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The plasma membrane, which encapsulates human cells, is composed of a complex mixture of lipids and
embedded proteins. Emerging knowledge points towards the lipids as having a regulating role in protein
function. Furthermore, insight from protein crystallography has revealed several different types of lipids in-
timately bound to membrane proteins and peptides, hereby possibly pointing to a site of action for the ob-
served regulation. Cholesterol is among the lipid membrane constituents most often observed to be co-
crystallized with membrane proteins, and the cholesterol levels in cell membranes have been found to
play an essential role in health and disease. Remarkably little is known about the mechanism of lipid regu-
lation of membrane protein function in health as well as in disease. Herein, we review molecular dynamics
simulation studies aimed at investigating the effect of cholesterol on membrane protein and peptide prop-
erties. This article is part of a Special Issue entitled: Lipid–protein interactions.
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1. Introduction

One of the main challenges in structural biology is to understand
the interplay between proteins and molecular constituents of the
plasma membrane [1]. Lipid membranes encapsulate cells separat-
ing their interior from the extracellular matrix. The lipid bilayer is
a complex mixture of phospholipids [2], glycolipids [3], and choles-
terol arranged into two asymmetric leaflets [4]. The cholesterol
present in cell membranes has been shown to be important for
maintaining a healthy body, e.g., in regulating neurotransmission
[5], cell signaling [6], and protein sorting [7,8]. An imbalance in
the cholesterol level has similarly been implicated in many diseases,
such as cancer [9], diabetes mellitus type 2 [10], and Alzheimer's
disease (AD) [11,12] among others. However, a molecular
understanding of how cholesterol is involved in these essential
biochemical processes or how it may result in disease development
is still lacking. Computational approaches applied to study how
cholesterol influences the function of membrane-embedded
proteins have added to the understanding of these processes and
directed further experiments. This review provides a summary of
these studies, with particular emphasis on molecular dynamics
(MD) simulations and the insights they provide. Furthermore, an
outlook into the future application of MD simulations to study inter-
actions between cholesterol and various membrane components,
focusing on how the function of the peptide and protein may be
affected, is also included.

In this review, we aim to provide molecular-level insight into
protein–cholesterol interactions and its effects on protein function.
The review is divided into two parts. The first part provides an
introduction to the cell membrane focusing on cholesterol, which
includes a brief overview of regulation of membrane proteins and
peptides by the lipid environment. Experimentally, such regulatory
effects are extremely challenging to study, due to the dynamic na-
ture of the cell membrane, which accordingly renders computational
MD simulations very suitable for studying the effects of cholesterol
on membrane proteins and peptides. We will conclude the first
part with a short outline of how computational methods can assist
in describing the effect of cholesterol on membrane proteins. The
second part of the review highlights a number of studies in which
MD simulations have shed light on membrane protein–cholesterol
Fig. 1. The molecular stru
interactions. For the second part of the review, a comprehensive
literature search was performed, and to the best of our knowledge
it includes all studies in which the influence of cholesterol on the
function of a membrane embedded protein or peptide has been stud-
ied using MD simulations. GPCRs are not included in the review rath-
er the interested reader is referred to another contribution in this
special issue [74].

1.1. Modulation of membrane proteins by the lipid environment

The cell membrane (or plasma membrane) separates the interior
of a cell from the exterior, hereby protecting the cell. Membrane pro-
teins encompass about 50% of the plasma membrane and are in-
volved in many cellular processes, such as signaling across the
membrane, cell–cell communication and the regulation of the access
of nutrients and ions to and from the cell [13]. The last decade has
provided increasing evidence that membrane lipids play important
roles in shaping membrane–protein function [14]. Protein crystal-
lography has further substantiated the importance of the lipid–pro-
tein interplay by reporting several structures with intimately
bound lipids; cholesterol, cardiolipins, phosphatidylglycerol (PG)
lipids, etc. have been found co-crystallized with both α-helical and
β-barrel membrane proteins, prompting the question of how these
lipids are influencing structure, function, and dynamics of mem-
brane proteins [15]. Specifically, structures of proteins with co-
crystallized cholesterol have been published over the past few
years, including G-protein coupled receptors (GPCRs) [15], and
most recently also transporters [16–18].

Recent research has revealed the existence of organization in the
plasma membrane, such as the presence of highly ordered,
cholesterol-enriched lipid raft microdomains [19,20]. Evidence also
shows that some proteins are prone to segregate into these microdo-
mains [19]. The relevance of such microdomains in the membrane,
and their role in modulation of embedded membrane proteins is still
much debated [21], though they are believed to be essential for many
biological processes [22] including neurotransmission [23,24] and amy-
loid diseases [25]. The presence of integral membrane proteins also
modulates the dynamics of the lipid environment. The lipids in the
first ring surrounding the protein, referred to as the annulus, have a
constrained motional freedom due to their interactions with the
cture of cholesterol.
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protein, and are known as annular lipids [26]. Additionally, lipids may
bind with a higher affinity in so called non-annular sites such as clefts
on the protein surface or at the interface between protein subunits.
Non-annular lipids are tightly bound and the sites are less accessible
to the bulk lipids. Therefore the exchange between non-annular lipids
and bulk lipids is significantly slower than what is observed for the ex-
change between annular and bulk lipids [26]. It has been speculated that
non-annular lipids may mediate protein function and/or oligomeriza-
tion [27].

The specific interaction between lipids in the membrane and
membrane proteins has been somewhat neglected in the study of
cell membranes and embedded proteins. This field of research has
traditionally been divided into two areas: i) studies of the biophysics
of lipid membrane components, often in simplified model systems
[28], and ii) studies of membrane protein structure and function
neglecting the effects of the surrounding membrane [29]. This
dichotomy ignores that essential biological processes can only be
understood in the complex interplay between membrane lipids and
membrane proteins. This division has been employed partly due to
unawareness of the interplay, and partly due to technical limitations.
New emerging technologies, both experimental, such as cryo-elec-
tron microscopy (EM) [30] and femtosecond crystallography [31],
as well as computational, such as coarse-grained (CG) methods [32,
33], continuum-MD [34] and advances in computing hardware [35,
36], has opened the door for exploring the intriguing question of
how lipids regulate properties of membrane proteins at a molecular
and atomistic level.

1.2. Cholesterol

Cholesterol is amajor constituent of animal plasmamembranes [37].
Cholesterol contains a rather rigid planar tetracyclic ring with an
angular methyl group on one side and an isooctyl chain attached to
C17 as well as a small head group consisting of a β-hydroxyl group at
C3 (see Fig. 1). Cholesterol modulates membrane fluidity and mem-
brane thickness, and is non-randomly distributed in the membrane
with a preference for ordered microdomains [37]. A large number of
membrane proteins, including receptors [27], ion channels [38],
transporters [39,40] and peptides [41,42], have been shown to be affect-
ed by the presence of cholesterol. Modulation of proteins by cholesterol
can either be direct through binding of cholesterol to the protein or
indirect through changes in the physiochemical properties of the
membrane, such as the fluidity and membrane thickness, or it can be
a combination of both [38]. To distinguish between direct and indirect
effects, cholesterol can be substituted with other sterols that have
similar physiochemical properties but which may not fit into a
cholesterol binding pocket. Epi-cholesterol, which differs from
cholesterol with respect to the stereochemistry of the hydroxyl group,
and ent-cholesterol, which has inverted stereochemistry at all chiral
positions, are both widely used for this purpose [38]. Direct binding of
cholesterol to proteins can in principle also be measured using
radiolabelled cholesterol, although the insolubility of cholesterol in
water makes this a very difficult task [43]. Alternatively, a recombinant
His-tagged version of the proteins of interest can be used in combina-
tionwith affinity chromatography on nickel agarose columns, which al-
lows for separation of bound and free cholesterol. Fluorescent analogs of
cholesterol have similarly been used to study cholesterol binding, either
byusing intrinsically fluorescent sterols or cholesterolwith a chemically
linked fluorophore [38].

Based on proteins which are known to interact with cholesterol, a
cholesterol recognition/interaction amino acid consensus (CRAC)
pattern with the sequence (L/V)–X1–5–(Y)–X1–5–(K/R) has been
suggested to be related to cholesterol recognition [44]. The X1–5

segment can consist of 1 to 5 residues with an arbitrary sequence.
Similarly, an inverted CRAC motif, known as CARC and defined
as (R/K)–X1–5–(Y/F)–X1–5–(L/V), has also been suggested as a
cholesterol-recognition pattern [45]. The looseness of the definition
of the CRAC and CARC motifs make them difficult to use for reliable
prediction of cholesterol binding sites, although the predictive
value does increase if only protein segments close to the membrane
are considered [46]. A cholesterol consensus motif (CCM) has been
proposed for the GPCR family of proteins [47] based on the position
of a cholesterol molecule in the crystal structure of the β2-
adrenergic receptor. However, as the CCM has also been found in
GPCRs speculated to be only indirectly regulated by cholesterol as
well as GPCRs which are functionally active in cholesterol-free
Escherichia coli membranes, the predictive value of the motif may
be limited [48].

1.3. Computational approaches for studying cholesterol–membrane protein
interactions

In order to study any system with a computational tool the first
requirement is a reasonable starting structure. In the case of choles-
terol–membrane protein interactions, the 3D-structure of cholester-
ol is well known, and for a number of membrane proteins the
structures have also been characterized. For those systems where
the structure of the membrane protein is not available, tools like
homology modeling are applied to find a close model that can be
used in place of an experimentally determined structure [49].
Along with knowledge of the protein structure, it is crucial to know
the position of cholesterol with respect to the protein. However,
only very few 3D-structures have been published of a membrane
protein co-crystallized with cholesterol, and identification of specific
binding sites, if present, is necessary for studying the effects of
cholesterol on the protein. This knowledge is achieved either via
experimental techniques such as nuclear magnetic resonance
spectroscopy (NMR) [50], mass spectrometry based methods [51],
or through chemical cross-linking of sterols to residues in the
putative cholesterol binding site [52]. In addition to experiments,
computational methods, such as molecular docking has been used
to identify binding sites [49,53,54]. In a docking calculation a large
number of different cholesterol–protein complexes are generated
[55]. The complexes are then assessed based on a scoring function,
and the output corresponds to the best-scoring complexes. Since
most docking algorithms are not optimized for locating shallow
pockets on the protein surface and, in particular, do not take the
lipid environment surrounding a membrane protein into account,
thorough inspection and validation of the proposed cholesterol
binding modes should be performed. In this context, MD simulations
can be used to evaluate the quality of the proposed cholesterol
binding pockets. However, it should be noted that fairly long simula-
tion times on the order of hundreds of ns to μs may be needed to
obtain converged results [56], due to the rather slow lateral diffusion
of molecules in the lipid bilayer compared with molecules in water.
Alternatively, experimental validation of the proposed modes may
be performed, e.g., by investigating changes in cholesterol modula-
tion upon introduction of mutations in the proposed pocket(s).

MD simulations capture the time-dependent behavior of biological
macromolecules in full atomic detail. To perform the simulations, a
description of the potential energy landscape is required, and empirical
molecularmechanics forcefields (FF), are typically used for this purpose
[57]. Using the computer as a laboratory allows full control of all
variables in the system (e.g., lipid composition, oligomeric state of the
protein, presence of ligands) andmakes it comparably easy to introduce
changes in the studied system, such as point mutations. However, MD
methodology does suffer from three challenges; i) a time-scale problem
resulting in incomplete sampling of phase-space, ii) inherent
uncertainties in the empirical FF, and iii) approximations in the chemi-
cal systemwith regard to size and complexity. Dramatic improvements
in sampling and the underlying physical models [58] have nowadays
enabled atomic-level simulations at biologically relevant timescales
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[59]. Furthermore, biased MD methods are constantly being developed
to improve sampling and the exploration of the energy landscape.
They typically fall into two classes; either the time step is increased by
eliminating the fastest motions of the molecules by use of CG FFs [60,
61], or the energy landscape is manipulated by adding biasing forces
to accelerate the events of interest [62]. Multi-scale MD simulations, in
which CG simulations and all-atom (AA) simulations are combined,
can thus be performed to simulate relevant timescales [63,64]. In
terms of investigations of membrane proteins, a promising example of
this is to use CG MD simulations for the rather slow process of lipid
bilayer self-assembly around the protein followed by AA MD simula-
tions to study the protein–lipid interactions in atomistic detail [65].
Computational studies of cholesterol and membrane proteins
necessitate FFs which have been parameterized to describe the
potential energy landscape of proteins and lipids, as well as protein–
lipid interactions. Among the popular choices for such simulations are
the atomistic CHARMM [66,67] and AMBER [68,69] FFs and the CG
MARTINI FF [70,71], all of which include compatible parameters for
cholesterol [71–73]. Most MD studies on protein–lipid interactions are
based on single-component bilayers, although the increase in computa-
tional power and available parameters ismoving the field towardsmore
realistic membrane models. Parameters for a large number of lipid
membrane components have recently been included in the MARTINI
FF [33], which opens up the possibility of performing simulations with
very large, complex, and in vivo like membranes.

2. MD studies investigating how cholesterol modulates membrane
protein function

In the following sectionwewill review a number of studies aimed at
investigating the interactions between cholesterol and membrane
proteins and peptides by applying computational tools and focusing
on the effect cholesterol plays on membrane protein and peptide func-
tion. We have included, to the best of our knowledge, all available com-
putational molecular dynamics simulation studies, which have focused
on how cholesterol in themembrane affects the function of membrane-
Fig. 2.Cholesterol binding to nAChR. The transmembrane domain of nAChR is shown from
the extracellular side. Each subunit is colored in a different shade of red. The cholesterol
molecules occupying the three binding sites in each subunit as identified by Brannigan
et al. [53] are shown in blue colors. The PDB-file used for creating the figure is Dataset 1
from Brannigan et al. [53].
spanning proteins, however, excluding studies of the GPCRs which are
covered separately in this issue [74]. This provides an overview of
both the range of techniques applied in such MD studies as well as the
types of problems that may be tackled through a computational
approach. There are also a number of computational studies in the
literature concerning the influence of proteins on the properties of
cholesterol-containing membrane, such as domain formation, as well
as MD studies of the influence of cholesterol on proteins that are
membrane-anchored, rather than membrane-spanning. However, a
review of these studies is beyond the scope of this account.

2.1. Ion channels

Ion channels allow passive diffusion of ions across lipid membranes.
A variety of ion channels have been shown to be sensitive to the level of
membrane cholesterol. For the majority of channels, cholesterol
suppresses channel activity e.g., by decreasing the probability of
opening, the conductance, or the number of active channels present in
the membrane [38]. However, for some channels, such as the nicotinic
acetylcholine receptor (nAChR) and the γ-aminobutyric acid type A re-
ceptor (GABAAR), cholesterol is a requirement for the ligand-mediated
channel activity [75,76].

2.1.1. Cys-loop receptors
nAChR is a ligand-gated cation-selective pentameric channel in the

cys-loop superfamily [77]. It has been shown that the conformational
equilibrium of nAChR is modulated by anionic lipids and cholesterol
[78]. Incorporation of cholesterol into the bilayer enhances the function-
al activity of nAChR in reconstituted lipid vesicles, and the nAChR-
mediated ion flux increases proportionally to the amount of cholesterol
in the membrane up to a certain concentration threshold [75].
Furthermore, photolabeling studies have shown that sterols interact
directly with the lipid-exposed transmembrane helices in nAChR [79].
In order to determine potential locations for cholesterol binding sites,
Brannigan et al. performed a docking study of cholesterol into nAChR
[53] and found three buried non-overlapping sites per subunit, two
inside the subunit and one at the interface between subunits (see
Fig. 2). All sites correspond to gaps in the electron density of a 4 Å
resolution structure of nAChR, gaps which have previously been specu-
lated to be occupied by water. MD simulations of nAChR illustrated that
the gaps between the transmembrane helices observed in the crystal
structure collapsed if the gaps were initially filled with water whereas
simulations with cholesterol bound in the gaps produced results that
are more consistent with the experimental structure [53]. Additionally,
contacts previously speculated to be important for gating were also
observed to be maintained more consistently when cholesterol was
included in the simulations. Hence, the results suggest that nAChR can
bind up to 15 cholesterol molecules and that cholesterol may aid in
shifting the conformational equilibrium towards functionally relevant
conformational states. The deeply buried binding sites described in the
study could potentially be very difficult to access experimentally due
to a slow exchange rate of cholesterol with the bulk environment,
which serves as an example of how computational techniques may be
used to investigate scenarios which are otherwise inaccessible. There
are no CRACmotifs in the transmembrane part of nAChR [45]. However,
the suggestion of the CARCmotif as an indicator of a cholesterol interac-
tion site was actually made based on studies of nAChR, in which a CARC
motif was found in oneof the transmembrane helices [45]. Interestingly,
the residues in this motif partially overlap with one of the three sites
found in theMD study by Brannigan et al., although the potential impor-
tance of this motif was not discussed in their paper, since the paper was
published several years before the CARCmotif was first mentioned [53].

In another MD study with simulations of nAChR in a membrane
containing both anionic lipids and cholesterol [80], several annular
and non-annular cholesterol binding sites were observed both at
the protein lipid interface and between subunits. In this context

Image of Fig. 2


Fig. 3. CRAC motifs in the cytosolic part of the BK channel forming protein Cbv1. A single CTD (PDB code 3NAF [84]) is shown in tan with the residues in CRAC4 to 10 highlighted as dif-
ferently colored spheres. The three other CTDs in the tetrameric channel are shown as a white surface and the tetramer is viewed from the side such that the transmembrane part of the
channel would be positioned above the four CTDs.
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any cavity within a subunit or between subunits was defined as non-
annular. Cholesterol was not observed to reach the more buried sites
inside the subunits, suggested in the above-mentioned study, al-
though it cannot be excluded that this is due to the rather short sim-
ulation time of 10 ns. Overall, the two studies both point to the
modulating effect of cholesterol on nAChR through direct interac-
tions by binding to either annular or non-annular sites.

The function of another member of the cys-loop superfamily,
GABAAR, has also been shown to be modulated by cholesterol [76,
81]. Interestingly, both depletion and enrichment of cholesterol de-
creases the potency of the receptor for the endogenous ligand
GABA [76]. It has been speculated that the decreased potency at
low cholesterol concentrations may reflect direct interactions
between GABAAR and cholesterol, whereas the decreased potency
at high cholesterol concentrations may be due to changes in the
physical properties of the membrane, such as fluidity and thickness
[76]. Similar to the studies of nAChR, possible cholesterol binding
sites on GABAAR have been investigated through the use of docking
calculations and MD simulations [49]. Since no high resolution
structures existed for GABAAR at the time of the study, a homology
model based on the crystal structure of a bacterial glutamate-gated
chloride channel (GluCl) was used for the simulations. GluCl has
been crystallized with a lipophilic agonist, ivermectin, bound in the
interface between the transmembrane subunits [82]. Two models
of cholesterol-bound GABAAR were constructed, one in which
cholesterol was placed according to the position of ivermectin in
the crystal structure of GluCl and one based on docking of cholesterol
to GABAAR [49]. The two models predict the same binding pocket,
but differ in the orientation and tilt of cholesterol within the pocket.
MD simulations of cholesterol-bound GABAAR led to two instances of
cholesterol unbinding and rebinding in the predicted pocket with a
binding mode similar to the docked conformation. Overall, the
simulations suggest the existence of a deeply buried pocket in
which cholesterol is generally stable although it fluctuates between
several orientations. Furthermore, it was observed based on
measurements of the pore radius that cholesterol tends to promote
pore opening, which may explain the suggested direct effect of
cholesterol on GABAAR. Although this study is focused on the direct
effect of cholesterols on GABAAR, indirect effects of cholesterol on
membrane properties could also be investigated with current
developments being made for improved lipid force fields that will
enable reliable CG and AA multi-scale simulations.
2.1.2. Voltage gated ion-channels
Large conductance, Ca2+- and voltage-gated K+ channels, also

known as “big potassium” (BK) channels, are found in most human
cell membranes and control a variety of biological processes [83].
BK channels have a tetrameric structure and consist of a voltage-
sensing transmembrane region and a large C-terminal intracellular
part, which is responsible for sensing of Ca2+ and other intracellular
stimuli [84]. In a study by Singh et al. [85], the structural basis for
cholesterol inhibition of BK channels was investigated for the BK
channel forming protein Cbv1 by a combination of MD simulations,
site-directed mutagenesis, and single channel electrophysiology.
The study showed that cholesterol action is mediated by the cytosol-
ic C tail domain (CTD), in which seven CRAC motifs, named CRAC4 to
10, are present (see Fig. 3). Specifically, truncation and mutation
experiments showed that cholesterol sensitivity is mainly provided
by the membrane-adjacent CRAC4, although CRAC5 to 10 were also
shown to play a role in the cholesterol-BK channel interaction. MD
simulations were performed to identify the interactions involved in
ion channel-cholesterol recognition. Simulations of four versions of
CTD with cholesterol placed in the vicinity of the CRAC4 motif were
performed; full-length CTD (WT Cbv1 CTD), a C-terminally truncated
version containing only CRAC4 (Trcbv1 CTD-CRAC4), and two differ-
ent cholesterol insensitive mutants, Y450F and K453A, both with
mutations in the CRAC4 motif. For each simulation system, three
independent, rather short, simulations of 5 ns each were performed.
Comparison of the results from the simulations of each of the four
systems showed that in theWT Cbv1 CTD and Trcbv1 CTD-CRAC4 sim-
ulations, which correspond to cholesterol-sensitive ion channel con-
structs, cholesterol was more mobile than in the simulations with
the cholesterol-insensitive mutants. Based on this, the authors sug-
gest that an increased entropic penalty for the mutants may contrib-
ute to the experimentally observed lack of cholesterol sensitivity for
these constructs. Additionally, the lack of hydrogen bonding
between the cholesterol hydroxyl and residue 453 in the K453A
mutant causes a reorientation of cholesterol, which could also be a
contributing factor to the lack of response to cholesterol in this
mutant. Thus, it was possible to hint to the origin of cholesterol
interaction even from these relatively short simulations. Increasing
computational resources enabling the possibility of running
simulations for longer time scales provide a promising future for
application of computational tools to get a deeper understanding of
the role of cholesterol in BK channel function.

Image of Fig. 3


Fig. 4. Cholesterol binding to the Kir2.1 channel. The Kir2.1 channel is shown in cartoon
representation with the four subunits in the tetramer in different shades of red. The resi-
dues identified by the MD simulations to be within 4 Å of cholesterol are shown in blue
surface. The arrows point to the two different binding regions that were identified by
Rosenhouse-Dantsker et al. [93]; the transmembrane binding region between the differ-
ent subunits (region 1, cyan), and the binding region between the transmembrane and
the cytosolic domain (region 2, purple). PDB code of protein structure: 2QKS [94].
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A recentMD study on cholesterol interactions with themitochon-
drial voltage-dependent anion channel (VDAC) displays how the
advances in computational power and algorithms increase the acces-
sible simulation times and thus enable more converged results to be
obtained [54]. Experiments have shown that VDAC binds cholesterol
directly, and it has been suggested that sterols are essential for
proper folding and activation of mitochondrial VDACs [86,87]. In
the computational study of VDAC, cholesterol was docked into five
different sites on the membrane-exposed surface of VDAC, according
to positions determined by NMR to be involved in cholesterol
binding [50]. Five independent 100 ns simulations were performed
of VDAC embedded in a 1,2-dioleoyl-sn-glycero-3-phosphocholine
(DOPC)/cholesterol lipid membrane with a cholesterol molecule
bound in all five sites simultaneously. To assess the effect of
cholesterol on VDAC the results were compared to five independent
100 ns simulations of VDAC with no cholesterol bound in either of
the proposed sites. For the cholesterol-bound VDAC system, each of
the five sites was essentially occupied for the entire 100 ns in at
least three of the simulations. However, unbinding was observed in
some instances, suggesting that some of the sites may be low-
affinity binding sites. If only a single simulation had been performed
for each of the two simulation setups, such unbinding events might
not have been observed, which highlights the importance of running
multiple independent simulations to obtain improved sampling and
consistent results. In one instance, replacement of one of the bound
cholesterol molecules with another cholesterol from the membrane
occurred, which substantiates the validity of the docking approach.
In general, no large differences between the simulations with
cholesterol bound and those without were observed. Small changes
in the flexibility of the protein were observed when measuring the
root-mean-square fluctuation for each residue, corresponding to
cholesterol stabilizing VDAC. Additionally, the size of the pore
through the channel was also slightly larger in simulations including
cholesterol. However, the ion diffusion through the pore and the po-
tential of mean force for movement of ions through the pore were
very similar, and thus no changes in channel activity as a conse-
quence of the presence of bound cholesterol were observed. In
spite of the reasonably long simulations performed in the study, it
is possible that further sampling is needed to observe cholesterol-
induced effects, and in this context, methods that accelerate the ex-
ploration of the energy landscape, such as accelerated MD [88],
could be beneficial.

2.1.3. Kir channels
Strongly inwardly rectifying K+ (Kir)-channels are found in a

wide variety of cells, where they, among other things, are involved
in the maintenance of the membrane resting potential [89] as well
as regulation of the action potential duration in excitable cells. Kir
channels consist of four subunits with each subunit containing two
transmembrane regions, a pore-forming loop, and cytosolic amino-
and carboxy-terminal domains [89]. It has been shown that the ac-
tivity of Kir2 channels is decreased in response to cholesterol [90].
Although this effect could be caused by changes in the properties of
the lipid membrane, several studies have indicated that cholesterol
may also affect Kir channels through direct binding. It has been
shown that cholesterol binds to purified KirBac1.1 channels [91]
and that cholesterol and epi-cholesterol have opposite effects on en-
dothelial Kir currents [89]. Furthermore, ent-cholesterol has no effect
either on KirBac1.1 or Kir2.1 activity [92], all of which points to a di-
rect effect of cholesterol. Rosenhouse-Dantsker et al. used a combi-
nation of molecular docking, MD simulations, and mutagenesis
studies to determine putative cholesterol binding sites for the
Kir2.1 channel [93]. Based on clustering of the results of the choles-
terol docking, six possible binding sites were suggested, and a
50 ns MD simulation was performed for each of the binding modes.
During the simulations, five of the initially proposed modes merged
into two distinct binding regions while a sixth position led to disso-
ciation of cholesterol from the protein. As the authors also mention,
this highlights the importance of combining docking andMD simula-
tions, rather than relying on the docking results alone. One of the
cholesterol-binding regions is positioned between transmembrane
helices from two adjacent subunits, while the other region is found
between the transmembrane domain and the cytosolic domain (see
Fig. 4). The two regions do not contain CRAC motifs or CCMs
and would thus probably not have been predicted to be important
for cholesterol binding based on sequence analysis. From the
simulations, binding enthalpies and free energies of binding were
calculated using a Molecular Mechanics/Poisson–Boltzmann Surface
Area (MM/PBSA) approach and the results suggested a slight prefer-
ence for region 1 over region 2. However, the binding free energy for
region 1 is quite close to 0, corresponding to a weak binding affinity.
An analysis of the contact frequency between the residues in the two
regions and lipids/cholesterol revealed that while cholesterol has an
average of 1.7 contacts/residue the phospholipids have less than 0.4
contacts/residue. This indicates that the two regions correspond to
cholesterol-selective non-annular sites in which phospholipids do
not bind for extended periods of time. Residues predicted to interact
with cholesterol in the two possible binding regions were mutated
and basal currents were measured in the presence and absence of
cholesterol. In support of the MD results, a number of mutations in
each region caused significant changes in cholesterol sensitivity,
suggesting that they are important for cholesterol recognition. The
study thus serves as a good example of how computational studies
can provide hypotheses on possible binding regions, which can
then be tested experimentally. The two suggested cholesterol bind-
ing regions overlap with structural elements that have been pro-
posed to be involved in channel gating, which may explain how
cholesterol binding to these sites can cause a decrease in the channel
activity.

Image of Fig. 4


Fig. 5. The structure of SERCA and the thapsigargin binding site (PDB code 2C8K [101]).
The transmembrane helices in SERCA are shown in green, while the three cytosolic do-
mains are shown in red, blue and yellow. Thapsigargin is shown in sticks with orange-col-
ored carbon atoms and the residues in the binding pocket are shown as a white surface.
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2.2. Aquaporins

Similar to ion channels, aquaporins allow water to passively
move from one side of the membrane to the other. Aquaporin 0 is a
water transport protein found in high concentrations in the cells in
the human ocular lens where it exists as a tetramer [95]. The molar
ratio of cholesterol to phospholipid in the ocular lens ranges from 1
to 4, which is in contrast with plasma membranes of typical eukary-
otic cells, which have ratios in the range of 0.5 to 1 [96]. MD
simulations of an Aquaporin 0 tetramer in a pure 1,2-dimyristoyl-
sn-glycero-3-phosphocholine (DMPC) bilayer and a mixed
DMPC:cholesterol bilayer (1:1 ratio) was performed by O'Connor
and Klauda to investigate how Aquaporin 0 has evolved to prefer
membranes with high levels of cholesterol [97]. During the 100 ns
simulations, Aquaporin 0 remained stable both in the presence and
absence of cholesterol according to the root-mean-square-
deviation of the atomic positions. In the simulation with a
cholesterol-containing membrane, larger hydrogen bond
occupancies and longer hydrogen bond lifetimes between
Aquaporin 0 and the surrounding lipids were observed than in the
simulation with a cholesterol-free membrane, indicating that dy-
namical properties change with the presence of cholesterol. Further-
more, several aromatic residues on the surface of Aquaporin 0 were
seen to form interactions with cholesterol. Both of these observa-
tions suggest that the membrane-exposed parts of Aquaporin 0
have evolved to favor cholesterol-rich membranes. Although not
mentioned by the authors, the protein contains both a CRAC motif
(residues 143–153) and a CARC motif (residues 85–95), however,
these residues are not among the ones observed by the authors to
interact most strongly with cholesterol. Thus, for Aquaporin 0 these
motifs do not appear to play an important role in cholesterol
recognition.

2.3. Membrane transport proteins

In contrast to ion channels, transport proteins actively transport
their cargo across the membrane. Cholesterol modulation has been
observed experimentally for both primary active transporters, such as
the sarco/endoplasmic reticulum Ca2+-ATPase (SERCA), which uses
ATPhydrolysis to drive the transport, and secondary active transporters,
such as the human dopamine and serotonin transporters, which use the
ion gradient to facilitate the counter-gradient transport.

2.3.1. P-type ATPases
SERCA facilitates the reuptake of Ca2+ from the cytosol into the

lumen of the sarco- or endoplasmic reticulum. The membrane in
the sarco- and endoplasmic reticulum is rather thin and contains a
low amount of cholesterol compared to other mammalian
membranes, and SERCA is thus expected to function optimally at
low cholesterol concentrations [98]. In line with this, cholesterol
overload causes inhibition of SERCA activity [99]. However, it is
unclear whether this is an indirect effect due to increasedmembrane
thickness or an effect of direct cholesterol binding. In a recent study,
a combination of AA and CGMD simulations were applied to address
this question [100]. To locate possible cholesterol binding sites, 30
independent CG MD simulations of SERCA embedded in a 1-
palmitoyl-2-oleoyl-sn-glycero-3-phosphocholine (POPC)/cholester-
ol bilayer were performed. Each simulation was initiated with a
self-assembly of the bilayer around the transmembrane part of the
protein. Based on the CGMD simulations, two cholesterol–SERCA in-
teraction hotspots were defined; a pocket located near the C-
terminus of SERCA and a pocket previously found to bind sarcolipin.
Binding of cholesterol in the former pocket was observed to improve
the lipid packing around SERCA. However, due to the outline of the
pocket, the authors deem it unlikely that occupation of this pocket
by cholesterol would affect SERCA activity. Similarly, for the
sarcolipin binding pocket, the observed interactions between
cholesterol and SERCA would not explain why cholesterol has a
different effect on SERCA than other lipids present in the membrane.
It is known from X-ray crystallography that SERCA also has a pocket
capable of binding the high-affinity inhibitor thapsigargin (see
Fig. 5). Since thapsigargin and cholesterol share several structural
features, it could seem plausible that cholesterol may bind in the
same pocket. However, the cholesterol occupancy of this pocket
was very low during the CG MD simulations. To further explore the
possibility of cholesterol binding in the thapsigargin pocket, atomis-
tic simulations of SERCA with cholesterol bound in the thapsigargin
pocket were performed. The simulation revealed that cholesterol is
very flexible in the pocket, and both rotation around the longitudinal
axis of the molecule and dislocations in the pocket were observed. It
was therefore concluded that cholesterol is not suited to occupy the
pocket in a thapsigargin-like manner. Overall, based on the CG and
AA MD simulations, the authors suggest that cholesterol affects
SERCA exclusively through an indirect effect and that SERCA contains
no regulatory cholesterol binding sites [100].

2.4. Peptides

Peptides also play a fundamental role in regulating various pro-
cesses in relation to cell membrane function and malfunction. Amy-
loid peptides are speculated to be cytotoxic due to a disruption of
the lipid bilayer through oligomer formation and aggregation,
resulting in several harmful diseases, such as Parkinson's disease
(α-synuclein peptide), diabetes mellitus type 2 (amylin peptide)
and AD (Aβ peptide) [25]. Other peptides serve protecting roles,

Image of Fig. 5


Fig. 6. Different possible stages of amyloid fibril formation. Amyloid fibrils (orange) are formed from oligomers, frommonomers adding to ends of fibrils, or from peptides. The role of the
membrane infibril formation and in the toxicity of the oligomers is notwell understood yet. A schematic representation of amulticomponentmembrane (blue, purple and green) is shown
with cholesterol represented in brown spheres.
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e.g., in the human innate immune system (e.g., LL37) [102] and in
fungi (e.g., antimicrobial peptides) [103], where they punctuate
the cell membrane of intervening pathogens. The mechanism by
which amyloid and antimicrobial peptides function is largely un-
known, however, transmission electron microscopy (TEM) and
atomic force microscopy (AFM) have revealed circular assemblies
suggested to form membrane pores, which cause the contents of
the cell to leak [104,105]. Similar to membrane proteins, the lipid
composition of the cell membrane has been found to influence pep-
tide function; especially cholesterol and gangliosides have been
found to play important roles in regulation [41,106,107]. MD studies
of how cholesterol may influence two selected amyloid peptides are
reviewed below.

2.4.1. Aβ peptide
Diseases associatedwith old age are often suspected to be influenced

by cholesterol, and this is also the case for AD [12]. Although it is well
established that the deposition of Aβ fibrils in the brain is characteristic
of AD, it is not clear if the toxic species are the fibrils themselves or the
oligomer intermediates that are formed in the early stages of the fibril
formation (see Fig. 6) [108–110]. However, evidence does point to the
oligomers as being the toxic species. There is no consensus on how olig-
omers are formed: in solution, on membrane surfaces, or within the
membrane. Thus, MD studies that investigate the role of cholesterol in
AD either focus on how cholesterol affects oligomer formation on the
surface of lipid membranes or when the peptides are embedded in
lipid membranes [111–114].

The influence of cholesterol on AD may be caused either by indirect
effects of cholesterol on the membrane properties or other membrane
components, or by cholesterol interacting directly with Aβ peptides. A
number of different simulation studies have investigated the possibility
of a direct interaction between cholesterol and Aβ, focusing either on
specific interactions between cholesterol and the assumed
cholesterol-binding domain of Aβ, corresponding to residues 22–35
[111,115–117] or on the effect of cholesterol on Aβ membrane pores
[112,114]. In terms of indirect effects, an MD study has also looked at
how Aβ insertion is affected by differences in the distribution of
cholesterol in the inner and outer membrane leaflets [118]. Additional-
ly, the effect of cholesterol on the conformation of the ganglioside GM1,
whichhas been shown to form clusters that bindAβ [119], has also been
explored through MD simulations [120].

There is strong epidemiological evidence supported by several
experiments on the role of cholesterol in the toxicity of AD and
cholesterol-lowering drugs are considered as potential drug candi-
dates for the prevention of AD [12,121,122]. However, depending
on how experiments and simulations are designed and interpreted,
there is also evidence for protective effects of cholesterol with re-
gard to AD [115,123,124]. The main cause of the ambiguity is
whether membrane association and insertion of Aβ is interpreted
as toxic, due to the formation of membrane-spanning pores, or as
protective, due to the decrease in free peptides, which may form fi-
brils. Thus, experimental and computational studies have observed
that cholesterol prevents Aβ from leaving the membrane environ-
ment and entering into solution and, based on this, suggested a pro-
tective role of cholesterol in terms of Aβ fibril formation [115,123,
124]. Cholesterol has also been observed to promote membrane-
association of Aβ peptides in another MD simulation study, al-
though the conclusion in this case was that this would facilitate
Aβ aggregation [116]. In contrast, a CG MD study, investigating the
energy associated with Aβ insertion, found that high concentrations
of cholesterol in the outer membrane leaflet favors extrusion of the
N-terminus of Aβ, which could lead to aggregation [118]. It is possi-
ble that this contrasting result partly is caused by the use of a CG
representation of the peptide, as this prevents changes in the sec-
ondary structure. In support of cholesterol promoting neurotoxicity,
MD simulations of an octameric pore, made up of residues 22 to 35
of eight Aβ peptides, showed that cholesterol facilitates tilting of
Aβ22–35 which is required for channel formation [112]. Based on
the results, it was proposed that inhibitors that target cholesterol–
Aβ interactions and prevent Aβ insertion could be used in the treat-
ment of AD. This is supported by a recent combined experimental
and computational study in which the anticancer drug bexarotene,
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which shares structural similarities with cholesterol, was seen to
prevent Aβ pore formation [125]. It should be noted that computa-
tional studies on Aβ channels needs to be interpreted with caution
as there is very little structural information on Aβ channels. Thus,
models may not be accurate. In general, MD simulations are limited
by the accuracy of the starting structure, and the choice of the
starting structure of Aβ may influence the results strongly, particu-
larly in studies focused on how cholesterol influences the secondary
structure of Aβ [111,113,116]. So far, NMR structures of Aβ mono-
mers have only been characterized in solution or in organic solvents
which mimic a membrane environment, and not in the presence of
an actual membrane environment. In the case of Aβ fibrils, the first
attempt to characterize the molecular structure of a fibril in the
presence of phospholipid vesicles report significant differences
compared to the reported fibril structures characterized in solution
[126]. In light of this, careful considerations should be made when
using Aβ monomer structures obtained in solution for MD studies
of Aβ in membrane environments.

There are many uncertainties in the understanding of AD. Hence,
identification of the toxic species in AD, the mechanism and envi-
ronment of oligomer formation, the role of membrane components
like cholesterol and gangliosides, and the lack of structural knowl-
edge of the peptides and peptide–lipid complexes, all pose signifi-
cant challenges in designing experiments and simulation studies.
However, advances in experimental techniques and improved com-
putational resources lead the way towards untangling the coopera-
tive effects in these systems and refining our understanding.

2.4.2. Amylin
Amylin is a 37-residue peptide hormone, which is stored along with

insulin by the β-cells in the pancreas. In response to elevated blood-
glucose levels, amylin and insulin are secreted by the β-cells, both con-
tributing to maintaining glucose homeostasis. In diabetes mellitus type
2 patients, amylin forms extracellular deposits termed islet amyloid,
which are mainly composed of β-sheet rich amyloid fibrils formed by
amylin, but which also contains different lipids, glucosaminoglycans,
and heavy metal ions [127,128]. During the formation of these highly in-
soluble amyloid fibrils from amylin monomers, a cytotoxic event occurs
whichhas beenproposed to be causedby the formationof toxic oligomer-
ic membrane pores made up of amylin monomers [104]. This hypothesis
is based on the observation of circular oligomer structures by TEM [105]
and AFM [104] combined with membrane leakage experiments showing
the membrane permeating ability of these circular structures [104,129].
Very little is known about the actual mechanism by which the cytotoxic-
ity occurs, however it is clear that different components of the plasma
membrane can modulate this process. The presence of anionic lipids
such as gangliosides has been shown to promote formation of amylin fi-
brils [106], while the presence of cholesterol in the membrane has been
shown to reduce the rate of formation of amylin fibrils [10]. Surface ten-
sion experiments have revealed that the first 19 residues in the N-
terminal are responsible for the interaction of amylinwith themembrane,
while residues 20–29 are responsible for initiating aggregation anddo not
interact with the membrane [130,131]. Xu et al. took advantage of this
knowledge to study the aggregation of amylin inmixed anionic and zwit-
terionic membrane bilayers with and without cholesterol [132]. They
employed MARTINI CG MD simulations to study the self-assembly of 20
truncated amylin peptides containing the N-terminal 19 residues in a
simulation system with 512 lipid molecules and varying concentrations
of cholesterol. Eachpeptidewas constrained to anα-helical structure dur-
ing the simulations, which is consistent with an NMR structure of amylin
bound to a sodium dodecyl sulfate micelle [133]. Without cholesterol in
the simulation, peptide aggregates were formed in the membrane in the
form of a pore-like structure, however, when cholesterol was present,
the peptide aggregateswere formed on the surface of themembrane. Fur-
thermore, a difference was also observed in the size of the aggregates;
without cholesterol in the system, the aggregates were larger than
when cholesterol was present. This is, however, in contrast to the obser-
vation by AFM that the size of aggregates on amembrane containing cho-
lesterol was larger than on a membrane without cholesterol [10]. It was
suggested by the authors, based on radial distribution functions from sim-
ulations of two-component systems, that the effect was caused by the af-
finity of cholesterol for the lipids over amylin, thereby pushing amylin out
of themembrane. As also noted by Xu et al., due to the CG representation
employed in this study, the precise internal conformation of the amylin
pore cannot be investigated using this approach. Furthermore, it is also
possible that the constrained conformation of the peptide has an influ-
ence on the results, as experience in our group is that the position of a
MARTINI CG representation of the N-terminal 19 residues of amylin in a
phospholipid bilayer depends highly on the initial conformation of the
peptide (unpublished results).

2.5. Other proteins

In this section, a few studies of other types ofmembrane proteins are
described again focusing on how cholesterol may affect the protein
properties, as revealed from MD simulations.

2.5.1. The transmembrane domain of ErbB2
The epidermal growth factor receptor (or ErbB) family is an important

class of receptor tyrosine kinases involved in cell proliferation and differ-
entiation, and implicated in several types of cancer [134,135]. The binding
of ligands to the extracellular domain of the receptor triggers the dimer-
ization of receptor monomers, which in turn leads to activation. Experi-
mental studies have revealed that the transmembrane domain of ErbB,
which consists of a single helix, plays an active role in the dimerization
process and associate strongly in the absence of extracellular ligand-
binding and cytoplasmic kinase domains [136]. Growth factor receptors
have been shown to be localized in cholesterol-rich microdomains in
the membrane, and the cholesterol content has an effect on ligand bind-
ing as well as kinase activity [137]. The influence of cholesterol on the
transmembrane domain of the ErbB2 receptor has been studied using
CG MD simulations of both the monomer and dimer in 1,2-dipalmitoyl-
sn-glycero-3-phosphocholine (DPPC) bilayers with varying amounts of
cholesterol [138]. For a single monomer, the simulations showed that in-
creasing the cholesterol content in themembrane causes a decrease in the
tilt angle of the helix with respect to the membrane normal, making it
closer to parallel with the membrane normal. This is expected, since the
increased cholesterol content causes a thickening of the membrane. The
transmembrane helix from ErbB2 contains two GxxxG sequences that
have been suggested to be important for dimerization, as the lack of
side chains allow the two helices to pack closer. In the study, it was ob-
served that cholesterol generally packs more closely around the helix,
than DPPC, and that the position of cholesterol along the membrane nor-
mal overlaps with the position of each of the two GxxxG sequences.
However, at one particular position, namely Phe671 in the C-terminal of
the helix, packing of cholesterol was not observed, leading to an uneven
distribution of cholesterol around the helix. Based on Monte Carlo simu-
lations, a free energy profile for the association of two helices was obtain-
ed for varying concentrations of cholesterol. The observedmechanism by
which the dimer is formed appears to be highly dependent on the choles-
terol content in themembrane. Thus, with no cholesterol present, Phe671
from each helix is first seen to associate, followed by a rotation of the he-
lices which removes the Phe residues from the interfaces, and allows a
closer packing of the helices. With 20% cholesterol in the membrane,
the N-termini of the helices initially associate with the Phe residues
pointing away from each other followed by a close packing of the remain-
ing part of the helices. Increasing the cholesterol content further to 30%,
causes dimerization to occur via another pathway. Thus, in this simulation
the helices are almost aligned with the membrane normal and form a
dimer in which the two phenyl rings points towards each other. Overall,
the simulations therefore point to cholesterol having a modulating effect
both on the association pathway and on the resulting dimer interface.



Fig. 7. The three states of phospholamban in the membrane. Representative structures of phospholamban in a homopentamer (PDB code 2KYV [143]), in the inactive T state (PDB code
2KB7 [142]) and in the active R state (PDB code 2LPF [144]) are shown.
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Furthermore, the study gives insight into how residueswhich are not part
of the final dimer interface, such as Phe671,may still influence the dimer-
ization process, e.g., by forming the initial contacts. The results presented
in this paper aremuch in linewith our studies on SERCA embedded in dif-
ferent lipid bilayers [139], where we observed mutual adaption in the
lipid environment and for the protein, by adjusting lipid bilayer thickness
and protein tilting, respectively.

2.5.2. Phospholamban
Phospholamban is a 52-residue protein which inhibits the function of

SERCA [140]. The inhibitory effect is switched offwhenphospholamban is
phosphorylated. As previously mentioned, the activity of SERCA is influ-
enced by the presence of cholesterol in themembrane. Apart fromhaving
a direct effect on SERCA, cholesterol could also influence the activity of
SERCA by affecting the conformation and dynamics of phospholamban.
The effect of cholesterol on phospholamban was investigated in a study
where MD simulations of phospholamban in a POPC/cholesterol bilayer
were performed for five different concentrations of cholesterol between
0 and 50% [141]. Phospholamban is stored in the membrane as a
homopentamer but it is the monomeric form that is responsible for the
inactivation of SERCA [140]. The phospholamban monomer consists of a
transmembrane helix and a short cytoplasmic helix connected by a
small loop. Phospholamban has been shown to exist in twomajor confor-
mational states, T and R (see Fig. 7). In the T state, which is inactive, phos-
pholamban has an L-shaped conformation with the cytoplasmic helix
interacting with the membrane, while in the active, more disordered R
state, phospholamban is in an extended conformation [142]. The simula-
tions showed that in a pure POPC bilayer, phospholamban is flexible and
samples conformations in the vicinity of both the T and R states, although
conformations similar to the T state dominate. Increasing the cholesterol
content leads to decreased flexibility of the protein. Further analysis
showed that this is caused by an increased number of interactions be-
tween the cytoplasmic helix and themembrane, which keeps the protein
locked in an L-shaped conformation. The authors hypothesize that this is
likely caused by the ability of cholesterol to act as both a hydrogen bond
acceptor and donor, in contrast to POPC, which can only act as an accep-
tor. Interestingly, the cytoplasmic helix does contain a CRAC motif which
could also be part of the explanation for the increase in membrane con-
tacts observed for increased amounts of cholesterol. The effect of choles-
terol on the lateral diffusion of phospholamban was also determined for
the simulations and it was found that increased cholesterol led to a de-
crease in the lateral diffusion of phospholamban. This will most likely
have an effect on the dynamic interplay between phospholambanmono-
mers and pentamers, which will in turn affect phospholamban activity.
Thus, the results suggest that in this case cholesterol affects
phospholamban both through direct lipid–protein interactions and
through indirect changes of the membrane properties such as the lateral
mobility.

3. Discussion and future perspectives

The studies highlighted in this reviewdisplay the advantages and lim-
itations of using computational techniques, and in particular MD simula-
tions, to investigate the influence of cholesterol on membrane protein
function. It is clear that MD simulations can shed light on both direct
and indirect effects of cholesterol, as well as help to differentiate between
the two types of modulation. Several of the studies reveal that combining
docking calculationswithMD simulations can be a powerful approach for
locating non-annular cholesterol binding sites, which is particularly im-
portant since such sites may be difficult to predict based on experimental
data. As seen in the study of the Kir2.1 channel, residues important for
cholesterol binding can be suggested based on simulations and mutation
experiments can then be performed to test their relevance. This approach
could also be used to distinguish between relevant andnon-relevant sites,
ifmultiple potential binding sites are found in docking calculations and/or
theMD simulations. Based on the presented studies, non-annular choles-
terol binding sites do appear to be important for several different protein
families, as least within the group of ion channels. In terms of the impor-
tance of CRAC and CARC motifs in cholesterol recognition, no consensus
can be made from the presented examples, as some studies suggest that
cholesterol does bind in the vicinity of such motifs, while for others, this
is not the case. The difficulty of using such sequence patterns for
predicting cholesterol recognition sites, was recently highlighted in an
MD study where simulations showed that the amount of disorder in the
secondary structure of CRAC-containing peptides affect their ability to
bind cholesterol [145].

As detailed in this review, computational studies of the interactions
between cholesterol and membrane proteins and peptides hold great
promise. During the last couple of years, the applicability of MD simula-
tions has been enhanced due to an increase in computational power, ad-
vances in the massively parallel algorithms needed for simulations of
large systems, and the development of specialized hardware. This en-
ables MD simulation studies of membrane proteins to reach μs to ms
timescales, and allows simulations of large complex membranes.
Hence, future MD-based studies may aid in answering questions on
how microdomains are formed in the plasma membrane, the segrega-
tion of proteins into such domains as well as local and global effects of
cholesterol on membrane protein dynamics. Insight into the interac-
tions between cholesterol andmembrane proteins is continually gained
through the unraveling of high resolution structures of membrane
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proteins in complex with cholesterol. These structures may serve as
starting points for MD simulations, which then further explores the ef-
fects of cholesterol binding at an atomic level. Hence, models for choles-
terol (and other lipids as well) can be produced computationally,
suggesting direct interaction sites. These models should be challenged
through experiments, showing the synergy between theory and exper-
iments for studies of very complex chemical systems. In the future, it
can be imagined that such knowledge may find active use in new drug
design strategies, such as lipid replacement therapies [146] and for
drugs targeting non-annular lipid binding sites [125,147].

Transparency document

The Transparency document associated with this article can be
found, in the online version.
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