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Let π = (d1, d2, . . ., dn) and π ′ = (d′
1, d

′
2, . . ., d

′
n) be two non-

increasing degree sequences. We say π is majorizated by π ′,
denoted by π � π ′, if and only if π /= π ′,∑n

i=1 di = ∑n
i=1 d

′
i , and

∑j
i=1 di �

∑j
i=1 d

′
i for all j = 1, 2, . . ., n. If the degree of vertex v is

(resp. not) equal to 1, then we call v a pendant (resp. non-pendant)

vertex of G. We use Cπ to denote the class of connected graphswith

degree sequence π . Suppose π and π ′ are two non-increasing c-

cyclic degree sequences. Let G and G′ be the graphs with greatest

spectral radii in Cπ and Cπ ′ , respectively. In this paper, we shall

prove that if π � π ′, G and G′ have the same number of pendant

vertices, and thedegreesof allnon-pendantverticesofG′ aregreater
than c, then ρ(G)<ρ(G′).

© 2009 Elsevier Inc. All rights reserved.

1. Introduction

Throughout the paper, G = (V , E) is a connected undirected simple graphwith V = {v1, v2, . . ., vn}
and E = {e1, e2, . . ., em}, i.e., |V | = n and |E| = m. If m = n + c − 1, then G is called a c-cyclic graph.

Especially, if c = 1, then G is called a unicyclic graph. Let uv be an edge, of which the end vertices are u

and v. The symbolN(v) denotes the neighbor set of vertex v, then d(v) = |N(v)| is called the degree of

v. If the degree of vertex v is (resp. not) equal to 1, then we call v a pendant (resp. non-pendant) vertex

of G.
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Let A(G) be the adjacency matrix of G. The spectral radius of G, denoted by ρ(G), is the largest

eigenvalue of A(G). When G is connected, A(G) is irreducible and by the Perron-Frobenius Theorem

(see, e.g. [1]), ρ(G) is simple and there is a unique positive unit eigenvector corresponding to ρ(G).
We refer to such an eigenvector f as the Perron vector of G.

If di = d(vi) for i = 1, 2, . . ., n, then we call the sequence π = (d1, d2, . . ., dn) the degree sequence

of G. Throughout this paper, we enumerate the degrees in non-increasing order, i.e., d1 � d2 � · · · � dn.

A non-increasing sequence π = (d1, d2, . . ., dn) is called graphic if there exists a graph having π as

its degree sequence. It is called a c-cyclic degree sequence, if it is the degree sequence of some connected

c-cyclic graph. Specially, if there exists a connected unicyclic graphwithπ as its degree sequence, then

π is called a unicyclic degree sequence.

We use Cπ to denote the class of connected graphs with degree sequence π . If G ∈ Cπ and ρ(G) �
ρ(G′) for any other G′ ∈ Cπ , then we call G has greatest spectral radius in Cπ .

Suppose π = (d1, d2, . . ., dn) and π ′ = (d′
1, d

′
2, . . ., d

′
n) are two non-increasing graphic degree se-

quences, we write π � π ′ if and only if π /= π ′, ∑n
i=1 di = ∑n

i=1 d
′
i , and

∑j
i=1 di �

∑j
i=1 d

′
i for all

j = 1, 2, . . ., n. Such an ordering is sometimes called majorization.

Thework on determining the graphwhich has greatest spectral radius among some class of graphs,

can be traced back to 1985 when Brualdi and Hoffman [2] investigated the maximum spectral radius

of the adjacency matrix of a (not necessarily connected) graph in the set of all graphs with a given

number of vertices and edges. Their work was followed by other people, in the connected graph case

as well as in the general case, and a number of literatures have been written. Recently, Bıyıkoğlu and

Leydold had firstly considered the majorization theorem for the graphs, which have greatest spectral

radii, between two degree sequences, and they once obtained.

Theorem A [3]. Let π and π ′ be two different non-increasing graphic degree sequences with π � π ′. Let
G and G′ be the graphs with greatest spectral radii in Cπ and Cπ ′ , respectively. Then, ρ(G) < ρ(G′).

Unfortunately, the following example shows that Theorem A is not correct.

Example 1.1. Let π = (4, 3, 3, 3, 2, 2, 1) and π ′ = (4, 4, 3, 2, 2, 2, 1). Let G1 and G2 be the graphs as

shown in Fig. 1. It is easy to see that (see the data of the spectra of connected graphswith seven vertices

[4, pp. 163–220]) G1 and G2 are the graphs with greatest spectral radii in Cπ and Cπ ′ , respectively.
Clearly, π � π ′, but ρ(G1) = 3.09787> 3.05401 = ρ(G2).

Very recently, Bıyıkoğlu and Leydold had changed Theorem A from the general graphs to the class

of trees, i.e.,

Theorem B [5]. Let π and π ′ be two different non-increasing degree sequences of trees with π � π ′. Let
T and T ′ be the trees with greatest spectral radii in Cπ and Cπ ′ , respectively. Then, ρ(T) < ρ(T ′).

In this note, we consider the similar problem to the general graphswith additional restrictions, and

we shall prove that

Theorem 1.1. Suppose π = (d1, d2, . . ., dn) and π ′ = (d′
1, d

′
2, . . ., d

′
n) are two different non-increasing

c-cyclic degree sequences. Let G andG′ be the graphswith greatest spectral radii in Cπ and Cπ ′ , respectively.

Fig. 1. The graphs G1 and G2.
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If π � π ′, G and G′ have the same number of pendant vertices, and the degrees of all non-pendant vertices

of G′ are greater than c, then ρ(G) < ρ(G′).

By Theorem 1.1, it is easy to follow that

Corollary 1.1. Suppose π = (d1, d2, . . ., dn) and π ′ = (d′
1, d

′
2, . . ., d

′
n) are two different non-increasing

unicyclic degree sequences. Let G and G′ be the unicyclic graphs with greatest spectral radii in Cπ and Cπ ′ ,
respectively. If π � π ′, G and G′ have the same number of pendant vertices, then ρ(G) < ρ(G′).

Remark. By Example 1.1, the condition of “the degrees of all non-pendant vertices of G′ are greater

than c” in Theorem 1.1 cannot be deleted.

2. The proof of Theorem 1.1

Suppose uv ∈ E, the notion G − uv denotes the new graph yielded from G by deleting the edge uv.

Similarly, if uv /∈ E, then G + uv denotes the new graph obtained from G by adding the edge uv.

Lemma 2.1 [6,7]. Let u, v be two vertices of the connected graph G, and w1,w2, . . .,wk (1� k � d(v))
be some vertices of N(v) \ N(u). Let G′ = G + w1u + w2u + · · · + wku − w1v − w2v − · · · − wkv.
Suppose f is a Perron vector of G, if f (u) � f (v), then ρ(G′) > ρ(G).

Given a graphic degree sequence π = (d1, d2, . . ., dn), let π(1) denote the cardinality of 1 in π ,

and d(π) = min{di : di /= 1 and di is a component of π}. We use min(π) to denote the minimum

component of π , i.e.,min(π) = dn.

By the Theorem 1 of [5], the next result follows immediately.

Lemma 2.2. Suppose π = (d1, d2, . . ., dn) is a non-increasing c-cyclic degree sequence. If G has greatest

spectral radius in Cπ with the Perron vector f , then there exists an ordering of V(G) = {v1, v2, . . ., vn} such
that d(vi) = di for 1� i � n, and f (v1) � f (v2) � · · · � f (vn).

Lemma 2.3. If π � π ′, then min(π) �min(π ′).

Proof. Suppose π = (d1, d2, . . ., dn) and π ′ = (d′
1, d

′
2, . . ., d

′
n). Assume that the contrary holds, i.e.,

dn < d′
n. Sinceπ � π ′, then∑n

i=1 di = ∑n
i=1 d

′
i . Combiningwith dn < d′

n, we have
∑n−1

i=1 di >
∑n−1

i=1 d′
i ,

a contradiction to the definition of π � π ′. Thus, dn � d′
n follows. �

Lemma 2.4. Let π = (d1, d2, . . ., dn) and π ′ = (d′
1, d

′
2, . . ., d

′
n) be two non-increasing degree sequences

withmin(π ′) � 1. Ifπ � π ′ and only two components ofπ andπ ′ are different from 1, thenπ ′(1) � π(1).

Proof. Without loss of generality, we may assume that di = d′
i for i /= p, q, and dp + 1 = d′

p, dq −
1 = d′

q. Since π � π ′, then 1� p< q� n. Thus, dp � dq = d′
q + 1�min(π ′) + 1� 2. This implies that

π ′(1) � π(1). �

Lemma 2.5 [8]. Let π and π ′ be two different non-increasing graphic degree sequences. If π � π ′, then
there exists a series non-increasing graphic degree sequences π1, . . ., πk such that (π =)π0 � π1 � · · · �
πk � πk+1(= π ′), and only two components of πi and πi+1 are different from 1, where 0� i � k.

Lemma 2.6. Let π and π ′ be two different non-increasing c-cyclic degree sequences with π(1) = π ′(1)
and d(π ′) � c + 1. Ifπ � π ′, then there exists a series non-increasing c-cyclic degree sequencesπ1, . . .,πk

such that (π =)π0 � π1 � · · · � πk � πk+1(= π ′)withπ(1) = π1(1) = · · · = πk(1) = π ′(1), d(π) �
d(π1) � · · · � d(πk) � d(π ′),andonly twocomponents ofπi andπi+1 aredifferent from1,where0� i � k.
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Proof. Since π � π ′, by Lemma 2.5 there exists a series non-increasing graphic degree sequences

π1, . . .,πk such that (π =)π0 � π1 � · · · � πk � πk+1(= π ′), and only two components ofπi andπi+1

are different from 1, where 0� i � k. By Lemma 2.3, we can conclude that min(π) �min(π1) � · · · �
min(πk) �min(π ′) � 1. Thus,π(1) � π1(1) � · · · � πk(1) � π ′(1) follows from Lemma 2.4. Moreover,

since π(1) = π ′(1), then π(1) = π1(1) = · · · = πk(1) = π ′(1) follows.

In the following, letπi = (d1, d2, . . ., dn) andπi+1 = (d′
1, d

′
2, . . ., d

′
n). Since only two components of

πi and πi+1 are different from 1, wemay assume that dj = d′
j for j /= p, q, and dp + 1 = d′

p, dq − 1 =
d′
q. We only need to show the following facts:

Fact 1. d(π) � d(π1) � · · · � d(πk) � d(π ′).

Proof of Fact 1. It is sufficient toshowthatd(πi) � d(πi+1) for0� i � k. Sinceπi � πi+1, then1� p< q� n.

Thus, dp � dq = d′
q + 1�min(πi+1) + 1� 2. Combining with πi(1) = πi+1(1), then d′

q /= 1 (Other-

wise, πi(1) < πi+1(1)). Thus, d(πi) � d(πi+1).

Fact 2. Each πi is a c-cyclic degree sequence for all 1� i � k.

Proof of Fact 2. It is sufficient to show that: For each i ∈ {0, 1, . . ., k}, if there exists a connected c-

cyclic graph Gwithπi as its degree sequence, then there must exist a connected c-cyclic graph G′ with

πi+1 as its degree sequence. Once this is proved, we are done.

Since πi � πi+1, then dp � dq � 2. Recall that πi(1) = πi+1(1), and dj = d′
j for j /= p, q, then d′

q /=
1. By Fact 1, dq = d′

q + 1� d(π ′) + 1� c + 2. Let Pvpvq be a shortest path from vp to vq in G. Note that

G is a connected c-cyclic graph and dq � c + 2, then there must exist some w ∈ N(vq) \ N(vp), but

w /∈ Pvpvq (Otherwise, G is not a c-cyclic graph). Let G′ = G + vpw − vqw, then G′ is also a connected

c-cyclic graph with πi+1 as its degree sequence.

This completes the proof of this lemma. �

Lemma 2.7. Let π = (d1, d2, . . ., dn) and π ′ = (d′
1, d

′
2, . . ., d

′
n) be two non-increasing c-cyclic degree

sequences with π(1) = π ′(1) and d(π ′) � c + 1. Let G1 and G2 be the connected c-cyclic graphs with

greatest spectral radii in Cπ and Cπ ′ , respectively. If π � π ′ and only two components of π and π ′ are
different from 1, then ρ(G1) < ρ(G2).

Proof. Notice that G1 has greatest spectral radius in Cπ , by Lemma 2.2 there exists an ordering of

V(G1) = {v1, v2, . . ., vn} such that d(vi) = di for 1� i � n, and f (v1) � f (v2) � · · · � f (vn). Recall that
only two components of π and π ′ are different from 1, we may assume that di = d′

i for i /= p, q,

and dp + 1 = d′
p, dq − 1 = d′

q. Since π � π ′, then 1� p< q� n. This implies that dp � dq � 2 and

f (vp) � f (vq).

Let Pvpvq be a shortest path from vp to vq in G1. Sinceπ(1) = π ′(1), dp � dq � 2, then d′
q /= 1. Thus,

dq = d′
q + 1� d(π ′) + 1� c + 2. This guarantees that there must exist somew ∈ N(vq) \ N(vp), but

w /∈ Pvpvq . LetG
′ = G1 + vpw − vqw, thenG′ ∈ Cπ ′ .Moreover, since f (vp) � f (vq), thenρ(G1) < ρ(G′)

by Lemma 2.1. This implies that ρ(G1) < ρ(G2) because G2 has greatest spectral radius in Cπ ′ . �

The Proof of Theorem 1.1. Since G ∈ Cπ , G
′ ∈ Cπ ′ , G and G′ have the same number of pendant ver-

tices, and the degrees of all non-pendant vertices of G′ are greater than c, then π(1) = π ′(1) and

d(π ′) � c + 1. Combining with π � π ′, by Lemma 2.6 there exists a series non-increasing c-cyclic

degree sequences π1, . . ., πk such that (π =)π0 � π1 � · · · � πk � πk+1(= π ′)with π(1) = π1(1) =
· · · = πk(1) = π ′(1), d(π) � d(π1) � · · · � d(πk) � d(π ′) � c + 1, and only two components of πi

and πi+1 are different from 1, where 0� i � k.

Let Gi be the connected c-cyclic graph with greatest spectral radius in Cπi
for 1� i � k. By Lemma

2.7, we can conclude that ρ(G) < ρ(G1) < · · · < ρ(Gk) < ρ(G′). Thus, Theorem 1.1 follows. �
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