Linear Algebra and its Applications 431 (2009) 553–557

Contents lists available at ScienceDirect Linear Algebra and its Applications

journal homepage: www.elsevier.com/locate/laa

The majorization theorem of connected graphs *

Muhuo Liu ^{a,b}, Bolian Liu ^{b,}*, Zhifu You ^b

^a *Department of Applied Mathematics, South China Agricultural University, Guangzhou 510642, PR China*

^b *School of Mathematic Science, South China Normal University, Guangzhou 510631, PR China*

ARTICLE INFO ABSTRACT

Article history: Received 13 January 2009 Accepted 3 March 2009 Available online 11 April 2009

Submitted by R.A. Brualdi

AMS classifications: 05C35 15A48 05C50

Keywords: Spectral radius Perron vector Majorization

Let $\pi = (d_1, d_2, \ldots, d_n)$ and $\pi' = (d'_1, d'_2, \ldots, d'_n)$ be two nonincreasing degree sequences. We say π is majorizated by π' , denoted by $\pi \prec \pi'$, if and only if $\pi \neq \pi'$, $\sum_{i=1}^{n} d_i = \sum_{i=1}^{n} d_i'$, and $\sum_{i=1}^{j} d_i \leqslant \sum_{i=1}^{j} d'_i$ for all $j=1,2,\ldots,n$. If the degree of vertex v is (resp. not) equal to 1, then we call *v* a pendant (resp. non-pendant) vertex of *G*. We use C_{π} to denote the class of connected graphs with degree sequence π . Suppose π and π' are two non-increasing *c*cyclic degree sequences. Let *G* and *G'* be the graphs with greatest spectral radii in C_{π} and $C_{\pi'}$, respectively. In this paper, we shall prove that if $\pi \triangleleft \pi'$, *G* and *G'* have the same number of pendant vertices, and the degrees of all non-pendant vertices of G' are greater than *c*, then $\rho(G) < \rho(G')$.

© 2009 Elsevier Inc. All rights reserved.

1. Introduction

Throughout the paper, $G = (V, E)$ is a connected undirected simple graph with $V = \{v_1, v_2, \ldots, v_n\}$ and $E = \{e_1, e_2, \ldots, e_m\}$ $E = \{e_1, e_2, \ldots, e_m\}$ $E = \{e_1, e_2, \ldots, e_m\}$, [i.e.,](mailto:liubl@scnu.edu.cn) $|V| = n$ and $|E| = m$. If $m = n + c - 1$, then *G* is called a *c*-*cyclic graph*. Especially, if *c* = 1, then *G* is called a *unicyclic graph*. Let *uv* be an edge, of which the end vertices are *u* and *v*. The symbol $N(v)$ denotes the neighbor set of vertex *v*, then $d(v) = |N(v)|$ is called the degree of *v*. If the degree of vertex *v* is (resp. not) equal to 1, then we call *v* a *pendant* (resp. *non-pendant*) *vertex* of *G*.

Corresponding author.

⁻ The first author is supported by the fund of South China Agricultural University (No. 4900-k08225); The second author is the corresponding author who is supported by NNSF of China (No. 10771080) and SRFDP of China (No. 20070574006).

E-mail address: liubl@scnu.edu.cn (B. Liu).

^{0024-3795/\$ -} see front matter © 2009 Elsevier Inc. All rights reserved. doi:10.1016/j.laa.2009.03.004

554 *M. Liu et al. / Linear Algebra and its Applications 431 (2009) 553–557*

Let $A(G)$ be the adjacency matrix of *G*. The spectral radius of *G*, denoted by $\rho(G)$, is the largest eigenvalue of *A*(*G*). When *G* is connected, *A*(*G*) is irreducible and by the Perron-Frobenius Theorem (see, e.g. [1]), $\rho(G)$ is simple and there is a unique positive unit eigenvector corresponding to $\rho(G)$. We refer to such an eigenvector *f* as the *Perron vector* of *G*.

If $d_i = d(v_i)$ for $i = 1, 2, ..., n$, then we call the sequence $\pi = (d_1, d_2, ..., d_n)$ the *degree sequence* of *G*. Throughout this paper, we enumerate the degrees in non-increasing order, i.e., $d_1 \geq d_2 \geq \cdots \geq d_n$.

A non-increasing sequence $\pi = (d_1, d_2, \ldots, d_n)$ is ca[lle](#page-4-0)d *graphic* if there exists a graph having π as its degree sequence. It is called a *c-cyclic degree sequence*, if it is the degree sequence of some connected *c*-cyclic graph. Specially, if there exists a connected unicyclic graph with π as its degree sequence, then π is called a *unicyclic degree sequence*.

We use C_{π} to denote the class of connected graphs with degree sequence π . If $G \in C_{\pi}$ and $\rho(G) \geq$ $\rho(G')$ for any other $G' \in C_{\pi}$, then we call *G* has *greatest spectral radius* in C_{π} .

Suppose $\pi = (d_1, d_2, ..., d_n)$ and $\pi' = (d'_1, d'_2, ..., d'_n)$ are two non-increasing graphic degree sequences, [w](#page-4-0)e write $\pi \lhd \pi'$ if and only if $\pi \neq \pi'$, $\sum_{i=1}^n d_i = \sum_{i=1}^n d'_i$, and $\sum_{i=1}^j d_i \leqslant \sum_{i=1}^j d'_i$ for all *j* = 1, 2, ..., *n*. Such an ordering is sometimes called *majorization*.

The work on determining the graph which has greatest spectral radius among some class of graphs, can be traced back to 1985 when Brualdi and Hoffman [2] investigated the maximum spectral radius of the adjacency matrix of a (not necessarily connected) graph in the set of all graphs with a given number of vertices and edges. Their work was followed by other people, in the connected graph case as well as in the general case, and a number of literatures have been written. Recently, Bıyıkoğlu and [Ley](#page-4-0)dold had firstly considered the majorization theorem for the graphs, which have greatest spectral radii, between two degree sequences, and they once obtained.

Theorem A [3]. Let π and π' be two different non-increasing graphic degree sequences with $\pi \triangleleft \pi'$. Let *G* and *G'* be the graphs with greatest spectral radii in C_π and $C_{\pi'}$, respectively. Then, $\rho(G) < \rho(G')$.

Unfortun[ate](#page-4-0)ly, the following example shows that Theorem A is not correct.

Example 1.1. Let $\pi = (4, 3, 3, 3, 2, 2, 1)$ and $\pi' = (4, 4, 3, 2, 2, 2, 1)$. Let G_1 and G_2 be the graphs as shown in Fig. 1. It is easy to see that (see the data of the spectra of connected graphs with seven vertices [4, pp. 163–220]) G_1 and G_2 are the graphs with greatest spectral radii in C_π and $C_{\pi'}$, respectively. Clearly, $\pi \lhd \pi'$, but $\rho(G_1) = 3.09787 > 3.05401 = \rho(G_2)$.

Very recently, Bıyıko˘glu and Leydold had changed Theorem A from the general graphs to the class of trees, i.e.,

Theorem B [5]. Let π and π' be two different non-increasing degree sequences of trees with $\pi \triangleleft \pi'.$ Let *T* and T' be the trees with greatest spectral radii in C_π and $C_{\pi'}$, respectively. Then, $\rho(T) < \rho(T')$.

In this note, we consider the similar problem to the general graphs with additional restrictions, and we shall prove that

Theorem 1.1. Suppose $\pi = (d_1, d_2, ..., d_n)$ and $\pi' = (d'_1, d'_2, ..., d'_n)$ are two different non-increasing *c*-cyclic degree sequences. Let G and G' be the graphs with greatest spectral radii in C_π and $C_{\pi'}$, respectively.

Fig. 1. The graphs G_1 and G_2 .

M. Liu et al. / Linear Algebra and its Applications 431 (2009) 553–557 555

If $\pi \prec \pi'$ *, G and G' [have](#page-1-0) the same number of pendant vertices, and the degrees of all non-pendant vertices of G'* are greater than c, then $\rho(G) < \rho(G')$.

By Theorem 1.1, it is easy to follow that

Corollary 1.1. *Suppose* $\pi = (d_1, d_2, ..., d_n)$ *and* $\pi' = (d'_1, d'_2, ..., d'_n)$ *are two different non-increasing unicyclic degree sequences. Let G and G' be the unicyclic graphs with greatest spectral radii in C_π and C_{π'}, respectively. [If](#page-4-0)* $\pi \prec \pi'$, *G* and *G'* have the same number of pendant vertices, then $\rho(G) < \rho(G')$.

Remark. By Example 1.1, the condition of "the degrees of all non-pendant vertices of *G'* are greater than *c*" in Theorem 1.1 cannot be deleted.

2. The proof of Theorem 1.1

Suppose $uv \in E$, the [not](#page-4-0)ion $G - uv$ denotes the new graph yielded from G by deleting the edge uv . Similarly, if $uv \notin E$, then $G + uv$ denotes the new graph obtained from G by adding the edge *uv*.

Lemma 2.1 [6,7]. Let u, *v* be two vertices of the connected graph G, and w_1, w_2, \ldots, w_k ($1 \le k \le d(v)$) *be some vertices of N*(*v*) \setminus *N*(*u*). *Let* $G' = G + w_1u + w_2u + \cdots + w_ku - w_1v - w_2v - \cdots - w_kv$. *Suppose f is a Perron vector of G, if* $f(u) \geq f(v)$ *, then* $\rho(G') > \rho(G)$ *.*

Given a graphic degree sequence $\pi = (d_1, d_2, \ldots, d_n)$, let $\pi(1)$ denote the cardinality of 1 in π , and $d(\pi) = min\{d_i : d_i \neq 1 \text{ and } d_i \text{ is a component of } \pi\}$. We use $min(\pi)$ to denote the minimum component of π , i.e., $min(\pi) = d_n$.

By the Theorem 1 of [5], the next result follows immediately.

Lemma 2.2. *Suppose* $\pi = (d_1, d_2, \ldots, d_n)$ *is a non-increasing c-cyclic degree sequence. If G has greatest spectral radius in C_π with the Perron vector f, then there exists an ordering of* $V(G) = \{v_1, v_2, \ldots, v_n\}$ *such* $that$ $d(v_i) = d_i$ for $1 \leq i \leq n$, and $f(v_1) \geq f(v_2) \geq \cdots \geq f(v_n)$.

Lemma 2.3. *If* $\pi \leq \pi'$, *then* $min(\pi) \geq min(\pi')$.

Proof. Suppose $\pi = (d_1, d_2, \ldots, d_n)$ and $\pi' = (d'_1, d'_2, \ldots, d'_n)$. Assume that the contrary holds, i.e., $d_n < d'_n$. Sinc[e](#page-4-0) $\pi \lhd \pi'$, then $\sum_{i=1}^n d_i = \sum_{i=1}^n d'_i$. Combining with $d_n < d'_n$, we have $\sum_{i=1}^{n-1} d_i > \sum_{i=1}^{n-1} d'_i$, a contradiction to the definition of $\pi \lhd \pi'$. Thus, $d_n \geq d'_n$ follows.

Lemma 2.4. Let $\pi = (d_1, d_2, ..., d_n)$ and $\pi' = (d'_1, d'_2, ..., d'_n)$ be two non-increasing degree sequences with $min(\pi') \geqslant 1$. If $\pi \prec \pi'$ and only two components of π and π' are different from 1, then $\pi'(1) \geqslant \pi(1)$.

Proof. Without loss of generality, we may assume that $d_i = d'_i$ for $i \neq p, q$, and $d_p + 1 = d'_p, d_q 1 = d'_q$. Since $\pi \lhd \pi'$, then $1 \leqslant p < q \leqslant n$. Thus, $d_p \geqslant d_q = d'_q + 1 \geqslant min(\pi') + 1 \geqslant 2$. This implies that $\pi'(1) \geq \pi(1). \quad \Box$

Lemma 2.5 [8]. Let π and π' be two different non-increasing graphic degree sequences. If $\pi \triangleleft \pi'$, then *there exists a series non-increasing graphic degree sequences* π_1, \ldots, π_k *such that* $(\pi =)\pi_0 \triangleleft \pi_1 \triangleleft \cdots \triangleleft \pi_k$ $\pi_k \triangleleft \pi_{k+1} (= \pi'),$ and only two components of π_i and π_{i+1} are different from 1, where $0 \leqslant i \leqslant k.$

Lemma 2.6. Let π and π' be two different non-increasing c-cyclic degree sequences with $\pi(1) = \pi'(1)$ and d($\pi')$ \geq $c+1$. If $\pi\prec$ π' , then there exists a series non-increasing c-cyclic degree sequences π_1,\dots,π_k *such that* $(\pi =)\pi_0 \triangleleft \pi_1 \triangleleft \cdots \triangleleft \pi_k \triangleleft \pi_{k+1} (= \pi')$ with $\pi(1) = \pi_1(1) = \cdots = \pi_k(1) = \pi'(1), d(\pi) \geqslant 0$ $d(\pi_1) \geqslant \cdots \geqslant d(\pi_k) \geqslant d(\pi'),$ and only two components of π_i and π_{i+1} are different from 1, where $0 \leqslant i \leqslant k.$

556 *M. Liu et al. / Linear Algebra and its Applications 431 (2009) 553–557*

Proof. Since $\pi \triangleleft \pi'$, by Lemma 2.5 there exists a series non-increasing graphic degree sequences π_1,\ldots,π_k such that $(\pi=)\pi_0\lhd\pi_1\lhd\cdots\lhd\pi_k\lhd\pi_{k+1}(=\pi'),$ and only two components of π_i and π_{i+1} are different from 1, where 0 \leqslant i \leqslant k . By Lemma 2.3, we can conclude that $min(\pi)$ \geqslant $min(\pi_1)$ \geqslant \cdots \geqslant $\min(\pi_k)\geqslant\min(\pi')\geqslant 1$. Thus, $\pi(1)\leqslant\pi_1(1)\leqslant\cdots\leqslant\pi_k(1)\leqslant\pi'(1)$ follows from Lemma 2.4. Moreover, since $\pi(1) = \pi'(1)$, then $\pi(1) = \pi_1(1) = \cdots = \pi_k(1) = \pi'(1)$ follows.

In the following, let $\pi_i=(d_1,d_2,\ldots,d_n)$ and $\pi_{i+1}=(d'_1,d'_2,\ldots,d'_n)$. Since only two components of π_i and π_{i+1} are different from 1, we may assume that $d_j = d'_j$ for $j \neq i''$, *q*, and $d_p + 1 = d'_p$, $d_q - 1 = d'_p$ *d ^q*. We only need to show the following facts:

Fact 1. $d(\pi) \geqslant d(\pi_1) \geqslant \cdots \geqslant d(\pi_k) \geqslant d(\pi').$

Proof of Fact 1. It is sufficient to show that $d(\pi_i) \geqslant d(\pi_{i+1})$ for $0 \leqslant i \leqslant k$. Since $\pi_i \lhd \pi_{i+1}$, then $1 \leqslant p < q \leqslant n$. Thus, $d_p \geq d_q = d'_q + 1 \geq \min(\pi_{i+1}) + 1 \geq 2$. Combining with $\pi_i(1) = \pi_{i+1}(1)$, then $d'_q \neq 1$ (Otherwise, $\pi_i(1) < \pi_{i+1}(1)$). Thus, $d(\pi_i) \geq d(\pi_{i+1})$.

Fact 2. Each π_i is a *c*-cyclic degree sequence for all $1 \leq i \leq k$.

Proof of Fact 2. It is sufficient to show that: For each $i \in \{0, 1, \ldots, k\}$, if there exists a connected *c*cyclic graph *^G* with π*ⁱ* as its degree sequence, then there must exist a connected *^c*-cyclic graph *^G* with π_{i+1} as its degree sequence. Once this is proved, we are done.

Since $\pi_i \triangleleft \pi_{i+1}$, then $d_p \geqslant d_q \geqslant 2$. Recall that $\pi_i(1) = \pi_{i+1}(1)$, and $d_j = d'_j$ for $j \neq p$, *q*, then $d'_q \neq$ 1. By Fact 1, $d_q = d'_q + 1 \geqslant d(\pi') + 1 \geqslant c + 2$. Let $P_{v_pv_q}$ be a shortest path from v_p to v_q in *G*. Note that *G* is a connected *c*-cyclic graph and $d_q \geq c + 2$, then there must exist some $w \in N(v_q) \setminus N(v_p)$, but *w* ∉ $P_{v_pv_q}$ (Otherwise, *G* is not a *c*-cyclic graph). Let *G'* = *G* + $v_pw - v_qw$, then *G'* is also a connected *c*-cyclic graph with π_{i+1} as its degree sequence.

This completes the proof of this lemma. \Box

Lemma 2.7. Let $\pi = (d_1, d_2, \ldots, d_n)$ and $\pi' = (d'_1, d'_2, \ldots, d'_n)$ be two non-increasing c-cyclic degree *sequences with* $\pi(1) = \pi'(1)$ *and* $d(\pi') \ge c + 1$. Let G_1 *and* G_2 *be the connected c-cyclic graphs with greatest spectral radii in* C_π *and* $C_{\pi'}$, *respectively. If* $\pi \lhd \pi'$ *and only two components of* π *and* π' *are different fr[om](#page-2-0)* 1, *then* $\rho(G_1) < \rho(G_2)$.

Proof. Notice that G_1 has greatest spectral radius in C_π , by Lemma 2.2 there exists an ordering of $V(G_1) = \{v_1, v_2, \ldots, v_n\}$ such that $d(v_i) = d_i$ for $1 \leq i \leq n$, and $f(v_1) \geq f(v_2) \geq \cdots \geq f(v_n)$. Recall that only two c[om](#page-2-0)ponents of π and π' are different from 1, we may assume that $d_i = d'_i$ for $i \neq p, q$, and $d_p + 1 = d'_p$, $d_q - 1 = d'_q$. Since $\pi \lhd \pi'$, then $1 \leqslant p < q \leqslant n$. This implies that $d_p \geqslant d_q \geqslant 2$ and $f(v_p) \ge f(v_q)$.

Let $P_{v_pv_q}$ be a shortest path from v_p to v_q in $G_1.$ Since $\pi(1)=\pi'(1)$, $d_p\geqslant d_q\geqslant 2$, then $d'_q\,\neq\,1.$ Thus, $d_q = d'_q + 1 \geqslant d(\pi') + 1 \geqslant c + 2$. This guarantees that there must exist some $w \in N(v_q) \setminus N(v_p)$, but $w \notin P_{v_pv_q}$. Let $G' = G_1 + v_pw - v_qw$ [,](#page-1-0) [the](#page-1-0)n $G' \in C_{\pi'}$. Moreover, since $f(v_p) \geqslant f(v_q)$, then $\rho(G_1) < \rho(G')$ by Lemma 2.1. This implies that $\rho(G_1) < \rho(G_2)$ because G_2 has greatest spectral radius in C_{π} . \Box

The Proof of Theorem 1.1. Since $G \in \mathcal{C}_{\pi}$, $G' \in \mathcal{C}_{\pi'}$, G and G' have the same number of pendant vertices, and the degrees of all non-pendant vertices of *G'* are greater than *c*, then $\pi(1) = \pi'(1)$ and $d(\pi') \geq c + 1$. Combining with $\pi \prec \pi'$, by Lemma 2.6 there exists a series non-increasing *c*-cyclic degree sequences π_1,\ldots,π_k such that $(\pi=)\pi_0\lhd\pi_1\lhd\cdots\lhd\pi_k\lhd\pi_{k+1}(=\pi')$ with $\pi(1)=\pi_1(1)=$ $\cdots = \pi_k(1) = \pi'(1), d(\pi) \geq d(\pi_1) \geq \cdots \geq d(\pi_k) \geq d(\pi') \geq c+1$, and only two components of π_i and π_{i+1} are different from 1, where 0 \leqslant i \leqslant $k.$

Let G_i be the connected c -cyclic graph with greatest spectral radius in C_{π_i} for 1 \leqslant i \leqslant $k.$ By Lemma 2.7, we can conclude that $\rho(G) < \rho(G_1) < \cdots < \rho(G_k) < \rho(G')$. Thus, Theorem 1.1 follows. \Box

M. Liu et al. / Linear Algebra and its Applications 431 (2009) 553–557 557

Acknowledgments

The authors would like to thank Professor Bo Zhou for his help to find out the counterexample, i.e., Example 1.1. The authors also thank the referees for their valuable comments, corrections and suggestions, which lead to an improvement of the original manuscript.

References

- [1] R.A. Horn, C.R. Johnson, Matrix Analysis, Cambridge University Press, 1990, Reprinted with corrections.
- [2] R.A. Brualdi, A.J. Hoffman, On the spectral radius of (0, 1)-matrices, Linear Algebra Appl. 65 (1985) 133–146.
- [3] T. Bıyıkoğlu, J. Leydold, Largest eigenvalues of degree sequences. http://arxiv.org/abs/math. (CO/0605294 v1 11 May 2006).
[4] D.M. Cvetković, M. Doob, I. Gutman, A. Torgašv, Recent Results in the Theory of Graph Spect
- 1988. [5] T. Bıyıko˘glu, J. Leydold, Graphs with given degree sequence and maximal spectral radius, Electron. J. Combin. 15 (1) (2008) R119.
- [6] B.F. Wu, E.L. Xiao, Y. Hong, The spectral radius of trees on *k* pendant vertices, Linear Algebra Appl. 395 (2005) 343–349.
- [7] S.G. Guo, The spectral radius of unicyclic and bicyclic graphs with *n* vertices and *k* pendant vertices, Linear Algebra Appl. 408 (2005) 78–85.
- [8] X.D. Zhang, The Laplacian spectral radii of trees with degree sequences, Discrete Math. 308 (2008) 3143–3150.