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ABSTRACT

Antibiotic resistance among Gram-negative pathogens in hospitals is a growing threat to patients and is
driving the increased use of carbapenems. Carbapenems are potent members of the b-lactam family of
antibiotics, with a history of safety and efficacy for serious infections that exceeds 20 years. Original and
review articles were identified from a Medline search (1979–2008). Reference citations from identified
publications, abstracts from the Interscience Conferences on Antimicrobial Agents and Chemotherapy
and package inserts were also used. Carbapenems are effective in treating severe infections at diverse
sites, with relatively low resistance rates and a favourable safety profile. Carbapenems are the b-lactams
of choice for the treatment of infections caused by multidrug-resistant organisms. Optimized dosing of
carbapenems should limit the emergence of resistance and prolong the utility of these agents. The newly
approved doripenem should prove to be a valuable addition to the currently available carbapenems:
imipenem, meropenem and ertapenem.
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INTRODUCTION

b-Lactams comprise more than half of all anti-
biotics.

They are among the most widely prescribed
antimicrobial agents in both community and
hospital settings, because they have a long history
of efficacy and safety [1]. The use of b-lactams for
more than 60 years has, however, resulted in a
dramatic increase in the rates of resistance that
now threatens the utility of the majority of this
large drug family. Enzymes have appeared with
potent hydrolytic activity against penicillins,
cephalosporins, cephamycins, b-lactam–b-lacta-
mase inhibitor combinations, and even carbape-
nems [2,3]. Several bacterial species have acquired
these enzymes, thus becoming multidrug-resis-
tant, and leaving clinicians with few therapeutic
options [4]. Within the b-lactam family, carbape-
nems have historically been the drugs of choice

for the treatment of severe infections caused by
multidrug-resistant organisms [5].

Antimicrobial resistance continues to evolve,
and presents serious challenges concerning the
therapy of both nosocomial and community-
acquired infections; 50–60% of the more than
two million nosocomial infections in the USA
each year are caused by antimicrobial-resistant
bacteria [6]. Although carbapenems retain nearly
universal activity against Enterobacteriaceae, rates
of resistance to carbapenems are increasing in
Pseudomonas and Acinetobacter spp. [7].

On the other hand, reports of Enterobacteriaceae
harbouring enzymes such as metallo-b-lactamases
and carbapenemases are increasingly being
recognized [8–12]. Such bacteria can develop
resistance to all b-lactam antibiotics, including
carbapenems.

Resistance to antimicrobial agents is mediated
by many factors, including b-lactamases, porin
loss, efflux pumps, and target modifications.

b-Lactamases are enzymes that hydrolyze
b-lactam agents. They are ubiquitous in Gram-
negative bacilli, and are the major cause of
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resistance to b-lactams in Gram-negative bacteria.
The genes of these enzymes can be either
chromosome- or plasmid-borne. The latter pose
a significant threat in the context of controlling
bacterial resistance, because plasmid-borne
b-lactamase genes are readily transferable among
bacteria, allowing an effective and rapid spread of
resistance. The b-lactamases with the greatest
impact in the nosocomial setting are
mainly extended-spectrum b-lactamases (ESBLs),
AmpC-type b-lactamases and carbapenemases.

Carbapenemases (metallo-b-lactamases and
active-site serine carbapenemases) are fairly
uncommon, although they are a source of con-
siderable concern, due to a spectrum of activity
that encompasses almost all known b-lactams,
from penicillins to the carbapenems, and they are
generally not susceptible to current class A
b-lactamase inhibitors [6]. The most clinically
important bacteria harbouring carbapenemases
are Pseudomonas and Acinetobacter, although
sporadic reports of carbapenemase-mediated
resistance to carbapenems in Enterobacteriaceae
have appeared [3,13–16]. Historically, carbape-
nems have retained stability to almost all clini-
cally relevant b-lactamases, but some class B
b-lactamases (IMP, VIM, SPM, GIMs), along with
some rare class A (SPE, NMC-A, IMI-1, KPC) and
class D enzymes (OXAs), are able to hydrolyze
these antibiotics (Kattan JN, Guzman AM,
Correa A et al. Evidence for widespread dissemi-
nation of OXA-23-like carbapenemases in Acine-
tobacter baumannii in Colombia. Programs and
Abstracts of the American Society for Microbiol-
ogy’s 46th Annual International Conference on
Antimicrobial Agents and Chemotherapy
(ICAAC), San Francisco, 2006, Abstract C2-598)
[3,17,18]. Although class B enzymes are generally
chromosome-encoded, plasmid-carbapenems
have been reported in Bacteroides fragilis [19],
Pseudomonas aeruginosa, Acinetobacter baumannii
and members of the Enterobacteriaceae family
[1,20–22].

These b-lactamases have emerged as significant
threats to treatment with all b-lactams by becom-
ing epidemic and endemic in the Far East [23],
Europe [10] and South America [22,24]. For
perspective, it is worth noting that despite the
occurrence of carbapenemases, the most common
means by which bacteria become carbapenem-
resistant in most of the world is via loss of
permeability, or through loss of porins, increased

efflux of the drug, by increased efflux pump, and
target modifications activity [25].

In porin loss, the loss of a membrane protein
channel decreases the rate of entry of antibiotics
into the periplasm, thus raising the MIC. If
combined with b-lactamase production, porin
loss may confer resistance to one or many
antibiotics simultaneously. An example of this
mechanism is the loss of a specific porin known as
OprD in P. aeruginosa along with simultaneous
production of AmpC, which confers resistance to
carbapenems, particularly imipenem [26]. Many
Gram-negative bacteria are able to expel anti-
biotics after entry by utilizing energy-dependent
efflux mechanisms. The best studied and
described efflux mechanisms are those of P. aer-
uginosa, in which four multidrug efflux pumps
have been well characterized (MexAB–OprM,
MexCD–OprJ, MexEF–OprN and MexXY–OprM)
[27–29]; each has a preferential set of antimicro-
bial substrates, including meropenem and erta-
penem, which are pumped out of the cell by
OprM.

Resistance in Pseudomonas and Acinetobacter is
more likely to affect carbapenems because of low
membrane permeability and simultaneous ex-
pression of multiple resistance mechanisms. With
Gram-negative organisms having a plethora of
resistance mechanisms at their disposal, carbape-
nems emerge as the last line of defence in many
cases [30,31]. The development of new drugs and
the more rational use of currently available
antibiotics should help to limit the problem of
multidrug-resistant pathogens and prevent the
loss of carbapenems as antibiotics of last resort in
clinical practice.

Carbapenems occupy a unique position in the
b-lactam family of antibacterials. As a class,
carbapenems are innately stable to most b-lacta-
mases of Ambler classes A, C and D. Their broad
spectrum of activity and their stability in the
presence of this wide range of b-lactamases make
them important therapeutic options for treating
serious infections involving resistant Enterobacter-
iaceae (including ESBL-producing and AmpC-
overproducing isolates), anaerobes, P. aeruginosa,
and Acinetobacter spp. [1]. Carbapenems are
recommended for the empirical treatment of a
variety of severe infections, e.g. nosocomial
pneumonia, complicated intra-abdominal infec-
tion, septicaemia, complicated skin and skin
structure infection, complicated urinary tract
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infection, meningitis, and acute exacerbations of
cystic fibrosis [32–36].

The first carbapenems discovered were olivanic
acids produced by Streptomyces olivaceus. This was
followed by the discovery of thienamycin in 1976
[37]. The latter was found in the course of a soil-
screening programme to identify inhibitors of
peptidoglycan synthesis [37,38]. It was produced
by a previously unknown Streptomyces spp. that
received the name Streptomyces cattleya, as the
pigment in its aerial mycelium resembled the
colour of the cattleya orchid [20]. These com-
pounds were chemically unstable, so they were
not used clinically.

Years later, a more stable thienamycin deriva-
tive, N-formimidoyl thienamycin (known as
imipenem), was synthesized and approved for
use in 1984 [39]. This compound was therapeuti-
cally useful, as it was more stable in the solid state
and in concentrated solution. However, an addi-
tional instability to a mammalian hydrolase from
the renal brush border, dehydropeptidase-I
(DHP-I), led to the decrease of imipenem levels
in urine and the production of a potentially
nephrotoxic metabolite [40,41]. The development
of an additional compound, cilastatin, to be co-
administered in a 1 : 1 ratio with imipenem,
prevented hydrolysis by DHP-I and reduced
nephrotoxicity [40]. Meropenem was the first
carbapenem with a 1-b-methyl group and
2-thiopyrrolidinyl moiety, which renders this
antibiotic stable to DHP-I. Other carbapenems,
for parenteral administration, were discovered
later, and include biapenem, panipenem, ertape-
nem, lenapenem, E-1010, S-4661 and BMS-181139.
Carbapenems that are orally administered include
sanfetrinem, DZ-2640, CS-834 and GV-129606
[20].

A recently proposed classification system for
carbapenems divides them into two groups [42].
Group 1 carbapenems, e.g. ertapenem, are defined
as broad-spectrumagents that have limited activity
against non-fermentative Gram-negative bacilli
and aremost suited for use in community-acquired
infections, whereas group 2 carbapenems, e.g.
imipenem, meropenem and doripenem, are
broad-spectrum agents that are active against
non-fermentative Gram-negative bacilli and are
particularly useful in treating nosocomial infec-
tions. A third group of carbapenems has also been
suggested. This category includes agents with
activity against methicillin-resistant Staphy-

lococcus aureus, such as PZ-601, a carbapenem
under development (Lolans K, Quinn JP. PZ-601
susceptibility against Gram-negative pathogens
with known resistance mechanisms. Programs
and Abstracts of the American Society for Micro-
biology’s 47th Annual International Conference
on Antimicrobial Agents and Chemotherapy
(ICAAC), Chicago, 2007). Table 1 lists each group
of carbapenems and the pathogens typically
covered by each.

CARBAPENEM ACTIVITIES

b-Lactam antibiotics share a common structure,
the four-membered lactam ring. Carbapenems
differ from other b-lactam antibiotics in that they
possess a carbon instead of a sulphone in the four-
position of the thyazolidinic moiety of the
b-lactam ring [20]. They have a broad spectrum
of antimicrobial activity that exceeds that of most
other classes of antimicrobials [43]. Carbapenems
are rapidly bactericidal agents because they bind
with high affinity to most high molecular weight
penicillin-binding proteins of Gram-negative and
Gram-positive bacteria [44]. Carbapenems (except
ertapenem) are active against clinically significant

Table 1. Carbapenem groups and spectrum of activity for
each compound

Carbapenem group

Group 1

Ertapenem

Group 2

Imipenem

Meropenem

Doripenem

Group 3

PZ-601

Gram-negative aerobes
Acinetobacter Resistant Susceptible Resistant
Burkholderia cepacia Resistant Variable Resistant
Enterobacteriaceae Susceptible Susceptible Susceptible
Haemophilus Susceptible Susceptible Susceptible
Moraxella Susceptible Susceptible Susceptible
Neisseria Susceptible Susceptible Susceptible
Pseudomonas aeruginosa Resistant Susceptible Resistant
Stenotrophomonas maltophilia Resistant Resistant Resistant

Gram-positive aerobes
Enterococcus faecalis Resistant Variable Variable
Enterococcus faecium
(ampicillin-resistant)

Resistant Resistant Resistant

Listeria Resistant Susceptible Not reported
Staphylococcus aureus
(methicillin-susceptible)

Susceptible Susceptible Susceptible

S. aureus (methicillin-resistant) Resistant Resistant Susceptible
Streptococcus pneumoniae
(penicillin-susceptible)

Susceptible Susceptible Susceptible

Streptococcus pneumoniae
(penicillin-resistant)

Susceptible Susceptible Susceptible

Streptococcus pyogenes Susceptible Susceptible Susceptible
Viridans group streptococci Susceptible Susceptible Susceptible

Anaerobes
Bacteroides Susceptible Susceptible Susceptible
Clostridium difficile Susceptible Susceptible Not reported
Eubacterium Susceptible Susceptible Not reported
Fusobacterium Susceptible Susceptible Not reported
Peptostreptococcus Susceptible Susceptible Not reported
Propionibacterium Not reported Susceptible Not reported
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Gram-negative non-fermenters such as P. aerugi-
nosa, Burkholderia cepacia and Acinetobacter spp.
[45,46]. They also retain activity against strepto-
cocci, methicillin-sensitive staphylococci, Neisseria
and Haemophilus [39]. Unlike most other broad-
spectrum antibiotics, carbapenems are active
against most Gram-positive and Gram-negative
anaerobes, including subspecies of B. fragilis,
Bacteroides thetaiotaomicron, Prevotella bivia,
Fusobacterium nucleatum, Fusobacterium morti-
ferum, Peptostreptococcus asaccharolyticus and
Clostridium perfringens [36,39]. Carbapenem-
resistant bacteria include: ampicillin-resistant
Enterococcus faecium, methicillin-resistant staphy-
lococci, Stenotrophomonas maltophilia and some
isolates of Clostridium difficile [47,48].

The enhanced activity of carbapenems is due
to several factors: (i) they are smaller molecules
than cephalosporins and are zwitterions (i.e. they
have both positive and negative charges in
solution), both of which properties facilitate rapid
penetration across the Gram-negative outer
membrane [39]; (ii) they have high affinity for
essential penicillin-binding proteins (PBP-2,
PBP-4, PBP-3 and PBP-1b) from a broad range
of bacteria [20]; and (iii) they are resistant to a
broad range of b-lactamases from Gram-positive
and Gram-negative bacteria. Table 2 lists the
current CLSI and EUCAST breakpoints for
carbapenems [49,50].

SAFETY ADVANTAGES
OF CARBAPENEMS

One reason why b-lactams are the most fre-
quently prescribed class of antibiotics is their
superior safety profile, as compared with other
antibiotics [45]. Carbapenems are generally well
tolerated. Allergic reactions to b-lactam com-
pounds are the most common adverse events in
treatment with carbapenems; these include rash,
urticaria and immediate hypersensitivity. Major
adverse effects such as diarrhoea, pseudomem-
branous colitis, coagulation abnormalities,
nephrotoxicity and hepatotoxicity occur with
frequencies similar to those of comparators [44].

DIFFERENCES AMONG INDIVIDUAL
CARBAPENEMS

As the oldest of the carbapenems, imipenem
is still used considerably, although it has T
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several disadvantages as compared with newer
carbapenems [39]. It is not approved by the US
Food and Drug Administration (FDA) for me-
ningitis, and should be avoided in the treatment
of central nervous system infections because of
its propensity to cause seizures in patients with
elevated risk factors, e.g. renal failure or struc-
tural brain disease [44]. It is typically very active
against P. aeruginosa and Acinetobacter spp. How-
ever, resistance to imipenem during therapy has
been described since 1986 [52]. Downregulation
of the carbapenem-specific OprD porin in P. aer-
uginosa can lead to this type of resistance [53–55].
Mutational loss of OprD is frequent during
imipenem therapy, reaching 25% or more in
strains causing difficult infections [56,57]. Loss of
OprD does not confer reduced susceptibility to
other b-lactams; however, it does affect all
carbapenems. Similar to P. aeruginosa, Enterobac-
ter spp. can also become resistant during therapy
with imipenem, although this is much less
common and appears to require a combination
of porin loss and increased activity of a
b-lactamase-like AmpC [55,58,59]. Imipenem is
slightly more active against Gram-positive bac-
teria than are other carbapenems. Imipenem is
excreted renally, with 70% of imipenem recov-
ered in the urine within 10 h and no detectable
urinary excretion after that time. Accumulation
is not observed in plasma or urine, even with
regimens administered as frequently as every
6 h. Imipenem is distributed extensively in
tissues and fluids [60]. The recommended adult
dose of imipenem for patients with normal renal
function is 250 mg to 1 g intravenously every
6–8 h. The paediatric dose is 15–25 mg ⁄ kg every
6–8 h. Dose adjustment is required for patients
with creatinine clearance of less than 50 mL ⁄min
or body weight of less than 70 kg [44]. Unfortu-
nately, the low stability of imipenem (10%
degradation at 25�C after 3.5 h) limits the
possible duration of infusion of this carbapenem;
it must therefore be dosed as 30–60-min infu-
sions [51].

Panipenem (RS-533), introduced into clinical
practice in Japan in 1993, was the second
approved carbapenem. It is susceptible to hydro-
lysis by DHP-I and thus requires the co-admin-
istration of an inhibitor of this enzyme,
betamipron [20]. This drug, which is not dis-
cussed further in this article, is approved in Japan,
China and South Korea [44].

The discovery that stability to human renal
DHP-I can be achieved by introducing a
1-b-methyl substituent at C-1 led to the synthesis
and introduction of meropenem (SM7338) in 1995
[39,61,62]. Meropenem is primarily excreted by
the kidneys, with c. 50–75% of the dose being
excreted unchanged in the urine and a further
25% being excreted as a microbiologically inac-
tive open b-lactam metabolite [63]. Meropenem
has a spectrum of activity similar to that of
imipenem (including P. aeruginosa and Acineto-
bacter spp.) and is slightly more active against
Gram-negative aerobic bacteria. This agent is a
substrate for the multidrug efflux systemMexAB–
OprM, present in P. aeruginosa [54,64]. Overex-
pression of this efflux system raises the MIC of
meropenem and other substrate antibiotics, but
not of imipenem. Downregulation of the porin
OprD also raises the MIC of meropenem, but
usually not to the degree of outright resistance, as
defined by conventional breakpoints [56]. Rather,
the combination of a b-lactamase and down-
regulation of outer membrane proteins, like
OprD, and an efflux system, such as MexAB–
OprM, are needed for outright resistance to
meropenem to occur.

Meropenem is approved by the US FDA for the
treatment of bacterial meningitis in children aged
3 months and older, and is efficacious in adults
[44]. The recommended adult dose of meropenem
for patients with normal renal function is 500–
1000 mg intravenously every 8 h, although daily
doses of 6 g seem to be safe [65]. The paediatric
dose is 20–40 mg ⁄ kg every 6–8 h. Dose adjust-
ment is required for patients with creatinine
clearance of less than 50 mL ⁄min [44]. Some
investigators have dosed meropenem as a 3-h
infusion in an attempt to improve efficacy against
resistant pathogens [21,39,66].

Ertapenem (MK-0826) is a 1-b-methyl carbape-
nem developed in 2001 [67] to be more resistant
than imipenem to DPH-I inactivation, and there-
fore, does not require the addition of a DPH-I
inhibitor such as cilastatin or betamipron [20].
Elimination follows non-linear kinetics, partly
owing to the concentration dependence of protein
binding. Approximately 80% of excretion is via
the kidneys, with half as the native compound
and half as the open-ring derivative; a further
10% is eliminated via the faeces [68]. Ertapenem
possesses a longer apparent elimination half-life
than imipenem and meropenem. This longer
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half-life allows for a convenient, once-daily
administration schedule [69]. Ertapenem is an
important option for the empirical treatment of
complicated community-acquired bacterial infec-
tions, where a mixed flora of anaerobes and
aerobes is likely, e.g. community-acquired pneu-
monia, complicated skin and skin structure
infection, complicated urinary tract infection, or
community-acquired complicated intra-abdom-
inal infection, in both children and adults [69].
Ertapenem is now an option for the treatment of
some nosocomial infections, but it lacks antimi-
crobial activity against non-fermenting Gram-
negatives such as P. aeruginosa and Acinetobacter
spp., and thus cannot be used when they are
suspected pathogens [21]. A recent study demon-
strated the greater efficacy of ertapenem in
comparison with cefotetan for elective colorectal
procedures, making this drug a potential option
for prophylaxis of surgical site infection following
abdominal surgery [70]. Despite its being gener-
ally effective against infections caused by ESBL-
producing pathogens, ertapenem has decreased
in vitro activity as compared with other carbape-
nems against some bacteria that produce ESBLs
[71]. The most common form of ertapenem
resistance in Enterobacteriaceae is the combination
of AmpC production and porin loss. This type of
resistance has been reported during therapy in an
ESBL-producing Klebsiella pneumoniae strain [72].
Similar to imipenem and meropenem, ertapenem
has anti-anaerobic activity and is thus especially
useful in a single daily dose regimen for poly-
microbial infections [44]. Although it penetrates
into cerebrospinal fluid, ertapenem is not ap-
proved for the treatment of bacterial meningitis.

One concern that has limited the use of
ertapenem is the fear that its use will select for
imipenem, meropenem or doripenem resistance
in P. aeruginosa. This appears unlikely, on the
basis of in vitro studies [73]. Furthermore, a
comprehensive study of gut-colonized patients
with intra-abdominal infections treated with one
of two comparators, ceftriaxone–metronidazole or
piperacillin–tazobactam, not only showed no
increase in imipenem-resistant P. aeruginosa in
ertapenem-treated patients, but also showed less
emergence of resistance in enterics in these
patients than in those treated with either com-
parator [74,75].

The recommended adult dose of ertapenem for
patients with normal renal function is 1000 mg,

intravenously or intramuscularly, once daily, and
500 mg once daily for patients with creatinine
clearance of less than 30 mL ⁄min or on dialysis
[44]. Paediatric dosing is 15 mg ⁄kg every 12 h for
patients between the ages of 3 months and
12 years.

Doripenem (S-4661) is a parenteral 1-b-methyl
carbapenem that has completed phase 3 trials for
nosocomial pneumonia (including ventilator-as-
sociated pneumonia), complicated intra-abdom-
inal infection, and complicated urinary tract
infection. Doripenem is licensed for adults for
the treatment of complicated intra-abdominal
infections and complicated urinary tract infec-
tions, including pyelonephritis, in the USA.

It is undergoing regulatory review for the
treatment of complicated urinary tract infections
and intra-abdominal infections in Europe, and for
the treatment of nosocomial pneumonia, includ-
ing ventilator-associated pneumonia, in both the
USA and Europe. A recent clinical trial comparing
doripenem and imipenem for the treatment of
ventilator-associated pneumonia showed less
emergence of resistance among P. aeruginosa
isolates in the doripenem arm, although the
numbers were modest and the clinical outcomes
were the same in both groups [76]. This carbape-
nem has stability against human DPH-I [77] and a
wide spectrum of activity [78]. It combines the
in vitro activity of imipenem against Gram-posi-
tive pathogens and of meropenem against Gram-
negative pathogens [1,78]. Its renal elimination is
similar to that of meropenem, with a mean
urinary recovery, of doripenem, of 75% over
24 h [79]. Doripenem retains activity against
ESBL- and AmpC-producing Enterobacteriaceae
[80]. The MICs of doripenem are lower for
P. aeruginosa than are those of other antipseudo-
monal agents, and it inhibits a great proportion of
otherwise carbapenem-resistant P. aeruginosa at
£4 mg ⁄L [80–83].

When compared with several other antipseu-
domonal agents, including other carbapenems,
doripenem was associated with the lowest rate of
spontaneous resistance in vitro [84]. When it was
combined with an aminoglycoside in vitro, dor-
ipenem resistance selection in P. aeruginosa was
decreased even further [85]. Against a wide range
of bacteria, doripenemcanbe safely combinedwith
various antimicrobial agents (amikacin, co-trimox-
azole, levofloxacin, daptomycin and linezolid)
without risk of antagonism [86] (Mushtaq S,
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Warner M, Ge Y, Kaniga K, Livermore DM.
In-vitro interactions of doripenem with other
antibacterial agents. Programs and Abstracts of
the American Society for Microbiology’s 45th
Annual International Conference onAntimicrobial
Agents and Chemotherapy (ICAAC), Washington,
DC, 2005). Unlike treatment with imipenem,
treatment with doripenem is expected to carry a
low risk of seizures [87]. Its enhanced stability in
solution makes it suitable for extended infusions
(3 h), thus potentiallyminimizing resistance devel-
opment and improving efficacy [88] (Floren L,
Wikler M, Kilfoil T, Ge Y. A phase I, double-blind,
placebo-controlled study to determine the safety,
tolerability, and pharmacokinetics (PK) of pro-
longed-infusion regimens of doripenem (DOR) in
healthy subjects. Programs and Abstracts of the
American Society for Microbiology’s 46th Annual
International Conference on Antimicrobial Agents
and Chemotherapy (ICAAC), Washington, DC,
2004, Abstract A16). Doripenem at doses of
500 mg every 8 h was shown to be non-inferior,
in terms of safety and efficacy, to meropenem at
doses of 1 g every 8 h in a phase 3 trial
for complicated intra-abdominal infections
(Malafaia O, Umeh O, Jang J. Doripenem versus
meropenem for the treatment of complicated
intra-abdominal infections. Programs and Ab-
stracts of the American Society for Microbiology’s
46th Annual International Conference on Anti-
microbial Agents and Chemotherapy (ICAAC),
San Francisco, CA, 2006, Poster E-0221). Likewise,
the compound met non-inferiority criteria for
efficacy as compared with piperacillin–tazobac-
tam (Rea-Neto A, Niederman M, Prokocimer P,
Lee M, Kaniga K, Friedland I. Efficacy and safety
of intravenous doripenem vs piperacillin ⁄ tazo-
bactam in nosocomial pneumonia. Programs and
Abstracts of the American Society for Microbiol-
ogy’s 47th Annual International Conference on
Antimicrobial Agents and Chemotherapy
(ICAAC), Chicago, 2007, Abstract L-731) for the
treatment of hospital-acquired pneumonia and as
compared with imipenem for the treatment of
ventilator-associated pneumonia [76,89].

CONCLUSION

The progressive rise of broad resistance among
non-fermenters, as well as an ever-increasing
prevalence and diversity of b-lactamases in Entero-
bacteriaceae, is driving the increased use of

carbapenems. Although the development of bac-
terial resistance to carbapenems largelyparallels its
use, the rate of emergence of resistance has been
relatively low. Twenty-three years after the first
release of a carbapenem into wide use, carbape-
nems remain invaluable, with low resistance rates
and favourable safety profiles [32,33,35,36,90]. The
newest member, doripenem, should prove to be a
valuable addition to the carbapenem class.
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