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Abstract

In this paper, we characterize EP operators through the existence of different types of factorizations. Our
results extend to EP operators existing characterizations for EP matrices and give new characterizations both
for EP matrices and EP operators.
© 2008 Elsevier Inc. All rights reserved.
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1. Introduction

A square matrix T is called EP (or range Hermitian) if N(T ) = N(T ∗). EP matrices were
introduced by Schwerdtfeger in [22]. Ever since many authors have studied EP matrices with
entries from C or from an arbitrary field (for more on EP matrices see [1, Chapter 4.4] and [5,
Chapter 4]). The notion of EP matrices was extended by Campbell and Meyer to operators with
closed range on a Hilbert space in [4]. For further results on EP operators see [3,6–9,18,23].

One of the main reasons for studying EP matrices is that, as it was proved by Pearl in [21],
a matrix T is EP if and only if it commutes with its Moore–Penrose inverse T †. Using that as a
definition the notion of EP matrices was extended to elements of C∗-algebras in [11,16,17], to
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elements of rings with involution in [13,14], to elements of semigroups with involution in [12]
and to elements of unital Banach algebras and operators on a Banach space in [2].

One of the main trends in the study of EP matrices and EP operators has been their charac-
terization through factorizations. Pearl showed in [19,20] that a matrix T is EP if and only if it
can be written in the form U(A ⊕ 0)U∗, with U unitary or isomorphism and A an isomorphism.
Although the fact that an EP operator can be written in the form U(A ⊕ 0)U∗ has been used
in the study of EP operators (see for example [4,6]), characterizations of EP operators through
factorizations of that form have not been studied. In Section 3, we characterize EP operators
through factorizations of the form U(A ⊕ 0)U∗ and through simultaneous factorizations of T

and of T ∗ or of T and of T † or of T ∗T and of T T ∗ of similar forms. In [19] Pearl showed that
a matrix T is EP if and only if there exists an isomorphism V such that T ∗ = V T . This result
was extended to operators on a Hilbert space by Fildan in [9] (see also [3]), to elements of C∗-
algebras by Harte and Mbekhta in [11] and by Koliha in [17] and to elements of rings by Hartwig
in [13,14]. In Section 4, we show that actually V can be replaced with an injective operator and
give other characterizations of EP operators of that type. In [21], Pearl proved that if T is a matrix
and B and C are matrices with B injective, C surjective and T = BC, then T is EP if and only if
there exists an isomorphism K such that C = KB∗. In Section 5, we characterize EP operators
through factorizations of that kind. Note that many of the results in Sections 3–5 also give new
characterizations for EP matrices.

2. Preliminaries and notation

ThroughoutH andKwill denote complex Hilbert spaces,B(H,K)will denote the algebra of
all bounded linear operators from H to K and B(H) will denote B(H,H). The words operator
and subspace will mean bounded linear operator and closed linear subspace, respectively. An n × n

matrix will always be identified with an operator on Cn with its standard basis. If T ∈ B(H),
then we will denote its kernel by N(T ), its range by R(T ) and its adjoint by T ∗. We will say that
U ∈ B(H,K) is an isomorphism if it is injective and onto and that U ∈ B(H,K) is unitary if
U∗U = I and UU∗ = I .

We will denote the standard orthonormal basis of l2(N) by {e0, e1, e2, . . .}. Whenever we refer
to the left and the right shift we will mean the left and the right shift on l2(N).

To denote the direct sum of two subspaces M1 and M2 of H we will use M1 ⊕ M2 and to

denote the orthogonal sum of two orthogonal subspaces M1 and M2 of H we will use M1
⊥⊕M2.

The orthogonal projection onto a subspace M of H will be denoted by PM. If T ∈ B(H) with
closed range, then we will denote PR(T ) by PT . By H ⊕ K we will denote the exterior 2-sum of
H and K. If T ∈ B(H) and S ∈ B(K), then by T ⊕ S we will denote their direct sum acting
on H ⊕ K.

The Moore–Penrose inverse of an operator T ∈ B(H,K) with closed range is the unique
operator T † ∈ B(K,H) satisfying the following four conditions:

T T †T = T , T †T T † = T †, (T T †)∗ = T T †, (T †T )∗ = T †T .

Standard references on generalized inverses are the books of Ben-Israel and Greville [1], Camp-
bell and Meyer [5] and Groetsch [10]. It is immediate from the definition of the Moore–Penrose
inverse that R(T †) = R(T ∗), N(T †) = N(T ∗), PT = T T † and PT ∗ = T †T .

An operator T with closed range is called EP if N(T ) = N(T ∗). It is easy to see that

T EP ⇔ R(T ) = R(T ∗) ⇔ R(T )
⊥⊕N(T ) = H ⇔ T T † = T †T . (2.1)
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In the finite dimensional case if N(T ) is contained in N(T ∗) or vice versa, then T is EP (this
is not in general true in the infinite dimensional case; for example, let T be the right or the left
shift). Using this observation one can immediately see that for matrices many of the results in
Sections 3–5 hold with weaker assumptions.

Note that the second equivalence in (2.1) is not true if the sum is not an orthogonal one.
Actually, we have that R(T ) ⊕ N(T ) = H if and only if the Drazin index of T is equal to 0 or
1 (see [1, Exercise 4.3.5]).

Obviously T is EP if and only if T ∗ is EP and T is EP if and only if T † is EP. Moreover if T

is EP, then PT ∗T = T and T PT = T .
Isomorphisms are EP. Moreover we have that if T is EP, then T is an isomorphism if and only

if it is injective or surjective. Normal operators with closed range are EP. A bounded projection
is EP if and only if it is orthogonal.

A well-known result about EP operators (see [6]) is the following.

Lemma 2.1. Let T ∈ B(H) with closed range. If T is EP, then

T |R(T ) : R(T ) → R(T )

is an isomorphism.

3. Factorizations of the form T = U(A ⊕ 0)U∗

In this section, we will characterize EP operators through factorizations of T of the form
T = U(A ⊕ 0)U∗ and through simultaneous factorizations of T and T ∗ or of T and T † or of
T ∗T and T T ∗ of similar forms.

We start with two elementary lemmas which we will use in the proofs of these characterizations.
The proof of the first one is elementary.

Lemma 3.1. Let T1 ∈ B(H1) and T2 ∈ B(H2) with closed range. Then T1 ⊕ T2 is EP if and
only if T1 and T2 are EP.

Lemma 3.2. Let T ∈ B(H) and G ∈ B(K) with closed range and U ∈ B(K,H) injective
such that T = UGU∗. Then T is EP if and only if G is EP.

Proof. IfT is EP, then, by the injectivity ofU , we get thatG(R(U∗)) = G∗(R(U∗)). SinceR(U∗)
is dense in K and G has closed range, that implies R(G) = R(G∗). On the other hand if G is EP,
then N(G) = N(G∗). Combining that with the injectivity of U we get that N(T ) = N(T ∗).
�

Remark 3.3. (a) The result of the previous lemma is not true if U is not injective. To see that, for
the one direction let

T =
[

1 0
0 0

]
, G =

⎡
⎣0 1 0

0 1 0
0 0 0

⎤
⎦ , U =

[
0 1 0
0 0 1

]

and for the other one let

T =
[

0 1
0 0

]
, G =

⎡
⎣0 1 0

0 0 1
1 0 0

⎤
⎦ , U =

[
0 1 0
0 0 1

]
.
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(b) An immediate corollary of the previous lemma is that if G ∈ B(K) is EP and U ∈
B(K,H) is unitary, then UGU∗ = UGU−1 is EP. On the other hand if G ∈ B(K) is EP and
U ∈ B(K,H) is an isomorphism, then it is not in general true that UGU−1 is EP. To see that let
M1 and M2 be subspaces of H, with M⊥

1 /= M2 and M1 ⊕ M2 = H, K be the exterior 2-sum
of M1 and M2, G : K → K, with G = IM1 ⊕ 0, and U : K → H, with U(y, z) = y + z, for
all (y, z) ∈ K.

In the following theorem, we characterize EP operators through factorizations of the form
T = U(A ⊕ 0)U∗.

Theorem 3.4. Let T ∈ B(H) with closed range. Then the following are equivalent:

(1) T is EP.

(2) There exist Hilbert spaces K1 and L1, U1 ∈ B(K1 ⊕ L1,H) unitary and A1 ∈ B(K1)

isomorphism such that T = U1(A1 ⊕ 0)U∗
1 .

(3) There exist Hilbert spaces K2 and L2, U2 ∈ B(K2 ⊕ L2,H) isomorphism and A2 ∈
B(K2) isomorphism such that T = U2(A2 ⊕ 0)U∗

2 .

(4) There exist Hilbert spacesK3 andL3, U3 ∈ B(K3 ⊕ L3,H) injective and A3 ∈ B(K3)

isomorphism such that T = U3(A3 ⊕ 0)U∗
3 .

Proof. (1)⇒(2): Let K1 = R(T ), L1 = N(T ), U1 : K1 ⊕ L1 → H, with

U1(y, z) = y + z,

for all y ∈ R(T ) and z ∈ N(T ), and A1 = T |R(T ) : R(T ) → R(T ). Since T is EP,

R(T )
⊥⊕N(T ) = H and thus U1 is unitary. Moreover it is easy to see that

U∗
1 x = (PT x, PN(T )x),

for all x ∈ H. From Lemma 2.1, A1 is an isomorphism. Using T PT = T , which follows from T

being EP, we get that

T = U1(A1 ⊕ 0)U∗
1 .

(2)⇒(3)⇒(4) is obvious and (4)⇒(1) follows from Lemmas 3.1 and 3.2. �

Remark 3.5. (a) What we said in Remark 3.3(a) shows that if in the previous theorem we do not
assume that U3 is injective, then T is not in general EP.

(b) It is easy to see that if T = U(A ⊕ 0)U∗ ∈ B(H), with U ∈ B(K ⊕ L,H) unitary and
A ∈ B(K) an isomorphism, then T † = U(A−1 ⊕ 0)U∗.

If in (2) of Theorem 3.4 we just assume that A1 is injective with closed range, then T is not in
general EP. In the following proposition, we show that the existence of simultaneous factorizations
of T and T ∗ of the form T = U(A ⊕ 0)U∗ and T ∗ = U(B ⊕ 0)U∗, with U , A and B injective,
implies that T is EP.

Proposition 3.6. Let T ∈ B(H) with closed range. Then the following are equivalent:

(1) T is EP.

(2) (a) There exist Hilbert spaces K1 and L1, V1 ∈ B(K1 ⊕ L1,H) injective, W1 ∈
B(K1 ⊕ L1,H), S1 ∈B(H,K1 ⊕ L1), A1 ∈B(K1) injective and B1 ∈B(K1)

such that T = V1(A1 ⊕ 0)S1 and T ∗ = W1(B1 ⊕ 0)S1.
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(b) There exist Hilbert spaces K2 and L2, V2 ∈ B(K2 ⊕ L2,H), W2 ∈ B(K2 ⊕
L2,H) injective, S2 ∈ B(H,K2 ⊕ L2), A2 ∈ B(K2), and B2 ∈ B(K2) injec-
tive such that T = V2(A2 ⊕ 0)S2 and T ∗ = W2(B2 ⊕ 0)S2.

Proof. (1)⇒(2) follows from Theorem 3.4.
(2)⇒(1): First assume that (a) holds. From T = V1(A1 ⊕ 0)S1 and the injectivity of V1 and

A1 we get

N(T ) = S−1
1 ({0} ⊕ L1).

By T ∗ = W1(B1 ⊕ 0)S1 we get that

S−1
1 ({0} ⊕ L1) ⊆ N(T ∗).

So

N(T ) ⊆ N(T ∗).
Similarly, by (b), we get N(T ∗) ⊆ N(T ). Therefore T is EP. �

Remark 3.7. (a) If in (2)(a) we just assume that V1 is injective or that A1 is injective, then T is
not in general EP.
(b) Using Remark 3.5(b) andN(T †) = N(T ∗) we get that the results of the previous proposition
also hold if we replace T ∗ with T †.

What we said in Remark 3.3(b) shows that if in (3) of Theorem 3.4 we replace T = U2(A2 ⊕
0)U∗

2 with T = U2(A2 ⊕ 0)U−1
2 , then T is not in general EP (actually if T = U(A ⊕ 0)U−1,

with U and A isomorphisms, then T has Drazin index equal to 0 or 1; see [6, p. 1728]). In the
following proposition we show that the existence of simultaneous factorizations of T and T ∗ of
the form T = U(A ⊕ 0)U−1 and T ∗ = U(B ⊕ 0)U−1, with U an isomorphism and one of A

and B an isomorphism, implies that T is EP.

Proposition 3.8. Let T ∈ B(H) with closed range. Then the following are equivalent:

(1) T is EP.

(2) There exist Hilbert spacesK1 andL1, U1 ∈ B(K1 ⊕ L1,H) isomorphism, A1 ∈ B(K1)

isomorphism andB1 ∈ B(K1) such thatT = U1(A1 ⊕ 0)U−1
1 andT ∗ = U1(B1 ⊕ 0)U−1

1 .

Proof. (1)⇒(2) follows from Theorem 3.4.
(2)⇒(1): As in the proof of (2)⇒(1) in Proposition 3.6 we get that

N(T ) ⊆ N(T ∗).
Taking adjoints in (2) we get

T ∗ = (U∗
1 )−1(A∗

1 ⊕ 0)U∗
1 and T = (U∗

1 )−1(B∗
1 ⊕ 0)U∗

1 ,

which gives us in the same manner N(T ∗) ⊆ N(T ) and so T is EP. �

Remark 3.9. Using Remark 3.5(b), N(T †) = N(T ∗) and N((T ∗)†) = N(T ) we get that the
results of the previous proposition also hold if we replace T ∗ with T †.

We continue with a characterization of EP operators through simultaneous factorizations of
T ∗T and T T ∗.
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Proposition 3.10. Let T ∈ B(H) with closed range. Then the following are equivalent:

(1) T is EP.

(2) There exist Hilbert spaces K1 and L1, U1 ∈ B(K1 ⊕ L1,H) unitary and A1 ∈
B(K1) isomorphism such that T ∗T = U1(A

∗
1A1 ⊕ 0)U∗

1 and T T ∗ =U1(A1A
∗
1 ⊕ 0)U∗

1 .

(3) (a) There exist Hilbert spaces K2 and L2, V2 ∈ B(K2 ⊕ L2,H) injective, W2 ∈
B(K2 ⊕ L2,H), S2 ∈B(H,K2 ⊕ L2),A2 ∈B(K2) injective andB2 ∈ B(K2)

such that T ∗T = V2(A2 ⊕ 0)S2 and T T ∗ = W2(B2 ⊕ 0)S2.

(b) There exist Hilbert spaces K3 and L3, V3 ∈ B(K3 ⊕ L3,H), W3 ∈ B(K3 ⊕
L3,H) injective, S3 ∈ B(H,K3 ⊕ L3), A3 ∈ B(K3), and B3 ∈ B(K3) injec-
tive such that T ∗T = V3(A3 ⊕ 0)S3 and T T ∗ = W3(B3 ⊕ 0)S3.

(4) There exist Hilbert spaces K4 and L4, U4 ∈ B(K4 ⊕ L4,H) isomorphism and
A4, B4 ∈ B(K4) injective with closed range such that T ∗T = U4(A4 ⊕ 0)U−1

4 and

T T ∗ = U4(B4 ⊕ 0)U−1
4 .

Proof. (1)⇒(2) follows from Theorem 3.4. (2)⇒(3), (2)⇒(4) and (4)⇒(3) are obvious. (3)⇒(1)
can be proved in a manner similar to the proof of (2)⇒(1) in Proposition 3.6 using N(T ∗T ) =
N(T ) and N(T T ∗) = N(T ∗). �

Remark 3.11. (a) If we only assume that one of the conditions in (2) holds, then T is not in

general EP. To see that let T =
[

0 1
0 0

]
.

(b) If there exist Hilbert spaces K and L, U ∈ B(K ⊕ L,H) unitary, A ∈ B(K) isomor-
phism and B ∈ B(K) such that T ∗T = U(A ⊕ 0)U∗ and T T ∗ = U(B ⊕ 0)U∗, then T is not
in general EP. To see that let T be the right shift, K = l2(N), L = {0}, U = IK ⊕ IL, A = IK
and B = Pspan{e1,e2,e3,...}.

4. Factorizations of the form T ∗ = ST

In this section, we will characterize EP operators through factorizations of the form T ∗ = ST ,
of the form T † = ST , of the form T ∗T = ST T ∗, of the form T ∗T = T ST ∗, of the form T †T =
ST T † and of the form T †T = T ST †.

We start with characterizations of EP operators via factorizations of the form T ∗ = ST .

Proposition 4.1. Let T ∈ B(H) with closed range. Then the following are equivalent:

(1) T is EP.

(2) There exists an isomorphism V ∈ B(H) such that T ∗ = V T .

(3) There exists N ∈ B(H) injective such that T ∗ = NT.

(4) There exist S1, S2 ∈ B(H) such that T ∗ = S1T and T = S2T
∗.

Proof. (1)⇒(2): By Theorem 3.4, T = U(A ⊕ 0)U∗, with U ∈ B(K ⊕ L,H) unitary and
A ∈ B(K) an isomorphism. If we take

V = U(A∗A−1 ⊕ IL)U∗ : H → H,

then V is an isomorphism with T ∗ = V T .
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(2)⇒(3) is obvious and (2)⇒(4) follows from T ∗ = V T ⇒ T = V −1T ∗.
(3)⇒(1): By T ∗ = NT we get that N(T ) ⊆ N(T ∗). On the other hand, by T ∗ = NT and

the injectivity of N we get that N(T ∗) ⊆ N(T ) and so T is EP.
(4)⇒(1): By T ∗ = S1T we get that N(T ) ⊆ N(T ∗) and by T = S2T

∗ we get that N(T ∗) ⊆
N(T ) and so T is EP. �

Remark 4.2. (a) The equivalence of (1) and (2) was proved in [9, Théoréme 7]. The equivalence
of (1), (2) and (4) also follows from the more general results concerning C∗-algebras in [11,
Theorem 10] and in [17, Theorem 3.1]. We give our proof since it differs from the ones in those
papers. Note that [11, Theorem 10] and [17, Theorem 3.1] contain other conditions equivalent to
(2).

(b) Obviously the result also holds if in (2) in the place of T ∗ = V T we put T = V T ∗ or
T = T ∗V or T ∗ = T V . Moreover the result also holds if in (3) in the place of T ∗ = NT we put
T = NT ∗. On the other hand we cannot in the place of T ∗ = NT put T ∗ = T N . To see that let
T be the left shift and N = (T ∗)2.

(c) If T = U(A ⊕ 0)U∗ ∈ B(H), with U ∈ B(K ⊕ L,H) unitary and A ∈ B(K) an iso-
morphism, then the solutions of the equation T ∗ = XT are

X = U

[
A∗A−1 B

0 D

]
U∗, B ∈ B(L,K), D ∈ B(L).

For similar results about matrices see [15].

We continue with characterizations of EP operators via factorizations of the form T † = ST .

Proposition 4.3. Let T ∈ B(H) with closed range. Then the following are equivalent:

(1) T is EP.

(2) There exists an isomorphism V ∈ B(H) such that T † = V T = T V.

(3) There exists N ∈ B(H) injective such that T † = NT.

(4) There exist S1, S2 ∈ B(H) such that T † = S1T and T = S2T
†.

Proof. (1)⇒(2): By Theorem 3.4, T = U(A ⊕ 0)U∗, with U ∈ B(K ⊕ L,H) unitary and
A ∈ B(K) an isomorphism. Using Remark 3.5(b) we get that if

V = U(A−2 ⊕ IL)U∗ : H → H,

then V is an isomorphism with T † = V T = T V .
The rest follows in a manner similar to the proof of Proposition 4.1, since N(T †) = N(T ∗).

�

Remark 4.4. (a) The equivalence of (1) and (4) also follows from the more general results con-
cerning C∗-algebras in [17, Theorem 3.1]. Moreover the equivalence of (1), (2) and (4) also follows
from the results concerning unital Banach algebras in [2, Theorem 18] (see also [2, Theorem 16]).

(b) In general it is not true that if T is an EP operator and V is an isomorphism such that
T † = V T , then T † = T V . To see that let

T =
[

1 0
0 0

]
and V =

[
1 1
0 1

]
.



1562 D. Drivaliaris et al. / Linear Algebra and its Applications 429 (2008) 1555–1567

(c) If T = U(A ⊕ 0)U∗ ∈ B(H), with U ∈ B(K ⊕ L,H) unitary and A ∈ B(K) an iso-
morphism, then the solutions of the equation T † = XT are

X = U

[
A−2 B

0 D

]
U∗, B ∈ B(L,K), D ∈ B(L),

and the solutions of the equation T † = XT = T X are

X = U

[
A−2 0

0 D

]
U∗, D ∈ B(L).

We finish this section with two characterizations of EP operators through factorizations of the
form T ∗T = ST T ∗ and T ∗T = T ST ∗.

Proposition 4.5. Let T ∈ B(H) with closed range. Then the following are equivalent:

(1) T is EP.

(2) There exists an isomorphism V ∈ B(H) such that T ∗T = V T T ∗.
(3) There exists N ∈ B(H) injective such that T ∗T = NT T ∗.
(4) There exist S1, S2 ∈ B(H) such that T ∗T = S1T T ∗ and T T ∗ = S2T

∗T .

Proof. (1)⇒(2): By Theorem 3.4, T = U(A ⊕ 0)U∗, with U ∈ B(K ⊕ L,H) unitary and
A ∈ B(K) an isomorphism. If we take

V = U(A∗A(A∗)−1A−1 ⊕ IL)U∗ : H → H,

then V is an isomorphism with T ∗T = V T T ∗.
The rest follows in a manner similar to the proof of Proposition 4.1, since N(T ∗T ) = N(T )

and N(T T ∗) = N(T ∗). �

Remark 4.6. (a) If in (3) we put T ∗T = T T ∗N in the place of T ∗T = NT T ∗, then T is not in
general EP. To see that let L be the left shift and R be the right shift, T = L ⊕ 0 and

N =
[
Pspan{e1,e2,...} 0

Pspan{e0} R

]
.

(b) If T = U(A ⊕ 0)U∗ ∈ B(H), with U ∈ B(K ⊕ L,H) unitary and A ∈ B(K) an iso-
morphism, then the solutions of the equation T ∗T = XT T ∗ are

X = U

[
A∗A(A∗)−1A−1 B

0 D

]
U∗, B ∈ B(L,K), D ∈ B(L).

Using Theorem 3.4, Remark 3.5(b),N(T †T ) = N(T ) andN(T T †) = N(T ∗) we can show
that the results of the previous proposition also hold if we replace T ∗T with T †T and T T ∗ with
T T † and if we just replace T ∗T with T †T or T T ∗ with T T †.

Proposition 4.7. Let T ∈ B(H) with closed range. Then the following are equivalent:

(1) T is EP.

(2) There exists an isomorphism V ∈ B(H) such that T ∗T = T V ∗V T ∗.
(3) There exists N ∈ B(H) injective such that T ∗T = T N∗NT ∗.
(4) There exist S1, S2 ∈ B(H) such that T ∗T = T S1T

∗ and T T ∗ = T ∗S2T .
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Proof. (1)⇒(2): By Proposition 4.1, there exists an isomorphism V ∈ B(H) such that T = V T ∗.
Hence T ∗T = T V ∗V T ∗.

(2)⇒(3) is obvious.
(3)⇒(1): By T ∗T = T N∗NT ∗ and N(T ∗T ) = N(T ) we get N(T ∗) ⊆ N(T ). By T ∗T =

T N∗NT ∗, the injectivity of N and N(T N∗NT ∗) = N(NT ∗) we get N(T ) ⊆ N(T ∗). So T

is EP.
(1)⇒(4): Since (1)⇔(2) and T is EP if and only if T ∗ is EP, there exist isomorphisms V1 and

V2 such that T ∗T = T V ∗
1 V1T

∗ and T T ∗ = T ∗V ∗
2 V2T .

(4)⇒(1): By T ∗T = T S1T
∗ and N(T ∗T ) = N(T ) we get N(T ∗) ⊆ N(T ). By T T ∗ =

T ∗S2T and N(T T ∗) = N(T ∗) we get N(T ) ⊆ N(T ∗). Hence T is EP. �

Remark 4.8. (a) If we assume that there exists V ∈ B(H) unitary such that T ∗T = T V T ∗, then
T is not in general EP. To see that let T be the left shift and V : l2(N) → l2(N), with

V ({xn}n∈N) = {x1, x0, x2, x3, . . .} for all{xn}n∈N ∈ l2(N).

(b) If T = U(A ⊕ 0)U∗ ∈ B(H), with U ∈ B(K ⊕ L,H) unitary and A ∈ B(K) an iso-
morphism, then the solutions of the equation T ∗T = T XT ∗ are

X = U

[
A−1A∗A(A∗)−1 B

C D

]
U∗, B ∈ B(L,K), C ∈ B(K,L), D ∈ B(L).

Using N(T †) = N(T ∗), N(T †T ) = N(T ) and N(T T †) = N(T ∗) we can show that the
results of the previous proposition also hold if we replace T ∗ with T †.

5. Factorizations of the form T = BC

In this section, we will discuss characterizations of EP operators through factorizations of the
form T = BC, with B injective with closed range and C surjective.

If T ∈ B(H) has closed range, then

T = T |R(T ∗)PT ∗ ,

with T |R(T ∗) : R(T ∗) → H injective with closed range and PT ∗ : H → R(T ∗) surjective. Thus
if T ∈ B(H) has closed range, then there exist a Hilbert space K, B ∈ B(K,H) injective
with closed range and C ∈ B(H,K) surjective with T = BC. Note that, for any isomorphism
U ∈ B(K), BU ∈ B(K,H) is injective with closed range, U−1C ∈ B(H,K) is surjective
and (BU)(U−1C) = T and so factorizations of that form are not unique. It is easy to see
that R(T ) = R(B) and N(T ) = N(C). Moreover if T = BC, then obviously T ∗ = C∗B∗,
with C∗ injective with closed range and B∗ surjective and R(T ∗) = R(C∗) and N(T ∗) =
N(B∗).

Assume that T = BC, with B injective with closed range and C surjective. It is easy to see
that, since B is injective with closed range, B† = (B∗B)−1B∗ and B†B = IK and that, since C

is surjective, C† = C∗(CC∗)−1 and CC† = IK. Moreover

T † = C†B† = C∗(CC∗)−1(B∗B)−1B∗.

From now on we consider T ∈ B(H) with closed range, B ∈ B(K,H) injective with closed
range and C ∈ B(H,K) surjective with T = BC. In the following four theorems we characterize
EP operators through their factorizations of the form T = BC.
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Theorem 5.1. The following are equivalent:

(1) T is EP.

(2) BB† = C†C.

(3) N(B∗) = N(C).

Proof. (1)⇔(2): Since T † = C†B†, CC† = IK and B†B = IK, we have that

T EP ⇔ T T † = T †T

⇔ BB† = C†C.

(2)⇔(3) follows from BB† = PB and C†C = PC∗ . �

For the proof of the next theorem we will need the following lemma the proof of which is
elementary and is omitted.

Lemma 5.2. Let S ∈ B(H) and A ∈ B(H) with closed range. Then

S = SPA ⇔ N(A∗) ⊆ N(S) and S = PAS ⇔ N(A∗) ⊆ N(S∗).

Theorem 5.3. The following are equivalent:

(1) T is EP.

(2) B = C†CB and C = CBB†.

(3) B† = B†C†C and C = CBB†.

(4) B = C†CB and C† = BB†C†.

(5) B† = B†C†C and C† = BB†C†.

Proof. By Lemma 5.2, N(B†) = N(B∗) and N((C†)∗) = N(C), we get that

B = C†CB ⇔ B = PC∗B ⇔ N(C) ⊆ N(B∗),
C = CBB† ⇔ C = CPB ⇔ N(B∗) ⊆ N(C),

B† = B†C†C ⇔ B† = B†PC∗ ⇔ N(C) ⊆ N(B∗),
C† = BB†C† ⇔ C† = PBC† ⇔ N(B∗) ⊆ N(C).

Combining all the above with the equivalence of (1) and (3) in Theorem 5.1 we get the
proof. �

Remark 5.4. If we only assume that one of the conditions in (2)–(5) holds, then T is not in
general EP. Moreover

B = C†CB and B† = B†C†C

or

C = CBB† and C† = BB†C†

do not in general imply that T is EP. For the first one let T be the right shift, B = T and C = I

and for the second one let T be the left shift, B = I and C = T .
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Theorem 5.5. The following are equivalent:

(1) T is EP.

(2) T ∗T = C∗B∗BCBB† and T ∗T = C∗B∗C†CBC.

(3) T T ∗ = BCC∗B∗C∗(C∗)† and T T ∗ = BCBB†C∗B∗.
(4) T ∗T = C∗B∗BCBB† and T T ∗ = BCC∗B∗C∗(C∗)†.

(5) T ∗T = C∗B∗C†CBC and T T ∗ = BCBB†C∗B∗.

Proof. Using Theorem 5.3 we can show that (1) implies the rest.
For the converse we have that:
If T ∗T = C∗B∗BCBB†, then, using N(T ∗) = N(B∗) = N(B†) and N(T ∗T ) = N(T ),

we get that N(T ∗) ⊆ N(T ) and so

T ∗T = C∗B∗BCBB† ⇒ N(T ∗) ⊆ N(T ).

Similarly we get that

T T ∗ = BCC∗B∗C∗(C∗)† ⇒ N(T ) ⊆ N(T ∗).

Using C†C = PC∗ and R(T ∗) = R(C∗), we get that

T ∗T = C∗B∗C†CBC ⇒T ∗T = T ∗PT ∗T

⇒‖T x‖2 = ‖PT ∗T x‖2, for all x ∈ H

⇒T x = PT ∗T x, forallx ∈ H

⇒R(T ) ⊆ R(T ∗)

⇒N(T ) ⊆ N(T ∗).

Similarly we get that

T T ∗ = BCBB†C∗B∗ ⇒ N(T ∗) ⊆ N(T ).

Combining all the above we get the result. �

Theorem 5.6. The following are equivalent:

(1) T is EP.

(2) There exists an isomorphism V ∈ B(K) such that C = V B∗.
(3) There exists N ∈ B(K) injective with closed range such that C = NB∗.
(4) There exist S1, S2 ∈ B(K) such that C = S1B

∗ and B∗ = S2C.

Proof. (1)⇒(2): Obviously

C = C|R(C∗)PC∗

and

B∗ = B∗|R(B)PB.

Since T is EP, by Theorem 5.1, R(B) = R(C∗) and so

B∗ = B∗|R(C∗)PC∗ .
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Since B is injective with closed range, B∗ is surjective and so

B∗|R(C∗) : R(C∗) → K

is an isomorphism. Thus

(B∗|R(C∗))
−1 : K → R(C∗)

is an isomorphism. Moreover, since C is surjective,

C|R(C∗) : R(C∗) → K

is also an isomorphism. From what we said so far V : K → K with

V = C|R(C∗)
(
B∗|R(C∗)

)−1

is an isomorphism and we have

V B∗ = C|R(C∗)(B
∗|R(C∗))

−1B∗|R(C∗)PC∗ = C|R(C∗)PC∗ = C.

(2)⇒(3) and (2)⇒(4) are obvious.
(3)⇒(1): By the injectivity of N and C = NB∗ we get that N(C) = N(B∗) which, by

Theorem 5.1, implies that T is EP.
(4)⇒(2): From C = S1B

∗ we get that N(B∗) ⊆ N(C) and from B∗ = S1C we get that
N(C) ⊆ N(B∗). So, by Theorem 5.1, T is EP. �

Remark 5.7. The result is true if we replace in (2) C = V B∗ with B∗ = V C or B∗ = CV or
C = B∗V . Moreover if in (3) we put B∗ = NC in the place of C = NB∗ the result is true. On
the other hand, if we replace C = NB∗ with C = B∗N , then T is not in general EP. To see that
let T be the right shift, B = T and C = I .

Using the previous theorem we can also get more general characterizations of EP operators. For
example: Let T ∈ B(H) with closed range and assume that there exist B ∈ B(K,H) injective
with closed range and C ∈ B(H,K) with T = BC and an isomorphism V ∈ B(K) such that
C = V B∗. Since B is injective with closed range, B∗ is surjective and so, by C = V B∗, C is
surjective. Thus, by the previous theorem, T is EP.
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[2] to their attention.

References

[1] A. Ben-Israel, T.N.E. Greville, Generalized Inverses, Springer-Verlag, New York, 2003.
[2] E. Boasso, On the Moore–Penrose inverse, EP Banach space operators, and EP Banach algebra elements, J. Math.

Anal. Appl. 339 (2008) 1003–1014.
[3] K.G. Brock, A note on commutativity of a linear operator and its Moore–Penrose inverse, Numer. Funct. Anal.

Optim. 11 (1990) 673–678.
[4] S.L. Campbell, C.D. Meyer, EP operators and generalized inverses, Canad. Math. Bull. 18 (1975) 327–333.
[5] S.L. Campbell, C.D. Meyer, Generalized Inverses of Linear Transformations, Dover Publications Inc., New York,

1991.



D. Drivaliaris et al. / Linear Algebra and its Applications 429 (2008) 1555–1567 1567
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