. Draw v j
f at the intersection between hl+2 and l2d+2; draw L(T (v j

f )) on hl+2, with any node one unit below its left

child. Draw v j
f −1 at the intersection between hl−1 and l4d+1. Draw L(T (v j

l+1)) until v j
f −1 on hl−1, with any node one unit

above its left child; draw R(T (v j
l+1)) on hl−1, with any node one unit below its right child.

Case 7. Draw v j
f at the intersection between hl−2 and l4d+1; draw R(T (v j

f )) on hl−2, with any node one unit below its right

child. Draw v j
f −1 at the intersection between hl+1 and l2d+2. Draw R(T (v j

l+1)) until v j
f −1 on hl+1, with any node one unit

above its right child; draw L(T (v j
l+1)) on hl+1, with any node one unit below its left child.

Case 8. Draw v j
f at the intersection between hl+1 and l2d+2; draw L(T (v j

f )) on hl+1, with any node one unit below its left

child. Draw v j
f −1 at the intersection between hl−2 and l4d+1. Draw L(T (v j

l+1)) until v j
f −1 on hl−2, with any node one unit

above its left child; draw R(T (v j
l+1)) on hl−2, with any node one unit below its right child.

Fig. 4 shows the algorithm’s construction. Paths S0, S1, and S2 are drawn as in Cases 1, 5, and 4, respectively.
For each T j , with 0 � j � q, recursively construct a drawing of each subtree rooted at a node of T j that has not been

already drawn and that is child of a node of T j that has been already drawn. Let hmax be the maximum among the heights
of the drawings of the subtrees recursively drawn. Set the distance between h1 and h2 to be hmax − 1, that is, H consists of
hmax horizontal grid lines.

For each T j , with 0 � j � q and j even, construct a drawing Γ j starting from the already constructed drawing of S j , as
follows:

• Consider the drawings of the subtrees rooted at non-already drawn nodes of T j that are children of nodes belonging

to L(T j) or to R(T j), and whose parents are placed to the right of v j
l . Place such drawings in the order induced by

their parents on l4d+1 or on l2d+1, at one unit of horizontal distance between them, with the leftmost vertical line
intersecting the leftmost drawing one unit to the right of the last node of R(T j), and with their leftmost and rightmost
paths on h1.

• Consider the drawings of the subtrees rooted at non-already drawn nodes of T j that are children of nodes belonging

to L(T j) or to R(T j), and whose parents are placed to the left of v j
l . Place such drawings in the order induced by

their parents on l4d+1 or on l2d+1, at one unit of horizontal distance between them, with the rightmost vertical line
intersecting the rightmost drawing one unit to the left of the last node of L(T j), and with their leftmost and rightmost
paths on h1.

• Consider the drawings of the subtrees rooted at non-already drawn nodes of T j that are children of nodes already
drawn in the upper part of the drawing. Rotate such drawings of π radiants and place them so that their leftmost and
rightmost paths lie on h2, so that the drawings of the subtrees rooted at children of nodes drawn on hl+1 or on hl+2
(on hl−1 or on hl−2) are placed to the right (resp. to the left) of the drawing constructed up to now, at one unit of
horizontal distance in the order induced by their parents in L(T (v j

)) or in R(T (v j
)).
l+1 l+1



530 F. Frati / Computational Geometry 45 (2012) 524–533
Fig. 5. Illustrations for the proof of Lemma 3.

If j is odd, a drawing Γ j of T j can be constructed analogously.
Now place all the Γ j ’s together, starting from Γ0, and iteratively adding Γ j , for j = 1, . . . ,m, so that the leftmost vertical

line intersecting Γ j is one unit to the right of the rightmost vertical line intersecting Γ j−1.
We prove that the resulting drawing Γ is a star-shaped drawing of T .

Lemma 3. Γ is a star-shaped drawing of T .

Proof. We show that, given an ordered rooted binary tree T , dual to a maximal outerplanar graph G , the above described
algorithm constructs a star-shaped drawing Γ of T .

First, observe that the claim that all the subtrees recursively drawn are contained inside H holds, since the distance
between h1 and h2 is set equal to the height of the highest subtree recursively drawn.

Second, all the nodes directly drawn are in the upper and lower part of Γ . Namely, we have that: (i) by construction
such nodes are never placed above u4d+1 or below l4d+1 and (ii) if such nodes are placed in H , then it’s easy to deduce
by the algorithm’s construction that there exists a leftmost or a rightmost path of a subtree of T whose length is greater
than d; however, this would imply that there exists a vertex of G whose degree is greater than d, since all the nodes of a
leftmost or rightmost path of a subtree of T are neighbors of the same node of G .

Drawing Γ is straight-line and order-preserving by construction. We prove that Γ is planar and satisfies conditions 1
and 2 of a star-shaped drawing. However, the planarity of Γ comes straightforwardly by the algorithm’s construction, with
the exception of the proof that each edge (v j

f , v j+1
k ), with 0 � j � q − 1, does not cross other edges.

For each node v∗ lying in the upper part of the drawing, except for v j
l−1 and v j

l , all the nodes of Pl(v∗) and of Pr(v∗) are
placed either on h1 or in the upper part of Γ . Analogously, for each node v∗ lying in the lower part of the drawing, except
for v j

l−1 and v j
l , all the nodes of Pl(v∗) and of Pr(v∗) are placed either on h2 or in the lower part of Γ . Hence, all the

edges incident to nodes different from v j
l−1 and v j

l and lying in the upper part and in the lower part of the drawing do not

cut H . It follows that, provided a proof that the edges connecting v j
l−1 and v j

l to the nodes on Pl(v j
l−1) and Pr(v j

l−1), and

to the nodes on Pl(v j
l ) and Pr(v j

l ), respectively, do not cause crossings, the proof that Γ is planar and satisfies conditions 1
and 2 of a star-shaped drawing can be done separately for each recursive step of the algorithm.

Consider a subtree T j of T , as defined in the algorithm’s description. For each node v∗ of T j different from v j
l−1, v j

l ,

v j
f −1, and v j

f , one between Pl(v∗) and Pr(v∗) has nodes placed either all on h1 or all on h2, except for v∗ (see Fig. 5(a));
the other one between Pl(v∗) and Pr(v∗) has one node placed on the same horizontal or vertical line of v∗ and the other
nodes either all on h1 or all on h2 (see Fig. 5(b)). Hence, straight-lines can be drawn from v∗ to the nodes of Pl(v∗) and of
Pr(v∗) without creating crossings in Γ .

Concerning v j
l−1 (resp. v j

l ), one between Pl(v j
l−1) and Pr(v j

l−1) (resp. one between Pl(v j
l ) and Pr(v j

l )) has nodes all

on h1 or all on h2, except for v j (resp. except for v j and its child that lies on the same horizontal line of v j ) and the
l−1 l l
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other one between Pl(v j
l−1) and Pr(v j

l−1) (resp. between Pl(v j
l ) and Pr(v j

l )) is a convex polygon P (see Figs. 5(c) and 5(d))
cutting H . However, no recursively drawn subtree has intersection with the smallest vertical strip containing P (such a strip
is delimited either by lines hl−2 and hl+1 or by lines hl−1 and hl+2). Hence, straight-lines can be drawn from v j

l−1 (from v j
l )

to the nodes of Pl(v j
l−1) and of Pr(v j

l−1) (resp. of Pl(v j
l ) and of Pr(v j

l )) without creating crossings in Γ .

Finally, consider nodes v j
f −1 and v j

f . One out of v j
f −1 and v j

f , say v , is placed on u4d+1 or on l4d+1, while the other

one, say v̂ , is placed on u2d+2 or on l2d+2. One between Pl(v) and Pr(v) has nodes all on h1 or all on h2, except for v ,
while the other one has nodes all on u2d+1 or on l2d+1, except for v and, eventually, for v̂ . To prove that v is visible from
the nodes of Pl(v) and Pr(v), we claim that the slope of the edge connecting v to v j+1

k is less than the one of the edge

connecting v to v̂ (see Fig. 5(e)). Namely, the horizontal distance between v and v j+1
k is at least 4 and the vertical distance

between v and v j+1
k is exactly 2d. Further, the horizontal distance between v and v̂ is exactly 3 and the vertical distance

between v and v̂ is exactly 2d − 1, and so the slope of (v, v j+1
k ) is less than or equal to 2d

4 , while the one of (v, v̂) is 2d−1
3 .

We have that 2d
4 < 2d−1

3 if and only if d > 2 that is always satisfied considering maximal outerplanar graphs with at least
3 vertices. Hence, straight-lines can be drawn from v to the nodes of Pl(v) and of Pr(v) without creating crossings in Γ .
Concerning v̂ , the nodes of one between Pl(v̂) and Pr(v̂) lie all on h1 or all on h2, except for v̂ and eventually for its child
that lies on the same vertical line of v̂ . The nodes of the other one between Pl(v̂) and Pr(v̂) lie all on u2d+1 or all on l2d+1,
except for v̂ and eventually for v , that we have already proved to be visible from v̂ . Hence, straight-lines can be drawn
from v̂ to the nodes of Pl(v̂) and of Pr(v̂) without creating crossings in Γ (see Fig. 5(f)).

Concerning condition 3, L(T ) and R(T ) lie on the bottommost line l4d+1 intersecting Γ . Hence, placing the poles ul
and ur of G one unit below l4d+1 allows to draw edges from ul and ur to the nodes of L(T ) and R(T ) without creating
crossings with Γ . �

Let’s analyze the area requirement of Γ . The width of Γ is clearly O (n). The height of Γ is the sum of the heights of H ,
of the upper part, and of the lower part of Γ . The height of H is equal to the height of the highest subtree of T recursively
drawn; by definition of S , each subtree recursively drawn has at most n/2 nodes. Denoting by H(n) the maximum height of
a drawing of an n-node tree T constructed by the algorithm, we get: H(n) � (4d +1)+ (4d +1)+ H(n/2) = O (d)+ H(n/2) =
O (d log n).

Place the poles of G ′ on the horizontal line one unit below v0, at one horizontal unit distance from each other, and so
that one pole is on the same vertical line of v0. Notice that this placement doesn’t asymptotically increase the area of Γ .
Finally, the edges necessary to augment Γ in a drawing of G ′ can be inserted and the dummy edges inserted in step (i)
of the algorithm can be removed obtaining a drawing of G . Fig. 6 shows an example of application of the above described
algorithm.

Theorem 1. Any n-vertex outerplanar graph of degree d has a straight-line outerplanar drawing in O (dn log n) area.

Straightforwardly, we obtain the following:

Corollary 1. Any n-vertex outerplanar graph with constant degree has a straight-line outerplanar drawing in O (n log n) area.

4. Conclusions and open problems

In this paper we have shown that O (dn log n) area is always achievable for straight-line drawings of outerplanar graphs.
The following problems, however, still remain widely open:

Problem 1. Which are the asymptotic bounds for the area requirements of straight-line and poly-line planar drawings of
outerplanar graphs?

While the research efforts on the determination of the area requirements of straight-line and poly-line drawings of
outerplanar graphs have produced many algorithms (and consequently some upper bounds), no lower bound better than
the trivial Ω(n) is known. In [1] Biedl conjectured an Ω(n log n) lower bound on the area requirement of straight-line and
poly-line drawings of outerplanar graphs. More precisely, she exhibited a class of outerplanar graphs, the snowflake graphs
shown in Fig. 7(a), for which she claimed:

Conjecture 1. (See Biedl [1].) Any poly-line drawing of the snowflake graph has Ω(n log n) area.

It can be observed that an n-vertex snowflake graph G is composed of three identical O (n)-vertex complete outerplanar
graphs, defined in [11,12] as the outerplanar graphs whose dual graphs are complete binary trees. For a complete outerplanar
graph O with n vertices, an O (

√
n )× O (

√
n ) area algorithm has been presented in [11,12]. Define the height of O to be the
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Fig. 6. (a) A maximal outerplanar graph G with n = 34 vertices and degree d = 6. The poles of G are labeled by ul and ur . (b) The dual binary tree T
of G . Edges labeled by l (by r) are between a node and its left (resp. right) child. Thick edges show the spine S . Red, green, and blue vertices show
subpaths S0, S1, and S2 of S , respectively. Cases 2, 8, and 1 have to be applied to draw S0, S1, and S2, respectively. (c) The star-shaped drawing Γ of T
constructed by the algorithm shown in Section 3. (d) The outerplanar drawing of G obtained by augmenting Γ with the poles of G and with extra edges.
(For interpretation of the references to color in this figure legend, the reader is referred to the web version of this article.)

Fig. 7. (a) A snowflake graph. (b) A snowflake graph subdivided into three complete outerplanar graphs. (c) Drawing snowflake graphs in linear area. The
shaded regions correspond to the three copies of the drawing of the internal subgraph of a complete outerplanar graph constructed by the algorithm
in [11,12].

number of vertices in a path from the root to a leaf in the complete binary tree that is the dual of O . Then, the algorithm
presented in [11,12], when the height of O is even, constructs a drawing of the internal subgraph I of O in which the
vertices of I that are connected to the poles of O lie on two half-lines l1 and l2 starting at a common endpoint and having
slopes −π/4 and π/4. The entire drawing of I lies in the wedge with angle π/2 delimited by l1 and l2. Hence, consider
a complete outerplanar graph O with height h even and consider three copies of the drawing of I constructed by the
algorithm in [11,12]. Rotate such copies of 0, π , and 3π/2, respectively, and place the drawings together by inserting the
three vertices that are poles for the three complete outerplanar graphs. This results into an O (

√
n ) × O (

√
n ) area straight-

line drawing of the snowflake graph G (see Fig. 7(c)). If the height of O is odd, then: (i) Augment G to a snowflake graph G ′
that is composed of three O (n)-vertex complete outerplanar graphs O ′ whose height is even, (ii) apply the previously
described algorithm to draw G ′ , and (iii) remove the inserted dummy vertices and edges. Observe that a snowflake graph G ′
exists with the required properties and with less than 2n vertices.
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We would like to point up that all the known algorithms for constructing straight-line drawings of general outerplanar
graphs try to minimize the extension of the drawing in only one coordinate dimension, while allowing the other dimension
to be O (n). However, we believe that O (n log n) area cannot be achieved by squeezing the drawing in only one dimension
and that hence a compaction in both dimensions (or a proof that there exist n-vertex outerplanar graphs for which one
dimension is Ω(n)) should be pursued.

Conjecture 2. There exist n-vertex outerplanar graphs for which, for any straight-line drawing in which the longest side of the
bounding-box is O (n), the smallest side of the bounding-box is ω(logn).

We notice that there exist outerplanar graphs such that both the width and the height of any grid drawing are Ω(log n)

(e.g., outerplanar graphs containing a complete ternary tree, that is known to require Ω(log n) length in both directions
[16,17], as a subgraph).
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