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Estrogen reduces mechanical injury-related cell death and
proteoglycan degradation in mature articular cartilage independent
of the presence of the superficial zone tissue
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Objective: To study the effect of 17b-estradiol (E2) and the superficial zone (SFZ) on cell death and
proteoglycan degradation in articular cartilage after a single injurious compression in vitro.
Method: Cartilage explants from the femoropatellar groove of 2 year old cows with or without the SFZ
were cultured serum-free with physiological concentrations of E2 and injured by an unconfined single
load compression (strain 50%, velocity 2 mm/s). After 96 h cell death was measured histomorpho-
metrically (nuclear blebbing (NB) and TUNEL staining) and release of glycosaminoglycans (GAG) by
DMMB assay.
Results: Injurious compression increased significantly the number of cells with NB and TUNEL staining
and release of GAG. Physiological concentrations of E2 prevented the injury-related cell death and
reduced the GAG release significantly in a receptor-mediated manner (shown by co-stimulation with the
antiestrogen fulvestrant/faslodex/ICI-182,780). The presence of the SFZ did not alter the NB response to
either the mechanical injury or E2, but reduced the overall release of GAG significantly.
Conclusion: E2 prevents injury-related cell death and GAG release, and might be useful for the devel-
opment of treatment options for either cartilage-related sports injuries or osteoarthritis (OA). The SFZ
does not seem to play an important role in (1) the E2-related tissue response and (2) the mechanically-
induced cell death in deeper regions of the explants and GAG release. The latter might be related to the
unconfined nature of the injury model.

� 2013 Osteoarthritis Research Society International. Published by Elsevier Ltd. All rights reserved.
Introduction

Many studies suggest that estrogen-deficiency is involved in the
onset or progression of osteoarthritis (OA) and that both, endoge-
nous and exogenous estrogens affect the joint health1,2. Post-
menopausal women demonstrate a higher prevalence of OA
compared to male patients3,4, and those who receive an estrogen-
replacement-therapy show reduced cartilage loss5,6; some clinical
studies, however, show different results7,8. The clinical data are
supported by studies showing that 17b-estradiol (E2) reduces
cartilage damage in experimental arthritis models9e11 and inhibits
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spontaneous or substance-induced apoptosis in chondrocytes12e15.
However, the impact of E2 on mechanically-induced cell death has
not been studied so far. E2 also affects the chondrocyte-mediated
extracellular matrix (ECM) turnover or degradation after stimula-
tionwith oxidative stress, iodoacetate (IA) or interleukin-1 (IL-1) by
altering the expression of matrix-degrading enzymes, TIMPs,
growth factors or VEGF or by increasing the GAG synthesis16e20.
However, whether E2 might prevent injury-related GAG loss has
also not been investigated to date. Mechanical overload is a known
risk factor for the development of OA21, and has been studied
extensively in vitro22. Single-compression loading23e25 or pro-
longed cyclic compression of articular cartilage26,27 can result in
cell death, such as necrosis and apoptosis23e25,28e31, collagen
network damage, and release of GAG28,32.

Duringmaturation articular cartilage develops a zonal structure,
which consists of a superficial (SFZ), middle, and deep zone. The
estrogen-sensitive osteoprotegerin (OPG)/receptor activator of
ublished by Elsevier Ltd. All rights reserved.
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nuclear factor kappaB (RANK) system and the RANK ligand are well
known as important mediators of estrogen-deficiency-related
osteoporosis and specifically expressed in the SFZ of cartilage33,34.
OPG expression increases in response to IL-1, and the expression of
IL-1 can be up-regulated by mechanical stimulation of cartilage35,
which suggests that the SFZmight be a specific target for changes in
E2 levels. Additionally, the SFZ plays an important role in the
biomechanical behavior of cartilage by distributing loads away
from directly-loaded regions36. Because of a relatively low equi-
librium confined compression modulus, compression induced
stiffening properties, as well as the ability to buffer shear-related
forces superficial tissue has been suggested to greatly affect the
biomechanical behavior of cartilage37e40. Superficial tissue of
immature cartilage is particularly soft and more vulnerable to
compressive injury, causing extensive compaction and surface
ruptures with immediate failure of the biomechanical functioning
in that zone compared to tissue from deeper layers41. Taken
together the data suggest that the SFZ affects the compression- and
E2-related responses in tissue from deeper zones.

The aims of this study therefore were to (1) test the hypothesis
that E2 alters the mechanical injury-induced loss of tissue viability
and GAG in a single load injurymodel usingmature bovine articular
cartilage and (2) investigate whether the presence of the SFZ in said
model significantly alters the outcome.

Method

Isolation and culturing of articular cartilage explants

The experimental design of the study is summarized in Fig. 1.
Articular cartilage explants were isolated from the femoropatellar
groove of knee joints from 16 to 24months old cows procured from
a local abattoir authorized by the relevant meat inspectors. Carti-
lage/bone cylinders (9 mm diameter) were drilled perpendicular to
the cartilage surface as described previously23,24. For explants
without the superficial zone (SFZ) 50e100 mm of superficial tissue
were removed with a microtome, and then a 1 mm thick cartilage
disk was sliced and 3 mm diameter explants were punched out of
each disk using biopsy punches (HEBUmedical, Tuttlingen, Ger-
many). Explants with intact SFZ were punched directly from the
Fig. 1. Flow chart of the experimental design. Articular cartilage explants (1 mm thick,
3 mm diameter) have been isolated with or without superficial zone tissue (SFZ),
cultured overnight, pre-incubated for 24 h with or without E2 or fulvestrant, injured
with a single load compression, and incubated with or without E2 or fulvestrant for
another 96 h. Paraffin sections of the explants have been used for detection of cell
death, culture supernatants for detection of released GAG by DMMB assay. For detailed
description see methods section.
femoropatellar groove and the top 1 mm tissue was sliced with a
scalpel parallel to the surface (thickness was measured using a
calliper rule); for an experiment two (or one) knee joint(s) were
used and up to six explants with appropriate thickness were iso-
lated and randomly distributed per experimental group. These
experiments were repeated independently up to five times (for
details see results). Explants were cultured individually in 200 ml
medium in 96-well plates, equilibrated overnight at 37�C in an
atmosphere of 5% CO2 in serum-free culture medium (low-glucose
Dulbecco’s modified Eagle’s medium (Biochrom) supplemented
with 10 mM HEPES buffer (Biochrom), 1 mM sodium pyruvate
(PAA), 0.1 mM nonessential amino acids (SigmaeAldrich, St. Louis,
MO, USA), 0.4mMproline (Sigma),1� ITS Liquidmedia supplement
(Sigma), L-glutamine (PAA), 100 units/ml of penicillin G, 100 mg/ml
of streptomycin, and 0.25 mg/ml of amphotericin B (PAA)).

Injurious compression and incubation with E2

After equilibration the explants received new medium con-
taining E2 (Sigma) in physiological concentrations (10�15e10�11 M)
and/or the antiestrogen fulvestrant (Faslodex, ICI 182.780, or 7a-[9-
(4,4,5,5,5-pentafluoro-pentylsulphinyl)nonyl]oestra-1,3,5(10)-
triene-3,17bdiol; from Sigma; final concentration 5 nM42). A 10�1 M
stock solution of both chemicals was produced and further diluted
in ethanol (>99.8%; Roth); the final ethanol concentration in me-
dium (also in control cultures) was 1 ml/ml. Explants were incu-
bated for 24 h, then some explants were compressed (see below),
and all explants were further cultivated for 96 h receiving new
medium with/without E2 or fulvestrant. Then supernatants were
frozen and explants fixed in 4% paraformaldeyde, embedded and
sectioned for further biochemical or histomorphometric
measurements.

Mechanical injury was applied by a single load compression
(radially unconfined) using an incubator-housed loading device23.
Controlled displacement ramps to 50% final strain were applied to
individual explants, using the original explant cutting thickness as
starting point; ramp velocity was 2mm/s (strain rate 200%/second).
The non-porous platen was held for 10 s and then leveled back to
the starting position. Platen displacement and the force produced
during compressionwere recorded, which allowed identification of
the peak stress (MPa). Strain, velocity, and length of compression
were developed as an evolution of a previous protocol successfully
used in our study group to yield a higher percentage of apoptotic
cells24 without causing too severe an injury to the tissue as to
render any hypothetical protective effect of E2 undetectable.

Histologic detection of cell death

Explants were fixed overnight using 4% paraformaldehyde (in
PBS), embedded in Paraplast, serial sections (7 mm) were cut
sagittally through the entire thickness of the explants, immobilized
on glass slides, and stained with Mayer’s hematoxylin or TUNEL
(according to the manufacturer’s protocol ApopTag peroxidase in
situ apoptosis detection kit; Oncor, Gaithersburg, MD) in order to
visualize cells with nuclear blebbing (NB) (an indicator for
apoptosis23,43) or DNA fragmentation (an indicator of cell death24),
respectively. 3e5 sections from each explant disk were evaluated
for NB- or TUNEL-positive cells, respectively. The margins of the
sections (about 150 mm thickness) were excluded, since cutting of
the explants during the initial isolation process induces apoptosis
at the tissue edges (therefore the SFZ has also been excluded in
those cases with SFZ). Using a Zeiss Axiophot microscope (Zeiss,
Wetzlar, Germany) with a 40� objective and 10� eye piece, positive
and negative cells were counted in three optical fields in each
section (one field in the center and two near the long ends of the



Table I
Thickness of articular cartilage explants and peak stresses during injurious
compression

Parameter N Mean SD Minimum Maximum 95% CI mean
(upper/lower limit)

Thickness A 114 1.02 0.06 0.86 1.10 1.01e1.03
Thickness B 87 1.27 0.15 1.00 1.50 1.24e1.3
Peak stress A 51 17.73 7.32 5.30 31.38 15.67e19.79
Peak stress B 54 16.74 6.94 3.72 29.09 14.85e18.64

Thickness (mm) of articular cartilage explants without (A) or with intact SFZ (B) and
peak stresses (MPa) during compression (50% strain, velocity 2 mm/s) of the ex-
plants. N represents the number of explants per group which have been isolated,
treated and measured separately from 10 knee joints in five experiments.
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sections, excluding the margins). The mean number of cells per
visual field was 74 (71 in explants with, 77 in explants without the
SFZ). The mean value of NB- or TUNEL-positive cells from each
explant was calculated (% of total cells). Encoded labels were used
on all samples during histomorphological analysis to ensure blind
scoring.

Measurement of glycosaminoglycans (GAG)

GAG content in the media was determined spectrophotometri-
cally by DMMB assay at a wavelength of 520 nm (Photometer
Ultraspec II, Biochrom, Cambridge, UK) using shark chondroitin-
sulfate as standard24. Values are presented as mg GAG/mm3 tissue
of the explants; tissue volume was calculated based on the original
thickness and diameter of the explant disks.

Statistics

For the data presentation and analysis n represents measure-
ments of individual explants or corresponding culture superna-
tants; all explants were separately isolated, injured, cultured and
measured. Per experiment up to six explants were distributed
randomly per experimental group sourced from two knee joints.
These experiments were repeated independently two times (for
doseeresponse experiments, TUNEL staining, fulvestrant testing)
or five times (for main NB and GAG experiments). Therefore, as
examples, n ¼ 10 means: 10 individual explants sourced from four
knee joints in two experiments, or n ¼ 29 means: 29 individual
explants sourced from 10 knee joints in five experiments. The
KolmogoroveSmirnov-test was used to test for normality. For GAG
and TUNEL data a BoxeCox-transformation was made prior to
analysis with a General Linear Model (GAG or TUNEL data as
dependent variables, experimental group as fixed and animal/
experiment as random factors); the TUKEY posthoc test was used
for subsequent pairwise comparisons with P < 0.05 indicating
significant differences. NB data were analyzed with the Kruskale
Wallis test with a subsequent ManneWhitney U test for pairwise
comparisons with P < 0.05. All data are presented as means with
95% confidence intervals in text and tables; figure charts show
means with standard error of the mean.

Results

Cell death

First the most effective concentration of E2 in a physiological
range (10�15e10�11 M) was identified by using 58 explants with SFZ
(thickness 1.33 mm � 0.14 SD, Min. 1.00, Max. 1.5, 95% CI 1.3e1.4)
sourced from six knee joints in three experiments. Compression
(peak stresses: 11.9 � 4.4 SD MPa, Min. 3.7, Max. 21.7, 95% CI 10.6e
13.2) introduced NB in 7.7% of the chondrocytes [�3.3 SD, Min. 4.0,
Max. 14.6; 95% CI 5.6e9.8; n¼ 12; see examples of normal cells and
cells with NB in Fig. 1(A) and (B)], which was a significant increase
(P< 0.001) compared to control tissue (1.6%� 1.6 SD;Min. 0.0, Max.
5.0; 95% CI 0.5e2.6; n ¼ 12). E2 10�15 M did not alter the injurious
response, whereas E2 10�13 M diminished NB non-significantly
(P ¼ 0.135) by about 50% (4.2% � 5.0 SD; Min. 0.0, Max. 12.0; 95%
CI 0.0e8.3; n ¼ 8). E2 10�11 M, however, reduced NB significantly
(P < 0.001) almost to control levels (1.9% � 2.4 SD; Min. 0.0, Max.
6.7; 95% CI 0.3e3.5; n ¼ 11; P ¼ 0.948 vs control). This concentra-
tion was also reported as being effective in a study about E2 effects
on mechanical cartilage integration44. Therefore the following ex-
periments were conducted with a concentration of E2 10�11 M.

The next part of the study was performed to (1) confirm the
effect of E2 on NB by using a larger number of explants and (2) see
whether the presence of the SFZmight have an impact on the tissue
response or on the protective effect of E2. 87 explants with intact
SFZ (mean thickness: 1.27 mm) and 114 explants without SFZ
(mean thickness 1.02 mm; see Table I) were used; peak stresses
during compressionwere not significantly different in both types of
explants (with SFZ: 16.7 MPa, without SFZ: 17.73 MPa; P ¼ 0.133;
see Table I). For both types of explants injury increased the per-
centage of cells with NB to levels significantly higher than in all
other experimental groups [all P < 000.1; see Fig. 1(E) and Table II]:
explants with SFZ demonstrated 12.41% NB compared to 0.87% in
uninjured controls, and in explants without SFZ injury-related NB
was found in 13.21% compared to 1.76% in controls. E2 alone low-
ered slightly the NB level in both types of explants compared to
controls (with SFZ: 0.44 %, P¼ 0.665; without SFZ: 0.48 %, P¼ 0.08).
However, injury-dependent NB was diminished by E2 significantly
in both types of explants by 77.1% with SFZ and 69.8% without SFZ,
respectively, but the levels were still significantly higher than the
controls (with SFZ the combined compression/E2 showed 2.84% NB,
P < 0.001 vs compression, P ¼ 0.009 vs control, and without SFZ
this combination resulted in 3.99 % NB, P < 0.001 vs compression,
P ¼ 0.034 vs control). The data from explants with and without SFZ
did not differ significantly, indicating that the presence of the SFZ
does not alter the injurious NB response or the effect of E2 on NB in
mature articular cartilage.

TUNEL staining in explants without SFZ [see examples in
Fig. 1(C) and (D) and data in Fig. 1(G)] confirmed the injurious cell
death-related response and the effect of E2; however, the overall
rate of TUNEL-positive cells was higher than that of cells with NB.
The explants had a thickness of 1.04 mm (�0.13 SD; Min. 0.91, Max.
1.1, n ¼ 33) and compression induced peak stresses about
16.75 MPa (�8.11 SD, Min. 5.3, Max. 31.4). In controls 5.05 % of the
cells were TUNEL-positive (�3.26 SD; Min. 0.0, Max. 13.2; 95%
CI �0.24 to 10.4, n ¼ 10), and compression increased the number
significantly (P < 0.001) to 54.14 % (�33.76 SD; Min. 6.3, Max. 94.3;
95% CI 28.2e80.1, n ¼ 9). E2 did not alter the basic amount of
TUNEL-positive cells (8.73% � 4.4 SD; Min. 0.0, Max. 13.3; 95% CI
5.1e12.4, n ¼ 8; P ¼ 0.748 vs control), but reduced the injury-
dependent response significantly by 78% (P < 0.001), so that just
11.86% (�6.55 SD; Min. 1.6, Max. 21.9; 95% CI 7.2e16.6, n ¼ 10) of
cells were TUNEL-positive in the co-treated compression/E2 group.

The antiestrogen fulvestrant had no significant impact on the
basic amount of cells with NB (with: 0.65%� 1.04 SD, Min. 0.0, Max.
2.4; 95% CI �0.4 to 1.7, n ¼ 6; control: 0.67% � 1.63 SD, Min. 0.0,
Max. 4.0; 95% CI �1.0 to 2.4, n ¼ 6; P ¼ 0.674). In the subsequent
injury study [see Fig. 1(F) and Table III] compression increased NB
significantly compared to the control (compression: 18.05%, Con:
0.00 %; P < 0.001). E2 did not alter the basic level of NB (0.54%;
P ¼ 0.068 vs control), but reduced the injury-dependent response
significantly by 84% (2.83%; P ¼ 0.001). Addition of fulvestrant
reduced the E2 mediated effect significantly, so that the reduction
of the injury-dependent NB by E2 was only about 35% and not



Table II
Cells with NB in articular cartilage explants after injurious compression or E2
treatment

Experimental
group

N Mean
(%)

SD Minimum Maximum 95% CI mean
(upper/lower
limit)

Con Ac 28 1.76 3.43 0.00 15.38 0.43e3.07
Con Bc 22 0.87 1.45 0.00 5.00 0.23e1.51
Comp Aa 28 13.21 15.03 0.00 62.50 7.39e19.04
Comp Ba 22 12.41 7.59 4.00 31.11 9.04e15.77
Comp þ E2 Ab 29 3.99 4.04 0.00 11.21 2.45e5.53
Comp þ E2 Bb 21 2.84 3.26 0.00 13.64 1.36e4.33
E2 Ac 29 0.48 0.81 0.00 2.27 0.18e0.76
E2 Bc 20 0.44 0.9 0.00 3.28 0.02e0.86

Cells with NB (% of total cells); A without and B with intact SFZ; Comp: 50% strain,
velocity 2 mm/s; E2 treatment (10�11 M); Con ¼ control culture; N represents the
number of explants per group which have been isolated, treated and measured
separately from 10 knee joints in five experiments. a,b,c indicate clusters of
experimental groups which are significantly different from each other with P< 0.05
(detailed P-values are given in the text).
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significantly different from the compression group any more
(11.71% cells with NB; P ¼ 0.049 vs compression þ E2, P ¼ 0.082 vs
compression), which indicates that fulvestrant had a significant
impact on the E2-related effect, and that the latter must be re-
ceptor-mediated.

Release of GAG

Throughout all experimental groups the accumulated amount of
GAG in cultures with intact SFZ was significantly lower (three- to
five-fold) than that in the explants which had their SFZ removed
[P < 0.001, Fig. 3(A) and Table IV]. The release of GAG in controls
was 4.48 mg/mm3 tissue with SFZ and 20.71 mg/mm3 without the
SFZ. Compression induced a significant increase in GAG release
compared to controls (11.41 mg/mm3 with SFZ and 33.0 mg/mm3

without the SFZ; both P < 0.001). E2 did not affect the basic GAG
release (4.03 mg/mm3 with SFZ and 20.37 mg/mm3 without the SFZ;
P ¼ 0.898 and P ¼ 1.0 vs controls, respectively), but decreased the
injury-related GAG release significantly, so that GAG levels in the
media were about 40% lower in cultures with SFZ (6.85 mg/mm3;
P ¼ 0.044) and 24.4% lower in cultures without the SFZ (24.94 mg/
mm3; P ¼ 0.011) compared to the corresponding compression
group, which indicates that E2 reduces the injury-related release of
GAG significantly. The Comp þ E2 groups were not significantly
different from the controls (with SFZ: P ¼ 1.0; without SFZ:
P ¼ 0.849) or E2 groups (with SFZ: P ¼ 0.897; without SFZ:
P ¼ 0.954).

Fulvestrant had no impact on the basic GAG release in cultures
with SFZ (5.46 mg/mm3� 4.59 SD, Min.1.93, Max.14.24, 95% CI 0.6e
Table III
Impact of fulvestrant on NB in articular cartilage explants without SFZ after injurious
compression and E2 treatment

Experimental
group

N Mean
(%)

SD Minimum Maximum 95% CI mean
(upper/lower
limit)

Conc 10 0.00 0.00 0.00 0.00 0.00e0.00
E2c 10 0.54 1.06 0.00 3.28 �0.22 to 1.29
Compa 10 18.05 7.49 6.06 31.11 12.69e23.41
Comp þ E2b 9 2.83 1.83 0.00 5.88 1.42e4.24
Comp þ E2 þ Fula 10 11.71 8.85 1.33 31.43 5.34e18.10

Cells with NB (% of total cells); Comp: 50% strain, velocity 2 mm/s; E2 treatment
(10�11 M); Con¼ control culture; Ful¼ fulvestrant (5 nM); N represents the number
of explants per group which have been isolated, treated and measured separately
from four knee joints in two experiments. a,b,c indicate clusters of experimental
groups which are significantly different from each other with P < 0.05 (detailed P-
values are given in the text).
10.3, n ¼ 6; controls: 5.61 mg/mm3 tissue � 1.96 SD, Min. 3.83, Max.
9.2, 95% CI 3.6e7.7; n ¼ 6; P ¼ 0.94). In the subsequent injury
experiment [Fig. 2(B) and Table V] compression (9.51 mg/mm3)
increased significantly 2.64-fold the GAG release compared to the
control (3.6 mg/mm3; P ¼ 0.011). E2 did not alter the basic GAG
release (3.65 mg/mm3; P¼ 0.999 vs control), but reduced the injury-
dependent release significantly down to control levels (3.78 mg/
mm3; P ¼ 0.003 vs compression). Fulvestrant reduced the E2 effect,
leading to (non-significantly) higher GAG levels than the
compression/E2 group (6.29 mg/mm3; P ¼ 0.321). However, this
group was also not significantly different from the compression
group (P ¼ 0.265), suggesting that the impact of E2 on the injury-
dependent release of GAG might be partially receptor-mediated.

Discussion

In the present study we found a significant increase in NB and
TUNEL-positive cells in response to injurious compression which
supports previous studies24,25,28,29,31. Physiological concentrations
of E2 (10�11 M corresponds to the range of E2 concentrations found
in the peripheral blood of cows45) did not alter the basic rate of cell
death, but reduced the injury-dependent cell death-response of the
tissue. While a protective function of E2 related to the induction of
apoptosis by molecular agents has been shown previously12e15 the
impact of E2 on mechanically-induced cell death in articular
cartilage is shown here for the first time. Due to its artificial nature
our in vitro model does not attempt to simulate the precise three-
dimensional forces and deformation patterns that cartilage would
experience in a clinical joint injury, which is a quite complex
matter, but it shows that mechanical injury can trigger cell death
and that E2 is able to prevent this significantly. Apoptotic cell death
has been found in intraarticularly fractured joints46 and based on
our data we suggest, that application of a drug with E2-properties
should reduce apoptotic cell death in such injured tissue. It could
even be speculated that people with a very high risk of joint injury
(for example athletes) could reduce the risk of cell death by pre-
ventive treatment based on a drug with E2-like properties.

Cells which have been identified with NB using light microscopy
have been confirmed to be apoptotic by transmission electron
microscopy previously24,43, which suggests that the NB data
represent apoptosis. Still themethodmight underestimate the level
of apoptosis, since cells which have not yet reached the state of NB
in the execution of their apoptotic program will be missed. Like-
wise, NB outside of the sectional plane of a particular slide cannot
be detected. The TUNEL assay on the other hand has been repeat-
edly reported to yield positive staining in apoptotic as well as
necrotic cells in different types of tissue43,47,48, and indeed TUNEL
staining yielded higher percentages of positive cells than via
detection of NB in our study. But most importantly both methods
revealed the same general patterns of response to injury and the
protective effect of E2 and thus served as independent confirmation
of the validity of our E2/cell death-related results.

Mechanical injury induced a significant increase in cartilage
GAG release which supports previous findings showing damage to
the ECM after mechanical overload28,32 and E2 reduced this GAG
release significantly. Previous studies showed that E2 prevents GAG
loss from articular cartilage triggered by oxidative stress, restores
IL-1-related decrease in proteoglycan levels in chondrocyte cul-
tures, or up-regulates GAG synthesis in isolated chondrocytes18e20;
however, the prevention of injury-related GAG release frommature
articular cartilage has not been shown previously. Due to the fact
that mechanical injury is able to increase the transcription of
matrix-degrading enzymes, and E2 has been described to reduce
the transcription rate of such enzymes in chondrocytes in general
or triggered by other stimuli than mechanical injury16e20, we
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Fig. 2. NB and TUNEL-positive cells in mature bovine articular cartilage explants under normal culture conditions (Con), the influence of E2, (10�11 M), or after a single load
compression (Comp; strain 50%, velocity 2 mm/s). A and B: Examples of chondrocytes with normal nuclei in control tissue (A) or cells with NB (arrow in B), sections stained with
Mayer’s Hemalaun (MH). C and D: Examples of chondrocytes with normal nuclei without staining in control tissue (C) or cells with dark nuclear TUNEL staining (arrow in B). AeD
bar ¼ 15 mm. E and F: Relative amount of cells with NB (% of total cell number). Fulvestrant¼ antiestrogen (5 nM). G: Relative amount of TUNEL-positive cells (% of total cells). a,b,c,d
indicate clusters of experimental groups which are significantly different from each other with P < 0.05 (detailed P-values are given in the text). All mean � S.E.M. of mean (95% CI are
given in text or tables); n represents the number of explants per group which have been isolated, treated and measured separately from 10 knee joints in five experiments for E, and
four knee joints in two experiments for F and G.

J. Imgenberg et al. / Osteoarthritis and Cartilage 21 (2013) 1738e17451742
speculate that the reduction of the transcription and activation of
matrix-degrading enzymes by E2 might be involved in the present
findings. This has, however, to be investigated in further studies.

The steroidal estradiol receptor (ER) antagonist fulvestrant
binds with an affinity of 0.89 compared to E249. It induces increased
degradation of the receptor, inhibits dimerization and thus further
translocation of the receptor into the nucleus, and reduces binding
of the receptor complex to the estrogen-responsive elements (ERE)
and therefore reduces the receptor-dependent gene transcrip-
tion50. Fulvestrant did not show any toxic effect in the present
study, but reduced the protective effect of E2 on the injury-
A

Fig. 3. Glycosaminoglycan (GAG) release in mature bovine articular cartilage explant culture
load compression (Comp; strain 50%, velocity 2 mm/s). Fulvestrant¼ antiestrogen (5 nM). a,b
other with P < 0.05 (detailed P-values are given in the text). All mean � S.E.M. of mean (95% C
have been isolated, treated and measured separately from 10 knee joints in five experimen
dependent cell death significantly, which suggests that this effect
is mediated via ERs. Even though fulvestrant diminished some of
the protective effect of E2 on the GAG release, the results were less
striking as the NB data. Therefore, the question if the effect on
injury-related GAG release is also receptor-mediated cannot be
resolved based on the available data. Since membrane-bound re-
ceptors for E2 have recently been identified (mER), namely GPR30,
and fulvestrant has been shown to be able to bind and activate
GPR30 in human breast cancer cells51, it remains also unclear what
the importance of mER in articular cartilage might be with respect
to injury-induced cell death. It has been shown that GPR30
B

s under normal culture conditions (Con), the influence of E2, (10�11 M), or after a single
,c,d indicate clusters of experimental groups which are significantly different from each
I are given in the text or tables); n represents the number of explants per group which
ts for A and four knee joints in two experiments for B.



Table IV
GAG release from articular cartilage explants after injurious compression or E2
treatment

Experimental
group

N Mean SD Minimum Maximum 95% CI of mean
(upper/lower
limit)

Con Ab 28 20.71 14.35 2.58 59.37 15.15e26.28
Con Bd 19 4.48 1.28 3.86 5.10 2.45e6.55
Comp Aa 28 33.00 15.49 7.05 76.87 26.98e39.00
Comp Bc 22 11.41 5.03 3.96 20.22 9.18e13.63
Comp þ E2 Ab 29 24.94 14.72 8.28 71.18 19.34e30.54
Comp þ E2 Bd 22 6.85 4.26 0.16 16.85 4.95e8.75
E2 Ab 29 20.37 11.01 9.05 56.00 16.18e24.56
E2 Bd 21 4.03 1.67 1.59 8.03 0.36e3.27

GAG release (mg/mm3 tissue); A without and B with intact SFZ; Comp: 50% strain,
velocity 2 mm/s; E2 treatment (10�11 M); Con ¼ control culture; N represents the
number of explants per group which have been isolated, treated and measured
separately from 10 knee joints in five experiments. a,b,c,d indicate clusters of
experimental groups which are significantly different from each other with P< 0.05
(detailed P-values are given in the text).
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mediates E2-related inhibition of chondrogenesis, if E2 is applied in
higher concentrations (10�8 M or higher52). Therefore, further
studies are needed in order to clarify the E2 signaling pathways
involved in the inhibition of injury-related cell death and GAG
release.

Explants with the original tissue surface (SFZ) were significantly
thicker than those without. Using the microtome instead of a
scalpel was more precise in order to produce explants of a defined
thickness, which is the reason why the deviation of thickness was
much smaller in the group without SFZ. However, the peak stresses
during compression were not significantly different. Even though
the SFZ cells have been described to be unique by expressing
estrogen-sensitive OPG/RANK33, the presence of the SFZ had no
impact on the outcome of the E2 experiments, which suggests that
the SFZ does not mediate the E2-related protection of injury-
induced cell death or GAG release. The SFZ is important in trans-
ferring loads from the directly-loaded area to neighbor areas36;
however this concept might not be transferable to the presented
injury model, since the platen of the loading device had a larger
diameter than the explants, so that there were no areas without
loading. This could be one reason why the peak stresses during
compression were not significantly different in the two groups of
explants. We previously found zone-specific types of damage by
performing a texture analysis of images taken from injured super-
ficial and deeper zones explants with texture regularity, homoge-
neity, and entropy being significantly lower in injured superficial
tissue; we therefore assumed that an unconfined compression of
explants with intact SFZ might lead to a different form of matrix-
Table V
Impact of fulvestrant on GAG release from articular cartilage explants without SFZ
after injurious compression and E2 treatment

Experimental
group

N Mean
(%)

SD Minimum Maximum 95% CI mean
(upper/lower
limit)

Conb 9 3.6 0.51 2.95 4.62 3.21e4.99
E2b 10 3.65 1.66 1.59 5.85 2.47e4.84
Compa 10 9.51 5.21 3.96 17.57 5.78e13.23
Comp þ E2b 10 3.78 2.93 0.16 10.46 1.68e5.88
Comp þ E2 þ Fula,b 10 6.29 3.51 0.2 11.97 3.78e8.8

GAG release (mg/mm3 tissue); Comp: 50% strain, velocity 2 mm/s; E2 treatment
(10e11 M); Con ¼ control culture; Ful ¼ fulvestrant (5 nM); N represents the
number of explants per group which have been isolated, treated and measured
separately from five knee joints in two experiments. a,b,c indicate clusters of
experimental groups which are significantly different from each other with P< 0.05
(detailed P-values are given in the text).
disruption41. Superficially the fibrils are oriented parallel to the
platen andmight stabilize the integrity of that particular side of the
explants. Due to the impermeable nature of both platen and bottom
of the compression chamber, fluid flow during compression has to
go laterally forcing especially the non-intact bottom side of the
explants to spread out (or top and bottom side equally in explants
without SFZ). Indeed explants with intact SFZ showed a different
macroscopic appearance, with the bottom ends showing larger
swelling laterally than the upper end of the explants (not shown).
However, neither the peak stresses during compression were
significantly different in the two groups, nor the impact of
compression on the rate of cell death. This suggests that the SFZ has
no cell viability-related protective function with respect to deeper
zone tissue in the unconfined injury model.

However, the overall release of GAG was up to five-fold lower in
cultures with SFZ compared to the corresponding cultures without
SFZ. This might seem contradictory to our previous findings
showing that a similar injury induces a two-fold higher relative (to
explant GAG content) GAG release in superficial explants compared
to deep tissue explants without SFZ41; but the overall GAG content
in the superficial explants in that study was 2.5- to three-fold lower
than that of deep tissue explants, which means that the actual
levels of GAG in the superficial explants cultures were lower.
Additionally, the SFZ is relatively thin (35e100 mm in femoral or
tibial canine cartilage, which is less than 4.5e12% of the total
thickness of the non-calcified part of cartilage tissue53) and softer
than deeper zones40. It might therefore be speculated that it is too
thin and soft, and that its relative contribution to the effects
measured for the total tissue in a full area-loaded and unconfined
50% compression model are negligible.

Conclusion

Taken together we conclude that E2 prevents injury-related cell
death in a receptor-mediated pathway and reduces GAG release
significantly, which might have implications for the development
of treatment options for cartilage-related sports injuries or OA. The
SFZ, however, does not seem to play an important role in the E2-
related tissue response. The missing influence of the SFZ on
mechanically-induced cell death and GAG release might be related
to the unconfined nature of the injury model.
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