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Abstract This paper reviews some of the principal uses, over almost seven

decades, of correlations, in both Eulerian and Lagrangian frames of reference,

of properties of turbulent flows at variable spatial locations and variable time in-

stants. Commonly called space–time correlations, they have been fundamental to

theories and models of turbulence as well as for the analyses of experimental and

direct numerical simulation turbulence data.
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I. INTRODUCTION

For many decades space–time correlations have been fundamental to statistical theories of

turbulence and modeling of some of its processes and to staple methods of data analysis for inves-

tigating turbulent flows. The Eulerian correlation coefficient of velocity components in stationary

turbulent fields, fluctuating about their mean values, is defined most generally for two locations

and two times as

RE(xxx,rrr,τ) = 〈ui(xxx, t0)u j(xxx+rrr, t0 + τ)〉/(
√

〈u2
i (xxx, t0)〉

√
〈u j2(xxx+rrr, t0 + τ)〉), (1)

where the velocity fluctuations are denoted by ui and u j (i, j = 1,2,3), xxx = (x1,x2,x3) is a specified

measurement location, xxx+rrr = (x1+Δx1,x2+Δx2,x3+Δx3) are locations with respect to xxx that can

be systematically varied, and τ is the time increment between the two times, t0 and t0 + τ . Here,

the numbered indices indicate the streamwise, wall normal and spanwise directions, respectively,

and 〈·〉 denotes the average of an ensemble of realizations. Correlation coefficients for other

fluctuating turbulence properties, such as pressure, are expressed similarly.

Lagrangian correlation coefficients also can be defined for properties of fluid particles that

pass through Eulerian locations xxx (in homogeneous planes of the flow) at times t0 and travel along

Lagrangian trajectories to arrive at positions xxx+rrr(τ) at times t0+τ . In this case, the displacement

vector, rrr(t0 + τ), is a random variable describing the positions, at times t0 + τ , of the particles in

the averaging ensemble with respect to the initial locations xxx at times t0 and that are different for

each particle. Thus, for Lagrangian correlation coefficients, rrr and τ are not varied independently,

i.e., rrr is a function of τ . Such Lagrangian correlation coefficients are given by

RL1(xxx,τ) = 〈ui(xxx, t0) u j(xxx+rrr(t0 + τ))〉/(
√
〈ui2(xxx, t0)〉

√
〈u j2(xxx+rrr(t0 + τ))〉). (2)

a)Corresponding author. Email: wallace@umd.edu.
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Lagrangian correlations of two particles with some specified initial spatial separation can also be

defined. In this case, the difference in the velocity components of the two particles are correlated

for their pair of Lagrangian trajectories, and the correlation coefficient is given as

RL2(xxx,rrr(t0),τ) = 〈di(xxx,rrr(t0))di(xxx+rrr(t0 + τ))〉/(
√
〈di

2(xxx,rrr(t0))〉
√

〈d j
2(xxx+rrr(t0 + τ))〉), (3)

where rrr(t0 + τ) is the separation vector of the two particles at time t0 + τ , and di = ui(xxx)−ui(xxx+
rrr(t0+τ)). Note that neither Eulerian nor Lagrangian correlation coefficients depend on the initial

times t0 for stationary turbulent fields. Multi-location, multi-time correlation coefficients have

even been introduced1 with the availability of well resolved direct numerical simulations (DNS)

of turbulence in space and time.

II. SPACE–TIME CORRELATIONS AND TURBULENCE THEORIES AND MODELS

Space–time correlations have played an important role in statistical theories of turbulence.

The earliest of these is Taylor’s2 celebrated treatment of the dispersion of fluid particles. He

derived, for isotropic turbulence, an integral relationship between the single particle Lagrangian

correlation coefficient and the mean square distance traveled, by an ensemble of fluid particles,

from a specified location in the flow and in a particular coordinate direction.

Kraichnan’s3–5 direct-interaction approximation (DIA) is formulated in terms of Eulerian

space–time correlations, as is the related eddy damped quasi-normal Markovian (EDQNM) ap-

proximation. Kraichnan6 modeled the space–time correlations using his “sweeping hypothesis”

that assumes that they are principally determined by a sweeping velocity (the root-mean-square

of the turbulent kinetic energy) of the large scales convecting the small scales and the energy

spectrum, but he also considered the effect of local straining of the small scale eddies on the

correlation. Zhou and Rubenstein7 investigated both the non-local sweeping and local straining

effects on the correlation to obtain the frequency spectra of sound using Lighthill’s analogy. He et

al.8 also showed that the sweeping velocity and the energy spectrum are essential ingredients for

the use of large eddy simulation (LES) for the prediction of sound frequency spectra. However,

this Eulerian formulation of Kraichnan resulted in a k−3/2 wavenumber dependency for the ki-

netic energy spectrum in the inertial subrange, in disagreement with the Kolmogorov prediction9

of a k−5/3 dependency. In a significant modification to his theory, which he called Lagrangian

history direct interaction approximation (LHDIA), Kraichnan6,10 instead used Lagrangian space–

time correlations of fluid particles as defined in Eq. (2) above. This modification resulted in

agreement with the Kolmogorov k−5/3 spectrum in the inertial subrange as well as with the as-

sociated Kolmogorov dissipation range universal spectrum. Furthermore, LHDIA agrees with

Taylor’s2 analysis of dispersion of a single particle and, for flows with an inertial subrange, agrees

with Richardson’s11 analysis describing the dispersion of two particles in a turbulent field. Fur-

ther modifications to LHDIA were made by Kraichnan and Herring12 by considering Lagrangian

correlations of the strain-rate field rather than the velocity field.

Lagrangian correlation functions play a role in the Lagrangian subgrid-scale LES model for

turbulent flows by Meneveau et al.13 They used the dynamic procedure of obtaining Smagorinsky
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eddy-viscosity model coefficients for the subgrid-scale field from the resolved field but averaged

the coefficients over Lagrangian pathlines, allowing the model to be readily used for inhomoge-

neous flows. The averaging times were determined from the Lagrangian correlation functions.

Bernard et al.14 and Bernard and Handler15 analyzed momentum transport in a turbulent chan-

nel flow and showed that the Reynolds shear stress could be decomposed into what they called

displacement and acceleration transport terms, respectively, the former being of the mean gradi-

ent type and the latter being of the counter-mean gradient type. Furthermore, they showed that

the eddy viscosity coefficient of the displacement transport term is properly expressed as a La-

grangian integral time scale obtained from the Lagrangian correlation of an ensemble of particles,

as expressed by Eq. (2). Cho et al.16 used the tensorial Lagrangian time scales obtained from

Eq. (2) in a new gradient transport model of the Reynolds stresses to represent the third order

correlation functions. The time scales, determined from a channel flow DNS, were found to be

different in the different coordinate directions.

In a very interesting paper, Phillips17 theoretically constructed a generic form of Eulerian

space–time correlations of velocity component fluctuations applied to turbulent shear flows. The

basis of his ideas originate with what is called the Kovasznay–Corrsin conjecture that, for homo-

geneous isotropic turbulence, space–time correlations can be expressed as spatial correlations and

their dimunition with time. Among other results, Phillips17 defined a half-width of component

correlation functions that collapse all the Rii component data from Kim and Hussain,18 described

below, of the correlations for optimum time delay. Furthermore, he derived a generic expression

for the convection velocities of the velocity component fluctuations that also compares well with

DNS determined distributions of Kim and Hussain.18

He and Zhang19 have formulated an elliptic model for Eulerian space–time correlations for

flows with mean shear, U(y), using a Taylor series expansion. Kaneda and Gotoh20 and Kaneda21

previously used a Taylor series expansion in their analysis of both Eulerian and Lagrangian cor-

relation functions in isotropic flow. The elliptic model of He and Zhang19 relates correlations,

with spatial separations as the only independent variable, to space–time correlations by using two

characteristic velocities, i.e., a convection velocity and a “sweeping” velocity that depends on the

turbulence intensity and shear rate. This sweeping velocity is related to Kraichnan’s6 “sweep-

ing hypothesis” idea. They point out that Taylor’s frozen turbulence hypothesis22 uses only one

characteristic velocity, i.e., the convection velocity. When Taylor’s hypothesis is invoked, the

space–time correlation, for separation distances r in the streamwise direction , can be expressed

as R(r,τ) = R(r−Ucτ,0), which assumes a linear space–time transformation and implies that the

isocorrelation contours of this function are straight lines, r−Uct =C, where C depends on the con-

tour level, as shown in Fig. 1. This had been previously been noted by Wills23 and clearly can not

be true because correlations decay with increasing time and space separations. By contrast, the el-

liptic model describes the correlation at small separations as R(r,τ) = R(
√
(r−Ucτ)2 +V 2τ2,0),

where the first term is the convection term and the sweeping velocity V term comes from the Tay-

lor expansion to second order. He and Zhang19 and Zhao and He24 have tested their model with

a low Reynolds number turbulent channel flow (DNS) and found that the Eulerian space–time

correlations collapse to a universal form throughout the flow, with the separation defined from

the model, whereas this was only true in the outer part of the flow when Taylor’s hypothesis was
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used. Furthermore, He et al.25 and Hogg and Ahlers26 have successfully applied this model in

turbulent Rayleigh–Benard convection to convert temporal measurements into the spatial domain.

He et al.27 extended this type of second order Taylor series analysis to Lagrangian space–time

correlations in turbulent shear flows.
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Fig. 1. Space–time correlations of streamwise velocity fluctuations from turbulent channel flow with: (a)

Taylor’s frozen turbulence approximation22 and (b) the elliptic model of He and Zhang.19 Reprinted with

permission of Zhao and He.24 (Copyright c© 2009 Am. Phys. Soc.)

III. EULERIAN EXPERIMENTS AND SIMULATIONS

For most of the earlier period under review, with rare exception, experiments using space–time

correlations were done in an Eulerian frame of reference. This was the case for the simple reason

that the necessary particle tracking, required for a Lagrangian frame of reference, was nearly im-

possible experimentally with the technology available at the time. Numerical simulations were not

available because of similar limitations of computer technology. For adequate particle tracking,

experiments require advanced optical technology and computer imaging techniques, and numeri-

cal studies require high temporal and spatial resolution. These possibilities only became available

and practical rather recently.

A series of the earliest and most influential of experimental investigations using Eulerian

space–time correlations of velocity fields were carried out by a research group at the Institut de

Mécanique Statistique de la Turbulence of the University of Marseille, France in the late 1940s

and 1950s.28–31 The space–time correlation analysis was made using an analog recording of the

signals on magnetic tape from hot-wire probes used to measure the streamwise velocity at two

locations in the flow. These signals were played back with time shifts with respect to each other

to vary τ in Eq. (1). Many of their results are summarized by Favre et al.32 and reviewed by

Favre.33 Space–time correlations can be used to determine convection velocities for the turbulent

fluctuations, as illustrated by Fig. 2 from their paper in 1962.32 Contours of constant correlation

coefficient are shown where, for this figure, the indices and terms from Eq. (1) are i = j = 1,

x2 = x3 = Δx2 = Δx3 = 0, and the axes are labeled with X1 = Δx1, T = τ , the grid cell size M, and

the mean velocity V for this grid turbulence study. The slope of the locus of maximum correlation
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along the diagonal ridge in Fig. 2 is the convection velocity of the streamwise velocity in the flow,

as a function of downstream distance. This convection velocity is equal to the local mean velocity

for grid flow. The authors note that the contours of constant correlation are elliptical.
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Fig. 2. Eulerian space–time correlation of streamwise velocity fluctuations from wind-tunnel grid flow.

Reprinted with permission of Favre et al.32 (Copyright c© 1962 CNRS)

This type of data can be displayed in a different format for discrete streamwise separation

distances. Figure 3 has the correlation coefficient as the vertical axis and V T/M as the horizontal

axis, and each curve corresponds to a discrete separation of the two probes, Δx1 = X1. The line

through the maxima of the correlation coefficient curves corresponds to the ridge along the locus

of the correlation maxima of Fig. 2, and it illustrates the diminution of the correlation of the two

signals with increasing separation between them. Additionally, these authors bandpass filtered

the data in order to prescribe the convection velocity for a narrower range of turbulence scales.

Results with bandpass filtering were reported in more detail by Favre et al.34

In a shear flow, when the variable measurement location is displaced throughout the flow rel-

ative to the fixed measurement location, the shape and extent of the iso-correlation contours give

some indication of the shape and size of the flow structures underlying the correlation. For ex-

ample, Favre et al.35,36 did turbulent boundary layer experiments with hot-wire probes to measure

streamwise velocity fluctuations, where one probe had stationary locations near the wall, and the

other probe was moved to locations throughout the streamwise plane (x–y) and the cross-stream

(y–z) planes, respectively, to determine space–time correlation coefficient contours. Figure 4 il-

lustrates their results. Note that their coordinate system is labeled as X1 = x, X3 = y, and X2 = z. In

the lower part of the figure the iso-correlation curves in the streamwise plane are shown with the

thick solid line drawn through the locus of maximum correlation. This line is inclined away from

the wall in both the upstream and downstream directions indicating an average structure with such

inclinations. Notably, too, the correlation levels remain relatively high for large distances away

from the fixed probe. The iso-correlation contours are elongated in the streamwise direction, indi-
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Fig. 3. Eulerian correlation with time delay of streamwise velocity fluctuations from two locations separated
by discrete distances in the streamwise direction in wind-tunnel grid flow. Reprinted with permission of

Favre et al.32 (Copyright c© 1962 CNRS)

cating structures of large extent in that direction. The four plots in the upper part of the figure are

cross-stream sections at the streamwise locations indicated. In these cross-stream (y–z) planes,

the correlation contours are longer in the wall-normal than in the spanwise direction, indicating

relatively narrow average structures.

Numerous other experimental and, later, direct numerical simulation studies have employed

space–time correlations, beginning in the 1960s. For example, Willmarth and Wooldridge37 made

measurements at the wall of a turbulent boundary layer with a movable pressure sensor separated

in the streamwise direction from a fixed upstream pressure sensor. Figure 5 shows their three-

dimensional plot with the correlation coefficient as the vertical axis and the streamwise separation

Δx = x1 and the time delay τ as the horizontal axes. The dimunition of correlation with increasing

probe separation and time delay is due to the increasing loss of contribution of small scales. The

convection velocity was found to increase along the ridge of this plot, indicating that the larger

scales propagate at a higher speed than the small scales. This larger propagation speed of the large

scales seems plausible because their sources in the flow extend over greater wall normal distances

and would be expected to travel, on average, with velocities of the flow further from the wall.

Willmarth and Yang38 compared these planar boundary layer results to new ones they obtained

for the boundary layer over a cylindrical surface with the axis of symmetry in the streamwise

direction.

Kistler and Chen39 made similar wall pressure measurements in a supersonic turbulent bound-

ary layer with Mach numbers ranging between 1.33 and 5. Bull40 obtained broad and narrow

frequency band wall pressure space–time correlations in a turbulent boundary layers with Mach

numbers of 0.3 and 0.5 and a Reynolds number range of 5 to 1. He observed that the wall pressure

appears to result from a variety of pressure sources in the flow with a wide range of convection

velocities. They separate into two families, a high wavenumber, small scale group corresponding
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Fig. 4. Space–time correlation of streamwise velocity fluctuations in a turbulent boundary layer, with the

fixed probe at y/δ = 0.03. Reprinted with permission of Favre et al.32 (Copyright c©1962 CNRS)
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Fig. 5. Space–time correlation of wall pressure fluctuations beneath a turbulent boundary layer. Reprinted

with permission of Willmarth and Wooldridge.37 (Copyright c© 1962 Cambridge University Press)

to the turbulence in the constant stress layer and a low wavenumber, large scale (twice the bound-

ary layer thickness) group corresponding to the flow above this layer. The average convection

velocity of the pressure fluctuations at the lower Mach number was 0.8 of the freestream velocity

and fell to 0.6 at the higher Mach number.

Koplin41 made space–time correlation measurements of the streamwise velocity fluctuations
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in the mixing region of a subsonic turbulent jet, including bandpass filtering the data. He found

that the shape of the correlations changed and the convection velocities decreased with increasing

hot-wire sensor separation. He interpreted these changes to result from the fact that, at large sepa-

rations, only information from the larger scales is contained in the correlation coefficients. Thus,

in this unbounded flow, the relationship of the convection velocity to the scale of the turbulence

appeared to be opposite to that for bounded flows. Fisher and Davies42 also made space–time

correlation measurements in a subsonic turbulent jet, including bandpass filtering the data. They

found that the convection velocity increased with an increase of the bandwidth center frequency,

and also that the convection velocity was larger than the mean velocity in the outer half of the

jet and less than the mean velocity in the inner half. Wills23 discussed space–time correlations

in the context of turbulent jet flow experiments and analysis which extended Taylor’s “frozen

turbulence” hypothesis22 to account for the variable convection velocities for different scales of

turbulence.

Eulerian space–time correlations were frequently used in turbulence investigations in the

1970s. Champagne et al.43 made such measurements of velocity and temperature fluctuations

in homogeneous shear flow created in a wind tunnel with stacked flow conditioning channels

of variable resistance. They also tested Taylor’s22 hypothesis for this flow and found it to be

sufficiently accurate. Comte-Bellot and Corrsin44 also employed narrow bandpass filtered space–

time correlations to study the approximation of isotropic turbulence that is the flow downstream

of a uniform grid. They were able to heuristically formulate a “coherence time” as a function

of wavenumber that could be used to rescale the correlation delay times resulting in the filtered

correlation coefficient curves collapsing into a single curve.

Kovasznay et al.45 and Blackwelder and Kovasznay46 made extensive space–time correlation

measuresments for all three fluctuating velocity components and the Reynolds shear stress in

a turbulent boundary layer. Figure 6(a), where the fixed probe was very close to the wall at

y/δ = 0.03 (y+ ≈ 24), shows the great extent above the wall and downstream within which the

streamwise fluctuations are correlated. Here y is the distance normal to the wall, δ is the boundary

layer thickness and y+ is y normalized by the viscous length, ν/uτ . Contrary to the results of

Favre et al.,35,36 the isocorrelation contours are inclined only in the downstream direction with

respect to the location of the fixed probe. From Fig. 6(b), it is clear that the coherence of the

wall normal fluctuations does not extend nearly so far above the wall and downstream as that

of the streamwise fluctuations. This figure was obtained with the movable probe at the same

streamwise (x) distance downstream as the fixed probe, but with varied wall-normal (Δy) and

spanwise (Δz) spatial separations with respect to the fixed probe, as well as varied time delay (τ).

Sabot et al.47 extended such space–time correlation experiments to turbulent pipe flow, including

measurements of radial velocity fluctuations.

In the middle part of this decade Eulerian space–time correlation investigations were also

extended by Demetriadesand48 to the compressible (Ma = 3.0) axisymmetic wake of a circular

cylindrical body to examine the flow structure and to a turbulent two-phase air-water mixture

pipe flow with different inlet mixers by Herringe and Davis.49 At the end of the decade, Kreplin

and Eckelmann50 made space–time correlation measurements of the streamwise and spanwise

velocity fluctuations and their gradients at and normal to the wall. The experiment was carried out
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with hot-film sensors in a unique oil channel flow with a 5 mm thick viscous sublayer, permitting

measurements far deeper within the wall layer of a bounded flow than had ever been possible

before. From these measurements they were able to construct an average picture of the flow

structure near the wall made up of counter-rotating vortices inclined downstream at small angles

to the wall that travel with a nearly constant convection velocity of about 12 times the friction

velocity, uτ .

Although other experimental methods using conditional sampling and averaging were being

developed in the 1970s, Eulerian space–time correlation methods continued to be used and ex-

tended in new ways. Goldschmidt et al.51 used broadband space–time correlations to show that

convection velocities in a plane turbulent jet point outward from the streamlines and, from their

bandpass results, that small scales convect at speeds greater than the local mean flow, while larger

scales convect slower in agreement with Koplin’s41 earlier results. Nagakawa and Nezu52 actually

used the conditional averaging ideas that were developing in this decade to obtain conditionally

averaged space–time correlations in an open channel flow. With one probe at a fixed location at

the upper edge of the buffer layer and the other probe moved to variable locations with respect

to the fixed probe position, they sorted the u and v product signals from the second and fourths

quadrants of the Reynolds shear stress plane (see Ref. 53) to achieve this.

In the 1980s Smith and Townsend54 studied the structure of toroidal eddies in the Couette

flow between two rotating concentric cylinders at high Taylor numbers. Among other things, they

used an array of singe-sensor hot-wires, equally spaced in the direction parallel to the axes of the

cylinders, to obtain space–time correlations. Bonnet et al.55 used two hot-wire probes to study the

structure of the far wake developing downstream from turbulent boundary layers on both sides

of the sharp trailing edge of a flat plate. They found that the double-roller structure observed in

plane wakes originating from laminar boundary layers was not seen in their experiment. Bonnet56

revisited the study of wall pressure using space–time correlation, but with the added complexity

of supersonic flow in a turbulent boundary layer with a shock-wave. Sirivat57 revisited the wind

tunnel surrogate of isotropic flow, i.e., the flow downstream of a uniform grid. However, the nov-

elty of this experiment was that the measurements were done with a single sensor hot-wire probe

that moved with the flow by rotating it on a long arm. The validity of Taylor’s hypothesis was

confirmed and, importantly, a general expression for the correlation tensor with time delay was de-
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rived for isotropic flow, extending the Kármán-Howarth58 two-point correlation equation. Spina et

al.59 used Eulerian space–time correlations to determine the average convection velocity of large

scale structures in a supersonic boundary layer, obtaining a value of 0.9 times the freestream ve-

locity throughout the outer part of the layer. They also found, by a pattern-recognition technique,

that individual structures convect at approximately this velocity.

An important study was carried out by Kim and Hussain18 who used space–time correlations,

obtained from a direct numerical simulation (DNS) of channel flow, to determine convection ve-

locities of all three velocity and vorticity components, as well of wall pressure. They found that

all these turbulence fluctuations convect at about the speed of the flow’s local mean velocity for

y+ greater than about 20. Closer to the wall than this, they all converge to constant convection

speeds of the order of about 10 times the friction velocity, in substantial agreement with Kreplin

and Eckelmann.50 They also spatially filtered the data to study the dependence of the convection

velocities on flow scale. They found little streamwise wavenumber (kx) dependence; however,

there is a strong spanwise wave number (kz) dependence for y+ < 50, with small scales convect-

ing significantly slower than large scales. Romano60 performed an extensive study of Eulerian

space, time and space–time correlations in a turbulent channel flow at several Reynolds numbers

using laser-Doppler anemometry measurements at two locations separated in the streamwise di-

rection. These measurements were highly resolved in space and time. Among other results, he

confirmed the relationship between the convection velocity of the streamwise velocity fluctua-

tions and local mean velocity previously found by Kim and Hussain.18 Romano60 found that high

frequency fluctuations maintain their phase coherence more than their amplitude coherence as

they convect downstream. Furthermore, so long as an optimized convection velocity is chosen,

Romano concluded that the criteria for the applicability of Taylor’s hypothesis can be expanded

to u′/U < 0.3 and y+ > 10, where u is the rms of the fluctuating streamwise velocity component

and U is the local mean velocity component. Na and Moin61 examined the effects of mild and

adverse pressure gradients on wall pressure for boundary layer direct numerical simulations. The

adverse case resulted in separation with a closed separation bubble. From space–time correlations

they found that the convection velocity of the pressure fluctuations decreases with increasing ad-

verse pressure gradient and is quite reduced to a value as low as 55% the separation bubbleof the

freestream velocity inside.

Using an electrochemical method to measure the streamwise velocity gradient fluctuations

at the wall and laser doppler anemometry to measure the streamwise velocity fluctuations in the

boundary layer flow above the wall, Labraga et al.,62 in an experiment very similar to that of

Kreplin and Eckelmann,50 obtained space–time correlations of the two signals to determine angles

of inclination with respect to the wall of the structures and their propagation velocities. Their

results confirmed those of previous studies. Eulerian space–time correlations have even been

used by Roy et al.63 to study the sizes and shapes of flow structures in a gravel-bed river field

experiment using an array of electromagnetic current meters.

Motivated by the central role of space–time correlations in predicting sound generation from

turbulent flows, and the attempts to make such predictions from LES calculations, He et al.8 in-

vestigated the effects of different subgrid scale models on the correlations in decaying isotropic

turbulence. All of the models tested resulted in an under-prediction of the correlation magnitudes



022003-11 Space–time correlations in turbulent flow: A review doi:10.1063/2.1402203

and a small over-prediction of the decorrelation time scales. Also motivated by the need to pre-

dict jet noise, Doty and McLaughlin64 made space–time correlation measurements of the radial

density gradients in a jet shear layer at Mach numbers of 0.9 and 1.5 to demonstrate the strenghs

and shortcomings of this unique measurement technique. Another supersonic flow study at Mach

numbers of 2, 3, and 4 employing Eulerian space–time correlations was carried out by Barnardini

and Pirozzoli.65 for DNS of turbulent boundary layers. They found that the correlations at super-

sonic Mach numbers closely resembled those in boundary layers at low speeds. Compressibility

effects are quite weak. As for low-speed flows, the convection velocity of the low frequency pres-

sure fluctuations was found to be about 80% of the freestream velocity, whereas the convection

velocities decrease systematically as the frequency increases.

IV. LAGRANGIAN EXPERIMENTS AND SIMULATIONS

Over a half century ago Durst et al.66 used Lagrangian correlations from geostrophic tra-

jectories in horizontal planes to calculate the dispersion of fluid particles emitting from a point

source. They found that the correlation coefficient followed an exponential distribution. Decades

later Pécseli and Trulsen67 carried out a vortex method numerical study of geostropic flows from

which they determined Eulerian and Lagrangian velocity correlations. In another early study with-

out much experimental evidence to draw on, Philip68 developed and tested a relationship between

Eulerian and Lagrangian correlation functions for isotropic turbulence with zero mean velocity.

Using the indirect method used by Townsend69 twenty years before, Schlien and Corrsin70

determined the Lagrangian correlation function from mean temperature profiles measured down-

stream of a heated wire, but with greater accuracy. These measurements were made in the same

wind tunnel grid flow as the Eulerian correlation measurements of Comte-Bellot and Corrsin,44 so

direct comparisons could be made for the same flow conditions. They found that the Lagrangian

Taylor microscale was much larger than the corresponding Eulerian one. Almost twenty years

later still, Karnik and Tavoularis71 extended such measurements to homogeneous shear flow. In

these and other grid flow studies described below, the Eulerian space–time maximum correlation

coefficient values determined from Eq. (1) at the values of τ = Δx/U , illustrated by the correlation

maxima envelop shown in Fig. 3, can be meaningfully compared to the Lagrangian correlation co-

efficient values determined from Eq. (2) at variable values of τ . Similar comparisons of Eulerian

and Lagrangian space–time correlations can be made for other flows.

In one of the first experiments where it was attempted to measure Lagrangian correlations di-

rectly by photographing particle trajectories in the decaying wind tunnel turbulence downstream

of a grid, Snyder and Lumley72 investigated the role of particle density by using small hollow

glass particles, that were rather good surrogates of fluid particles, as well as a variety of heav-

ier particles. They also measured the Eulerian streamwise velocity correlation using hot-wire

anemometry. Within experimental accuracy, which was rather poor for the Lagrangian data, they

found that the Eulerian time scale was roughly three times the Lagrangian one. In a breakthrough

experiment over a decade and a half after the experiment of Snyder and Lumley,72 a time span

that illustrates just how difficult such measurements were with the technology then available,
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Sato and Yamamoto73 used optical three-dimensional particle tracking (3D-PT) to determine the

Lagrangian correlation function and the mean square lateral particle dispersion in the decaying

and approximately isotropic turbulence of a water grid flow. They found that the Eulerian and

Lagrangian correlation coefficient distributions were very similar when the time axis was scaled

with the ratio of the Lagrangian to the Eulerian integral length scales. A much more recent par-

ticle tracking experiment is that of Guala and Liberzon74 in which they estimated Lagrangian

correlations, using 3D-PT, of the rate of strain, enstrophy and their production rate terms in ho-

mogeneous turbulence at a Taylor scale Reynolds number of 50. Cross-correlation functions of

these terms were also estimated. From the correlation functions, Lagrangian integral time scales

were determined. In a very thorough new study of turbulent pipe flow, Oliveira et al.75 used 3D-PT

with three cameras to track Lagrangian particle trajectories and their velocities and accelerations

with high spatial and temporal resolution. They determined component Lagrangian velocity and

acceleration auto- and cross-correlations at the highest shear flow Reynolds number to date, i.e.,

Reb = 10300 based on the bulk velocity and pipe diameter. They determined the Komogorov con-

stant from analyses of their data and concluded that the small scales of this pipe flow are locally

isotropic.

In one of the very earliest numerical attempts to determine single fluid particle and particle pair

correlation functions and other Lagrangian statistics, and to compare Eulerian statistics with these

as well as to obtain particle dispersion properties, Deardorff and Peskin76 analyzed data obtained

from an LES of a turbulent channel flow. Among other results, they found that the two particle

Lagrangian correlations were more persistent than those of a single particle. Recent studies77–79

found that an LES with the most widely used Smagorinsky SGS model could generate larger La-

grangian time scales than the ones in DNS. In another early numerical study of particle dispersion

in turbulence, Riley and Patterson80 simulated isotropic flow in a 323 grid point calculation and

tracked trajectories of fluid particle velocities, for the first time, by interpolation on the Eulerian

grid. They also simulated the trajectories of rigid particles in this numerical flow. They found

that, for the fluid particles and short times, the Lagrangian correlation decreased slower than the

Eulerian correlation, but the opposite was true for large times. The Lagrangian correlation co-

efficient depended on the response time of the rigid particles to velocity changes. Squires and

Eaton81 carried out DNS of decaying isotropic turbulence and of homogeneous shear flow. They

determined the shapes of the Lagrangian correlation functions for all three velocity components of

these flows and made comparisons to the Eulerian correlation coefficients. The value of the ratio

of the Eulerian integral time scale to the Lagrangian integral time scale of 0.8 that they found for

the decaying isotropic case was in generally good agreement to this ratio found in the experiment

of Sato and Yamamoto73 described above. Kuerten and Brouwers82 recently carried out a DNS

of a turbulent channel flow at Reτ = 950, based on the friction velocity and channel half width,

and determined Lagrangian statistics, including Lagrangian auto- and cross-correlation functions,

which were compared to Langevin models.

With the first of numerous studies83–87 of Lagrangian flow properties by Yeung and co-

investigators, Yeung and Pope83 extensively investigated statistics of velocity, acceleration, dissi-

pation and other related properties in two DNS calculations (643 and 1283 grid points) of isotropic

turbulence with Taylor length scale Reynolds numbers of 38 to 93. Statistical stationarity was
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maintained by forcing the low wavenumber modes of the simulation. About 4 000 particle trajec-

tories were tracked providing Lagrangian velocity and velocity gradient values. Among the many

results, they determined the Lagrangian correlation functions of acceleration and velocity magni-

tude over the range of Reynolds numbers, and, in addition, of the dissipation rate and enstropy.

They also compared the Eulerian and Lagrangian velocity correlation functions and found that

the former falls off slower than the latter with increasing time. The statistics of the dispersion of

particle pairs in homogeneous shear flow were determined by Shen and Yeung,85 including two

particle Lagrangian correlations as expressed by Eq. (3). Figure 7 illustrates such correlations

with an initial particle separation with a magnitude of four Kolmogorov lengths but, for each

curve, in one of the three coordinate directions. Yeung86 extended the isotropic turbulence study

of Yeung and Pope83 to a Taylor scale Reynolds number of 234 with a 5123 simulation. Yeung

and Sawford87 examined the application of the “random sweeping” of small scales of turbulence,

particularly for the scalar field, by the large scale motions. This type of study traces back to the

ideas of Kraichnan,6 discussed above, and later of Tennekes.88
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Fig. 7. Two-particle Lagrangian correlations in homogeneous shear flow with an initial particle separation
of four Kolmogorov lengths but, for each curve, in one of the three coordinate directions, x: A, y: B, and z:

C. Reprinted with permission by Shen and Yeung.85 (Copyright c© 1977 Am. Inst. of Physics)

V. SUMMARY

The information in turbulent fields at two points and two times, the separations of which can be

varied, is rich. This information can be expressed statistically in space–time correlations, in both

Eulerian and Lagrangian frames of reference, which play a central role in theories of turbulence

and in attempts to model turbulence properties and processes. Such correlations also represent a

type of experimental and numerical data analysis that has been, and continues to be, widely used

in investigations of a variety of types of turbulent flows. With DNS investigations reaching ever

higher Reynolds numbers and experimental investigations producing three-dimensional spatial

data, both with the possibility of high spatial and temporal resolution, it is reasonable to assume

that innovative new data analysis uses of space–time correlations and more complete tests of

turbulence theories and models will be forthcoming.
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