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Let a, < a8 < *.* be an infinite sequence of positive integers. Put 

A(x) = 2 1 
C7i<X 

We say that the sequence has positive density if lim,=, A(x)/x exists and is 

positive, the definition of lower (upper) density is self-explanatory. We say 
that the sequence a, < -1. has positive upper logarithmic density if 

lim sup - l +>o. 
x=x? logx a.~s a, 

I 

Behrend [l] and Erdiis [2] proved that if (1) holds then there are infinitely 
many pairs of a’s satisfying a, 1 aj; and, in fact, Behrend proved that if 

holds for a sufficiently large c and infinitely many X, then ui 1 aj has infinitely 
many solutions. Recently [3], we proved that if a, < ... is an infinite sequence 

no term of which divides any other then 

Davenport and ErdGs [4] proved that if (1) holds, then, there is an infinite 

subsequence uik , u,~ ) ai,+, , but the following question remained open [5]. 
Let a, < a** be a sequence of positive lower density is it true that there are 
infinitely many triples of distinct u’s, a, , uj , a,; a,‘, a,‘, uT’ satisfying 

(q’, Uj’) = a,‘, bi , ail = a, , (4) 

where (a,‘, uj’) is the greatest common divisor and [ui , uj] the least common 
multiple. 
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In the present paper we will answer these questions affirmatively. In fact, 
we shall prove the following stronger (c, cr , ca , *** denotes suitable positive 

absolute constants). 

THEOREM 1. Let a, -=c a2 < **- be an infinite sequence of integers for which 
there are infinitely many integers n, < n, < me- satisfying 

(5) 

Then the equations (4) have infinitely many solutions. 
We will easily deduce Theorem 1 from the following combinatorial result 

of Kleitman [6]: Let S, be a set of n elements, and Ai , 1 < i < Y, 

r > c2 2nln1f2 are subsets of S. Then there are two sets of triples of distinct 
A’s, -4, , Aj , A,; ,4i’, Ai’, A,‘, satisfying 

Ai u Aj = A,. , Ai’ n A,.’ = A,.‘. 

Before we heard of Kleitman’s paper we obtained the same result with 
Y  > c 2” log log n/log n, this would give instead of (5), 

cl log nk log log log log n,/log log log nlc . 

We supress our proof, since it gives a much weaker result and was more 
complicated than the proof of Kleitman. 

Now we deduce Theorem 1 from the result of Kleitman. We only con- 
sider the equation [ai , aj] = a, , (a,‘, aj’) = a,’ can be dealt with similarly. 
Write 

ai = ri2bi , bi square-free. (6) 

The representation (6) is clearly unique. From 

and from (5) and (2) it easily follows that there is an Y and a subsequence 
aij with ri. = r and infinitely many values of m for which , 

z + > + Cl (loglP:g:r)l,2 . 
b <m ‘1 

ii 

It clearly will suffice to show that (7) implies that 

is solvable, since by a = r2b (8) implies that (4) holds. 
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To prove (8) denote by d,(K) the number of divisors of k among the 6’s. 
By (7) we evidently have 

If I’(k) < log log m (V(k) is the number of distinct prime factors of k) then, 
since all the bij are square free, we evidently have 

d,(k) < 2toarosm. 

Thus from (9) and (10) (the dash in the 
V(k) 3 log log m) 

We evidently have 

> $ Grn (‘ogl;ogg~)lp . 

(‘0) 
summation indicates that 

(1’) 

z d(k) < 2m log Ifl. 
k=l 

Thus by (11) there clearly exists an integer k satisfying 

V(k) > log log m 
and 

(12) 

(13) 

Without loss of generality we can assume that this k is square-free, since all 
the b’s are square-free. Thus from (12) and (13), we obtain 

d,(k) > 2v’k’ . ~,I16 
(log log V(k))l,‘z ’ (14) 

Hence, finally, from (14) with Kleitman’s theorem (putting V(k) = n, 
ci > 20~s) k has three divisors b, , b, , b, satisfying (8); hence the proof of 
Theorem 1 is complete. 

THEOREM 2. Let a, < .-. be an infinite sequence of integers for which there 
are in$nitely many integers n, < *-- satisfj&g 
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Then there are injinitely many quadruplets of distinct integers ai , aj , a, , a, satis- 

f3% 
(aj , ai) = a, , [ai , fZj] = a, . 

We supress the proof of Theorem 2, since it is similar to that of Theo- 
rem 1; only we here use the following unpublished result of Kleitman: Let 
Ai C S, 1 < i < r, Y > c, 21”/n1/4 (S h as n elements). Then there are four 

distinct A’s, say Ai , Aj, A, , A, , satisfying 

-4, v Aj = A, , Ai n Aj = -4,. 

Now we show that Theorem 1 is best possible (except for the value of cl). 
In fact, we shall show that there is a sequence a, < a, < e-7 satisfying for 
every x > x0 

z ai’” l > (log ~‘Y)112 ’ (15) 

and such that 

[ai , ai1 = a, (16) 

is never solvable in distinct integers. (We remind the reader that if (2) holds 
for infinitely many X, then ai ] aj has infinitely many solutions; but, of 
course, [ai , aj] = a, is much harder to satisfy than ai 1 aj.) 

We define the sequence of square-free integers a, < a, < ... as follows: 
Put exp .z = eZ. Let exp exp 2K < n < exp exp (2k + l), then 71 is an a 

if and only if I’(n) = 2k and n is odd. If  

exp exp (2k + 1) < n < exp exp (2K + 2), 

then n is an a if and only if V(n) = 2k and n is even. It immediately follows 
from the results of [7] that our sequence satisfies (15). To complete our proof 
we show that (16) is not solvable. If  [ai, aj] = a, then since 

v(a,) > max (WJ, v(aj)), (17) 

we have from the definition of the a’s: 

[log log a,] > max ([log log ai], [log log a& 

On the other hand, from aiaj < a, and the definition of the a’s we have 

[log log a,] < 2 + max ([log log ai], [log log ail). 

Thus 

[log log a,] = 1 + max ([log log ai], [log log ail). (18) 

From (17), (18) and the definition of the a’s, we obtain by a simple parity 
consideration that (16) has no solution, which completes our proof. 
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One would expect that there exists a sequence satisfying (15) for which 
(ui , aj) = a, is never solvable in distinct integers, but we have not been able 
to show this. 

Perhaps the following result holds: Let a, < ... be a sequence of positive 
upper logarithmic density, then there is an infinite subsequence ai1 , aii , 
so that the least common multiple of any two aij’s is again an a (not necessarily 
a member of the subsequence ui ). To show this it would suffice to show that 
if a, < a2 < .a. has positive upper logarithmic density, then there is an a, , 
so that the set of aj’s for which [ui , aj] is again an a has positive upper 
logarithmic density. We can not decide these questions even if we assume 
that the u’s have positive lower density. 

Finally, we remark that for every E > 0 it is easy to construct a sequence 
of density > 1 - E for which ui . uj = a, has no solutions, but if the sequence 
has upper density 1 there always is an infinite subsequence ujj , 1 <j < c(j, 

so that all the products JJ u;: , cj = 0 or 1 are u’s (only a finite number of 
Q’S are 1). 
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