Further Remarks on Nonlinear P-Compact Operators in Banach Space

W. V. Petryshyn

Department of Mathematics and Institute for Computer Research, University of Chicago
Submitted by Ky Fan

1. INTRODUCTION

In recent papers [1, 2] the author, using rather elementary arguments, derived a number of results concerning the existence and the construction of solutions and of fixed points for a class of nonlinear equations involving bounded projectionally-compact (P-compact) operators defined on a real Banach or Hilbert space with a basis. These results extended and simplified similar results for quasicompact operators obtained by Kaniel [3]. At the same time we deduced from our theorems certain basic results on bounded monotone operators obtained previously by Minty [4], Browder [5, 6] and others.

The purpose of this paper is two-fold: First, we extend our main results derived in [1, 2] to P-compact operators without assuming their boundedness; second, using our extended results, we generalize to our class of operators the recent results of Granas [7, 8] concerning the solvability of nonlinear equations and the geometrical intersection theorem involving quasibounded completely continuous operators. At the same time we obtain some new results for P-compact and monotone operators in Hilbert space.

2. EXTENDED RESULTS FOR P-COMPACT OPERATORS

Let X be a real Banach space with the property that there exists a sequence $\{X_n\}$ of finite dimensional subspaces X_n of X, a sequence of linear projections $\{P_n\}$ defined on X, and a constant $K > 0$ such that

\[P_nX = X_n, \quad X_n \subset X_{n+1}, \quad n = 1, 2, 3, \cdots, \quad \bigcup_{n}^{\infty} X_n = X, \quad (1) \]

\[\|P_n\| \leq K, \quad n = 1, 2, 3, \cdots. \quad (2) \]

For the precise definitions of the concepts and the statements of the results mentioned in the Introduction, see the succeeding sections of this paper.
Let B_r denote the closed ball in X of radius $r > 0$ about the origin and let S_r denote the boundary of B_r. Let the symbols "−" and "→" denote the strong and weak convergence in X, respectively. In what follows we consider the class of P-compact operators which were studied by the author in [8, 9] and which are defined as follows:

Definition 1. A nonlinear operator A mapping X into itself is called projectionally-compact (P-compact) if $P_n A$ is continuous in X_n for all sufficiently large n and if for any constant $p > 0$ and any bounded sequence (x_n) with $x_n \in X_n$ the strong convergence of the sequence $(\xi_n) = (P_n Ax_n - px_n)$ implies the existence of a strongly convergent subsequence (x_{n_i}) and an element x in X such that $x_{n_i} \to x$ and $P_{n_i} Ax_{n_i} \to Ax$.

The results of this paper will be based essentially on the following theorem which for bounded P-compact operators was proved by the author in [1, 2].

Theorem 1. Suppose that A is P-compact. Suppose further that for given $r > 0$ and $\mu > 0$ the operator A satisfies both of the following conditions:

(A): There exists a number $c(r) > 0$ such that if, for any n, $P_n Ax = \lambda x$ holds for x in S_r with $\lambda > 0$, then $\lambda \leq c(r)$.

(Π_μ): If for some x in S_r, the equation $Ax = \alpha x$ holds then $\alpha < \mu$.

Then there exists at least one element u in $(B_r - S_r)$ such that

$$Au - \mu u = 0. \tag{3}$$

Proof. The proof Theorem 1 follows the same line of argument as the proof of the corresponding Theorem 2 in [2]. As in [2], all we need is to show that the present conditions (A)-(Π_μ) imply the validity of the following lemma.

Lemma 1. If A satisfies the conditions of Theorem 1, then there exists an integer $n_0 > 0$ such that if $n \geq n_0$ and $P_n Ax = \beta x$ for some x in $S_r \cap X_n$ then $\beta < \mu$.

Proof of Lemma 1. If the assertion of Lemma 1 were not true for any n_0, we could find a sequence (x_n) with $x_n \in X_n \cap S_r$ and a sequence of numbers (β_n) such that

$$P_n Ax_n = \beta_n x_n, \quad (\beta_n \geq \mu). \tag{4}$$

Hence our condition (A) implies that

$$\|P_n Ax_n\| = \beta_n r \leq c(r) r,$$
i.e., $\beta_n \in [\mu, c(r)]$ for each n. Passing to a subsequence, we may assume that $\beta_n \to \beta$ and $\beta \in [\mu, c(r)]$. This and (4) show that
\[P_n A x_n - \beta x_n = (\beta_n - \beta) x_n \to 0, \quad (n \to \infty). \tag{5} \]
Since A is P-compact, (5) implies the existence of a strongly convergent subsequence, which we again denote by $\{x_n\}$, and an element x in $S_r \cap X$ such that $x_n \to x$ and $P_n A x_n \to A x$. This and (5) imply that $A x - \beta x = 0$ for x in S_r and $\beta \geq \mu$ in contradiction to condition (II$_\mu$) of Theorem 1.

The proof of Theorem 1 is then completed in exactly the same way as in [2].

Remark 1. It is obvious that if in Definition 1 we require $\rho < 0$ instead of $\rho > 0$, then we obtain a theorem analogous to Theorem 1. We need only consider $-A$ instead of A and assume that for given $r > 0$ and $\mu < 0$ instead conditions (A) and (II$_\mu$) the operator A satisfied the conditions

(A$^-$): There exists a number $c(r) > 0$ such that if, for any n, $P_n(Ax) = \lambda x$ holds for x in S_r with $\lambda < 0$, then $-c(r) \leq \lambda$.

(II$_\mu^-$) If for some x in S_r the equation $A x = \alpha x$ holds then $\mu < \alpha$.

Remark 2. Let us remark that condition (A) is in no way a condition on the size of $A x$ or even on the size of $P_n A x$. All it says is that when for any x in S_r and any n the vector $P_n A x$ is in the same direction as x then $P_n A x$ are uniformly bounded.

Remark 3. The assertion of Theorem 1 remains valid if condition (A) is replaced, for example, by any one of the following stronger conditions whose degree of generality increases in the given order:

(a) A is bounded, i.e., A maps bounded sets in X into bounded sets.

(b) For any given $r > 0$ the set $A(S_r)$ is bounded.

(c) X is a Hilbert space H and, for any given $r > 0$, $(A x, x) \leq c \| x \|^2$ for all x in S_r and some $c > 0$.

Corollary 1. If A is P-compact and for some $r > 0$ the conditions (A) and (II$_\mu$) are satisfied on S_r, then A has a fixed point in $(B_r - S_r)$.

Theorem 2. Suppose that A is P-compact. Suppose further that there exists a sequence of spheres $\{S_p\}$ with $r_p \to \infty$, as $p \to \infty$, and two sequences of positive numbers $c_p = c(r_p)$ and $k_p = k(r_p)$ with $k_p \to \infty$, as $r_p \to \infty$, such that the following conditions hold:

(A$_\lambda$): Whenever for any given f in B_k and any n the equation $P_n A x - \lambda x = P_n f$ holds for x in S_{r_p} with $\lambda > 0$ then $\lambda \leq c_p$.

(17): \[\| Ax - \eta x \| \geq k_p \text{ for any } \eta \geq \mu > 0 \text{ and any } x \in S_{r_p}. \]

Then for every \(f \) in \(X \) there exists an element \(u \) in \(X \) such that

\[Au - \mu u = f. \] (6)

Proof. For any given \(f \) in \(X \) choose \(r_p \) so large that \(\| f \| < k_p \). If we define \(Cx = Ax - f \), then obviously \(C \) is \(P \)-compact. Furthermore, on \(S_{r_p} \) the operator \(C \) satisfies conditions (\(A \)) and (\(II_p \)) of Theorem 1. Indeed, if \(P_n Cx = \lambda x \) for any \(x \) in \(S_{r_p} \) with \(\lambda > 0 \), then, by the definition of \(C, f \in B_{k_p} \) and \(P_n Ax - \lambda x = P_n f \). Hence, by (\(A_f \)), \(\lambda \leq c_p \), i.e., (\(A \)) is fulfilled. Suppose now that \(Cx = \alpha x \) for some \(x \) in \(S_{r_p} \). Then \(\alpha < \mu \) since, in virtue of (\(II_p \)), the assumption that \(\alpha \geq \mu \) would lead to the contradiction

\[\| Cx - \alpha x \| = \| Ax - \alpha x - f \| \geq \| Ax - \alpha x \| - \| f \| \geq k_p - \| f \| > 0. \]

Hence, by Theorem 1, there exists an element \(u \) in \((B_{r_p} - S_{r_p}) \) such that \(Cu = \mu u \), i.e., \(u \) is a solution of Eq. (6).

In case \(X \) is a Hilbert space we have the following interesting theorem.

Theorem 3. If \(A \) is a \(P \)-compact mapping of \(H \) into itself such that

\[(Ax, x) \leq (A(0), x), \quad x \in H, \] (7)

then for any given \(\mu > 0 \) the operator \((A - \mu I) \) is onto.

Proof. Let \(\{S_{r_p}\} \) be a sequence of spheres in \(H \) with

\[r_p = p + \frac{\| A(0) \|}{\mu} \]

and let \(\{c_p\} \) and \(\{k_p\} \) be two sequences given by \(c_p = \mu \) and

\[k_p = \mu p = \mu r_p - \| A(0) \|. \]

For any given \(f \) in \(H \) choose \(r_p \) so large that \(\| f \| < k_p \). If we put \(Cx = Ax - f \), then (7) implies that for all \(x \) in \(H \)

\[(Cx, x) \leq (C(0), x). \] (8)

It is not hard to show that, in virtue of (8), the above defined sequences \(\{c_p\} \)

and \(\{k_p\} \) satisfy conditions (\(A_f \)) and (\(II_p \)) of Theorem 2. In fact, suppose that for any \(f \) in \(B_{k_p} \) and any \(n \) the equation \(P_n Ax - \lambda x = P_n f \) holds for \(x \) in \(S_{r_p} \) with \(\lambda > 0 \). Then, by our definition of \(C, P_n Cx = \lambda x \) and \(x \in H_n \cap S_r \).

This and (8) imply that

\[\lambda(x, x) = (P_n Cx, x) = (Cx, x) \leq (C(0), x) \leq \| C(0) \|_{} \| x \| \]

\[\leq (\| A(0) \|_{} + \| f \|) \| x \|. \]
from which we derive the inequality $\lambda \| x \| \leq \| A(o) \| + k_p = \mu r_p$. Thus, $\lambda \leq c_p$, i.e., condition (A_j) is satisfied. To verify condition (II_p) note that if for $\eta \geq \mu$ we put $Qx = Ax - \eta x$, then by (7)

\[
(Q(o) - Qx, x) - (A(o) - Ax + \eta x, x)
= (A(o), x) - (Ax, x) + \eta(x, x) \geq \eta(x, x).
\]

Hence $\| Qx - Q(o) \| \geq \eta \| x \| \geq \mu \| x \|$ for each x in H and any $\eta \geq \mu$. Thus for any x in S_{r_p} and $\eta \geq \mu$

\[
\| Ax - \eta x \| = \| Qx \| \geq \| Qx - Q(o) \| - \| Q(o) \| \geq \mu \| x \| - \| A(o) \| = \mu \| - \| A(o) \| = \mu \rho = k_p
\]

which is precisely condition (II_p). Consequently Theorem 3 follows from Theorem 2.

Corollary 2. If A is P-compact and monotone decreasing, i.e.,

\[
(Ax - Ay, x - y) \leq 0, \quad x, y \in H,
\]

then for any given $\mu > 0$ the mapping $P = A - \mu I$ is one-to-one and onto.

Proof. The onto part of the assertion of Corollary 2 follows from Theorem 3, since (9) clearly implies (7) while the one-to-one part follows from the fact that $\| Px - Py \| \geq \mu \| x - y \|$ for any x and y in H and any $\mu > 0$.

3. Applications to Quasibounded Mappings

Let Y and Z be any two real Banach spaces. Following Granas [7] we say that a nonlinear mapping A of Y into Z is *quasibounded* if there exist two constants $M > 0$ and $q_0 > 0$ such that

\[
\| Ax \| \leq M \| x \| \quad \text{for all } x \text{ in } Y \text{ with } \| x \| \geq q_0.
\]

If A is quasibounded, then the number $| A |$ defined by

\[
| A | = \inf_{q_0 \leq q < \infty} \left\{ \sup_{\| x \| \geq q} \frac{\| Ax \|}{\| x \|} \right\}
\]

is called the *quasinorm* of A. It follows that every bounded linear operator is quasibounded and that its norm coincides with its quasinorm. Furthermore, as was observed by Granas, every nonlinear mapping of Y into Z which is asymptotically differentiable in the sense of Krasnoselsky [9] is quasibounded.
In fact, if \(A \) is asymptotically differentiable, then there exists a linear operator \(A' \) mapping \(Y \) into \(Z \), called the asymptotic derivative of \(A \), such that
\[
\lim_{x \to \infty} \frac{\| A(x) - A'x \|}{\| x \|} = 0;
\]
hence it follows easily from (12) that \(A \) is quasibounded and that \(|A| \leqslant \|A'\| \). Let us add that the class of asymptotically differentiable operators was thoroughly studied in [9].

The purpose of this section is to apply our theorems proved in Section 2 to the generalization of results obtained by Granas [7, 8] for completely continuous quasibounded operators by means of topological arguments.

Theorem 4. Suppose that \(A \) is a \(P \)-compact and quasibounded mapping of \(X \) into itself. If \(\mu > M \), then \((A - \mu I) \) is onto.

Proof. Let \(\{r_n\} \) be a sequence of real numbers such that \(r_n \geq q_0 \) for all \(n \) and such that \(r_n \to \infty \), as \(n \to \infty \). Then, in view of our conditions, for all \(x \in S_{r_n} \) and any \(\eta \geq \mu, \)
\[
\|Ax - \eta x\| \geq \eta \|x\| - \|Ax\| \geq \mu \|x\| - M \|x\| = (\mu - M) \|x\|
\]
Thus condition (II) of Theorem 2 is satisfied with \(k_p = (\mu - M) r_n \). Now suppose that for any \(f \in B_{q_0} \) and any \(n \) the equation \(P_nAx - \lambda x = P_nf \) holds for \(x \in S_{r_p} \) with \(\lambda > 0 \). Then, by (2) and (10), the latter equation implies that
\[
\lambda r_p = \lambda \|x\| = \|P_n(Ax - f)\| \leq K \|Ax - f\| \leq K(\|Ax\| + \|f\|)
\]
Hence, \(\lambda \leq \mu K \), i.e., condition (A) is satisfied with \(c_p = \mu K \) for each \(p \). Consequently, Theorem 4 follows from Theorem 2.

Remark 4. It is not hard to see that Theorem 4 remains valid if instead of assuming that \(\mu > M \) we assume that \(\mu > |A| \).

Corollary 3. Suppose that \(A \) is quasibounded and \(P \)-compact with \(p < 0 \). If \(\mu > M \), then \((\mu I + A) \) maps \(X \) onto itself.

Proof. The conditions of Corollary 3 imply that \(\bar{A} = -A \) is quasibounded and \(P \)-compact with \(\bar{p} = -p > 0 \). Hence, by Theorem 4, \((\bar{A} - \mu I) \) or equivalently the operator \((\mu I + A) \) is onto.
REMARK 5. When \(A \) is completely continuous (i.e., \(A \) is continuous and compact) and \(\mu = 1 \) Corollary 3 was proved by Granas [7] by the application of the topological fixed point theorem of Rothe [10].

AN INTERSECTION THEOREM IN \(X \)

Suppose that \(X \) is a direct sum of the subspaces \(V \subset X \) and \(W \subset X \), i.e., \(X = V \oplus W \), and suppose that \(P_V \) and \(P_W \) denote the projections of \(X \) onto \(V \) and \(W \), respectively. It is obvious that \(P_V \) and \(P_W \) are linear and that

\[
\| P_V x \| \leq \| P_V \| \| x \| , \quad \| P_W x \| \leq \| P_W \| \| x \| , \quad x \in X. \tag{13}
\]

Suppose further that \(f(v) = z + F(v) \) maps \(V \) into \(X \) and that \(g(w) = w + G(w) \) maps \(W \) into \(X \), where \(F \) and \(G \) are quasibounded and completely continuous nonlinear mappings. Using Rothe's theorem, Granas [8] obtained an interesting intersection theorem by proving that if

\[
\| F \| \| P_V \| + \| G \| \| P_W \| < 1, \tag{14}
\]

then the images \(f(V) \) and \(g(W) \) have a nonempty intersection, i.e., \(f(V) \cap g(W) \neq \emptyset \).

Here we consider the intersection theorem when either \(F \) or \(G \) is \(P \)-compact and when condition (14) is replaced by a much weaker condition. Our result is based on the application of Theorem 1.

THEOREM 5. Let \(G \) be a nonlinear mapping of \(W \) into \(X \) such that the operator \(G(-P_W) \) is \(P \)-compact and such that to a given \(r > 0 \) there corresponds a number \(c(r) > 0 \) with the property that for all \(x \) in \(S_r \)

\[
\| G(-P_W x) \| \leq c(r). \tag{15}
\]

Let \(F \) be a completely continuous nonlinear mapping of \(V \) into \(X \) and let \(f_\mu(v) \) and \(g_\mu(w) \) be the mappings defined respectively from \(V \) and \(W \) to \(X \) by \(f_\mu(v) = \mu v + F v \) and \(g_\mu(w) = \mu w + G w \). If for given \(r > 0 \) and \(\mu > 0 \) the operators \(F \) and \(G \) satisfy the condition

\[
(\Pi): \text{If } F v + \alpha w = G w + \alpha v \text{ for some } v \text{ in } V \text{ and } w \text{ in } W \text{ with } \| v - w \| = r, \text{ then } \alpha < \mu,
\]

then \(f_\mu(V) \cap g_\mu(W) \neq \emptyset \).

PROOF. Let us define a nonlinear mapping \(A \) of \(X \) into \(X \) by

\[
Ax = G(w) - F(v) \quad \text{with} \quad w = -P_W x \quad \text{and} \quad v = P_V x, \quad x \in X, \tag{16}
\]
and observe that \(f_\mu(V) \cap g_\mu(W) \neq \emptyset \) if and only if the equation

\[
Ax = \mu x
\]

has a solution in \(X \). Indeed, if \(x \) is a solution of (17), then \(x \) has a unique representation \(x = P_\nu x + P_\mu x = v - w \) and, in view of (16), (17) implies that \(Gw - Fv = \mu(v - w) \) or that \(\mu v + Gw = Fv + Fv \), i.e., \(f_\mu(V) \cap g_\mu(W) \neq \emptyset \).

On the other hand, if \(v \in V \) and \(w \in W \) are two elements such that \(f_\mu(v) = g_\mu(w) \), then \(\mu(v - w) = Gw - Fv \). Hence, if we put \(x = v - w \), (16) implies that \(x \) is a solution of (17).

Thus, to prove Theorem 5 it is sufficient, in view of the above observation and Theorem 1, to show that the operator \(A \) defined by (16) is \(P \)-compact and satisfies conditions (A) and (\(\Pi_\mu \)).

Let us first show that \(A \) is \(P \)-compact. Now, by our conditions on \(G \) and \(F \), \(P_n A \) is certainly continuous in \(X_n \) for all sufficiently large \(n \). Further, let \(\{x_n\} \) be a bounded sequence so that for any \(p > 0 \)

\[
g_n = P_n Ax_n - px_n = P_n G(-P_\mu x_n) - px_n - P_n F(P_\nu x_n) \to g, \quad x_n \in X_n.
\]

(18)

Since \(\{v_n\} = \{P_\nu x_n\} \) is bounded and \(F \) is completely continuous, there exists a subsequence, which we again denote by \(\{x_n\} \), such that \(F(v_n) = F(P_\nu x_n) \to v \) and \(P_n F(v_n) \to v \), where \(v \) is some element in \(X \). This and (18) imply that

\[
g_n = P_n G(-P_\mu x_n) - px_n = g_n + P_n F(P_\nu x_n) \to g + v, \quad (n \to \infty).
\]

Since \(G(-P_\mu) \) is \(P \)-compact there exists a subsequence, again denoted by \(\{x_n\} \), such that \(x_n \to x \) and \(P_n G(-P_\mu x_n) \to G(-P_\nu x) \). This and the continuity of \(F \) imply that

\[
P_n Ax_n = P_n G(-P_\mu x_n) - P_n F(P_\nu x_n) \to G(P_\nu x) - F(P_\nu x) = Ax
\]
i.e., \(A \) is \(P \)-compact.

Suppose now that \(Ax = \alpha x \) for some \(x \) in \(S_\nu \). This then means that \(Gw + \alpha w = Fv + \alpha v \) with \(\|v - w\| = \|P_\nu x + P_\mu x\| = r \). Hence our condition (\(\Pi_\mu \)) implies that \(\alpha < \mu \), i.e., \(A \) satisfies condition (\(\Pi_\mu \)). Finally we see that for any \(x \) in \(S_\nu \) condition (15) and the complete continuity of \(F \) imply the inequality

\[
\|Ax\| \leq \|G(-P_\mu x)\| + \|F(P_\nu x)\| \leq c(r) + c, \quad x \in S_\nu,
\]

where \(c > 0 \) is such that \(\|F(P_\nu x)\| \leq c \) for all \(x \) in \(S_\nu \). Thus the set \(A(S_\nu) \) is bounded and therefore, by Remark 3(b), \(A \) satisfies condition (A). Hence, by Theorem 1, Eq. (17) has at least one solution in \(B_\nu \) or, equivalently, the intersection \(f_\mu(V) \cap g_\mu(W) \neq \emptyset \).
COROLLARY 4. Suppose that G and F satisfy all conditions of Theorem 5 except that condition (II) is replaced by the condition

$$\| \mu w + G w - (\mu v + F v) \|^2 \geq \| F v - G w \|^2 - \mu^2 \| v - w \|^2$$

(19)

for $v \in V$, $w \in W$ with $\| v - w \| = r$. Then $f_{\mu}(V) \cap g_{\mu}(W) \neq \emptyset$.

PROOF. We may assume, without loss of generality, that there are no elements z_J in V and w in W with $\| v - w \| = r$ such that $f_{\mu}(v) = g_{\mu}(w)$. Suppose now that for some x in S, or equivalently for some v in V and w in W with $\| v - w \| = r$ we have $F v + \alpha v = G w + \alpha w$. Then

$$\| G w - F v \|^2 = \| \alpha(v - w) - (\alpha - \mu)(v - w) \|^2 = (\alpha - \mu)^2 \| v - w \|^2$$

and

$$\| G w - F v \|^2 - \mu^2 \| v - w \|^2 = (\alpha^2 - \mu^2) \| v - w \|^2.$$

Hence, by (19), $(\alpha - \mu)^2 \geq (\alpha^2 - \mu^2)$ or $2\mu^2 \geq 2\mu\alpha$. Since $\mu > 0$, our assumption then implies that $\alpha < \mu$ and, consequently, (18) implies condition (II). Corollary 4 then follows from Theorem 5.

REMARK 6. In case X is a Hilbert space condition (19) is equivalent to the requirement

$$(G(- P_w x) - F(P_v x), x) \leq \mu \| x \|^2, \quad x \in S_r.$$

(20)

COROLLARY 5. Suppose that F and G are completely continuous and quasi-bounded: i.e., there exists four constants $M_1 > 0$, $M_2 > 0$, $r_1 > 0$ and $r_2 > 0$ such that

$$\| F v \| \leq M_1 \| v \| \quad \text{for every } v \in V \text{ with norm } \| v \| \geq r_1$$

(21)

$$\| G(w) \| \leq M_2 \| w \| \quad \text{for every } w \in W \text{ with norm } \| w \| \geq r_2.$$

(22)

Suppose further that M_1 and M_2 satisfy the inequality

$$M_1 \| P_v \| + M_2 \| P_w \| \leq 1.$$

(23)

Then $f_{\alpha}(V) \cap g_{\alpha}(W) \neq \emptyset$.

PROOF. Let us first remark that, as was shown by Granas, the conditions of Corollary 5 imply the existence of a constant $r > 0$ such that

$$\| G(- P_w x) - F(P_v x) \| \leq \| x \| \quad \text{for every } x \in X \text{ with } \| x \| \geq r;$$

(24)
i.e., the operator \(A(x) = G(-P_Wx) - F(P_Wx) \) is quasibounded. Assuming, without loss of generality, that there are no elements \(v \) in \(V \) and \(w \) in \(W \) with \(\| v - w \| = r \) such that \(f_1(v) = g_1(w) \), it is easy to see that whenever
\[
Fv + \alpha w = Gw + \alpha w
\]
for some \(v \) in \(V \) and \(w \) in \(W \) with \(\| v - w \| = r \), then (24) implies that \(\alpha < 1 \). Hence condition (II) of Theorem 5 holds for \(\mu = 1 \). Furthermore, since \(G \) is completely continuous, (15) is clearly satisfied and, by Theorem 3 in [2], \(G(-P_W) \) is \(P \)-compact. Consequently, Corollary 5 follows from Theorem 5.

Remark 7. For the sake of completeness let us show that the conditions of Corollary 5 imply the validity of (24) for some \(r > 0 \). First let
\[
r_0 = \max \{ r_1, r_2 \}
\]
and let \(c > 0 \) be a constant such that
\[
\| Fv \| \leq c \quad \text{for } v \text{ in } V \text{ with } \| v \| \leq r_0
\]
and
\[
\| Gw \| \leq c \quad \text{for } w \text{ in } W \text{ with } \| w \| \leq r_0.
\]
Taking
\[
r = \max \left\{ 2r_0, \frac{c}{1 - M_0} \right\},
\]
where
\[
M_0 = \max \{ M_1 \| P_v \|, M_2 \| P_W \| \} < 1,
\]
we obtain (24). Indeed, (24) follows trivially from (21), (22), and (23) if for \(x = v - w \) with \(\| x \| \geq r \) we have \(\| v \| \geq r_0 \) and \(\| w \| \geq r_0 \). On the other hand, if for \(\| x \| \geq r \) one of the conditions \(\| v \| \geq r_0 \) or \(\| w \| \geq r_0 \) is not satisfied (e.g. \(\| w \| \geq r_0 \)), then by our definition of \(c \) and \(M_0 \) we get the desired inequality
\[
\| G(-P_Wx) - F(P_Wx) \| \leq \| G(w) \| + \| F(v) \| \leq c + M_0 \| x \|
\]
\[
\leq (1 - M_0) \| x \| + M_0 \| x \| = \| x \| .
\]

Remark 8. Let us observe finally that the results obtained in Section 5 in [2] concerning the applicability of the projection method to the approximate solution of either the equation (3) or (6) remain also valid for unbounded \(P \)-compact operators provided, of course, that they satisfy the corresponding conditions assumed in [2].
OPERATORS IN BANACH SPACE

REFERENCES

