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The relation between viruses and the chemokine system is characterized by a complex blend of enmity and attraction.
Chemokines are key regulators of innate and adaptive immune responses against invading microorganisms, including
viruses. They act not only as immune system “traffic officers,” controlling leukocyte migration under both physiological and
pathological conditions, but also as fine orchestrators that modulate the induction, amplification, and cytokine-secretion
pattern of antiviral responses. However, viruses have succeeded in turning the chemokine system into an ally. During the
course of a long parallel evolution, viruses have captured from their hosts the genetic information for encoding chemokines
and chemokine receptors and have reprogrammed it for evading the control of the immune system. Moreover, selected viral
agents, most notably primate immunodeficiency retroviruses, have adopted chemokine receptors as essential gateways for
entry into their target cells. The endogenous secretion of chemokines is thus emerging as an important in vivo mechanism
of viral control, which is potentially inducible by effective vaccines. The deepening knowledge of the interactions between
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viruses and chemokines may lead to novel therapeutic and preventive strategies for the control of viral and inflammatory
diseases. © 2000 Academic Press

s
t
b
i
r
w

a
l
d
1
t
t
k
w
c
k
g
l
p
(
m
i
c
w
i
l

Chemokines constitute a growing superfamily of inter-
cellular messengers which play multiple roles in the
development and homeostasis of different organ sys-
tems, particularly the hematopoietic system, as well as in
the generation of both innate and adaptive immune re-
sponses. Moreover, chemokines are critically involved in
angiogenesis and tissue repair mechanisms. Based on
structural criteria, four families of chemokines have been
recognized, each showing a distinctive N-terminal cys-
teine motif. Most known chemokines belong either to the
CXC (or a) family, characterized by a two-cysteine motif
with an intervening amino acid, or to the CC (or b) family,

ith two contiguous cysteine residues. In addition, a C
or g) family, featuring a single-cysteine motif, and a

CX3C (or d) family, in which two cysteines are separated
y three intervening residues, have been described. A

ist of the human chemokines characterized to date is
resented in Table 1. From a functional standpoint, two
ajor groups of chemokines can be distinguished:

ousekeeping (HK) chemokines, which are generally ex-
ressed constitutively under physiological conditions
nd play essential roles in development and homeosta-

1 Also at Department of Clinical and Experimental Medicine, Univer-
ity of Bologna, 40138, Bologna, Italy.

2
 Address correspondence and reprint requests to author. Fax: 139-
02-26434905. E-mail: paolo.lusso@hsr.it.

0042-6822/00 $35.00
Copyright © 2000 by Academic Press
All rights of reproduction in any form reserved.

228
is, and proinflammatory (PI) chemokines, which are
ypically inducible and participate in the generation of
oth innate and adaptive immune responses. However, it

s increasingly evident that some chemokines play a dual
ole according to their cellular and tissue distribution, as
ell as to the stage of development of the organism.
Most physiological activities of chemokines are medi-

ted by the selective recognition and activation of cellu-
ar receptors belonging to the seven-transmembrane-
omain, G-protein-coupled receptor superfamily (Table
). The expression of functional chemokine receptors on

arget cells is as important as chemokine secretion for
he efficiency of the system. Signaling through chemo-
ine receptors is mediated by heterotrimeric G proteins
hich activate different cascades of intracellular signal

onduction. Based on their ligand specificities, chemo-
ine receptors can be classified into three major cate-
ories: specific (a single known ligand), shared (multiple

igands belonging to a single chemokine family), and
romiscuous (multiple ligands of different families)

Premack and Schall, 1996). Similar to chemokines, che-
okine receptors can be characterized as constitutive or

nducible; as a general rule, constitutive expression is
haracteristic of housekeeping chemokine receptors,
hereas inflammatory chemokines tend to recognize

nducible receptors that are either expressed at low
evels or absent on resting cells.
In addition to cellular chemokines and chemokine

https://core.ac.uk/display/82802344?utm_source=pdf&utm_medium=banner&utm_campaign=pdf-decoration-v1


229MINIREVIEW
receptors, several virus-encoded homologues have been
identified, which attests to the dualistic relation that
viruses entertain with the host chemokine system. In-
deed, chemokines represent pivotal elements in the or-
chestration of effective antiviral immune responses; how-
ever, viruses have evolved strategies to subdue chemo-
kines and chemokine receptors to their service, either by
hijacking and reprogramming them to fight the immune
system or by exploiting them as gateways for entry into
cells. In turn, the human hosts have recently started to
recapture the stolen information, by progressively unrav-
eling the strategies used by viruses for transforming

T

Human Chemokin

Family

Chemokine designation

Common System

C (g) Lymphotactin a,b XCL1
CC (b) I-309 CCL1

MCP-1 CCL2
MCP-2 CCL8
MCP-3 CCL7
MCP-4 CCL1
MIP-1a CCL3
MIP-1b CCL4
RANTES CCL5
Eotaxin CCL1
Eotaxin 2 CCL2
HCC-1 CCL1
HCC-2 CCL1
HCC-4 CCL1
MDC CCL2
TARC CCL1
DC-CK1 CCL1
MIP-3b/ELC CCL1
MIP-3a/LARC CCL2
SLC CCL2
TECK CCL2
CTACK/ESkine CCL2

CXC (a) GROa,b,g CXCL
PF4 CXCL
ENA-78 CXCL
GCP-2 CXCL
NAP-2 CXCL
Interleukin-8 CXCL
Mig CXCL
IP-10 CXCL
I-TAC CXCL
SDF-1a,b CXCL
BCA-1 CXCL
BRAK CXCL
Lungkine CXCL

CX3C (d) Fractalkine CX3C

a Based on chromosomal location.
b PI, inflammatory; HK, housekeeping.
chemokines into effective anti-inflammatory agents. This
review is focused on the complex interplay between
chemokines and viruses, two “dearest enemies” which
provide a unique paradigm of adaptive evolution for
survival.

Chemokines as fine orchestrators of antiviral immune
responses

Traditionally, chemokines have been viewed mainly as
immune system “traffic officers”, owing to their ability to
direct the physiological recirculation of leukocytes, as
well as to convene them at sites of tissue damage,
inflammation, or infection. In recent years, however, this

Their Receptors

Functionb Receptors

PI XCR1
PI CCR8
PI CCR2
PI CCR1,CCR2,CCR5
PI CCR1,CCR2,CCR3
PI CCR2,CCR3
PI CCR1,CCR5
PI CCR5
PI CCR1,CCR3,CCR5
PI CCR3
PI CCR3
PI CCR1
PI CCR1,CCR3
PI CCR1
HK CCR4
HK CCR4
HK ?
HK CCR7
HK? CCR6
HK CCR7
HK CCR9
HK CCR10
PI CXCR2
PI ?
PI CXCR2
PI CXCR1,CXCR2
PI CXCR2
PI CXCR1,CXCR2
PI CXCR3
PI CXCR3
PI CXCR3
HK CXCR4
HK CXCR5
? ?
? ?
PI CX3CR1
ABLE 1

es and

atica

,2

3

1
4
4
5
6
2
7
8
9
0
1
5
7
1,2,3
4
5
6
7
8
9
10
11
12
13
14
15
L1
concept has evolved with the increasing awareness of
the multiplicity of functions inherent to the chemokine
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system. The regulated expression of chemokines and
chemokine receptors influences not only the “space and
time” of the immune responses, but also their magnitude
and characteristics: chemokines selectively recruit both
immature progenitor cells and functionally competent
mature cells at specific anatomical sites (homing func-
tion), provide costimulation for cell activation (costimula-
tory function), induce or potentiate cellular effector
mechanisms (effector function), and influence the cyto-
kine-secretion pattern of immune responses (polariza-
tion function). Thus, chemokines can be envisaged as
bona fide orchestrators of both innate and acquired im-

une responses.
Homing function. Chemokines play a critical role in

leukocyte margination at the level of both adhesion to the
endothelial surface and extravasation (Baggiolini et al.,

994); in combination with selectins, integrins, and pro-
eoglycans expressed on the endothelial lining, they
dentify the specific “address” of leukocyte destination.
aradoxically, however, the high level of specificity of the
hemokine system is diminished by the remarkable re-
undancy and overlap which characterize its intricate
eb, particularly within the inflammatory subset: multiple

hemokines bind and activate an individual receptor,
hile multiple receptors are bound and activated by an

ndividual chemokine (Table 1); furthermore, multiple
hemokines and chemokine receptors can be simulta-
eously expressed in individual cells. A possible key for

nterpreting this apparent relinquishment of specificity is
he concept of “functional units” (Baggiolini, 1998). Some
hemokines indeed display a unique array of specifici-

ies that, altogether, target a defined group of immune
ells. Thus, they behave as “task-force instructors” that
ecruit and activate all the necessary roles for fulfilling a
pecific function.

The homing function of housekeeping chemokines is
ritical for the physiological development and homeosta-
is of the hematopoietic system. In lymphoid tissues,

hey are expressed constitutively, providing a steady at-
raction signal for naive T cells, B cells, and mature
endritic cells (DC). The essential, nonredundant func-

ion of housekeeping chemokines and their receptors is
ttested by the dramatic alterations of the architecture
nd function of lymphoid tissues caused by the defi-
iency or ablation of these genes, with striking similari-

ies between the phenotypes resulting from the lack of
eceptors or of their specific ligands. A paradigm exam-
le is provided by mice lacking CCR7, which show a
arked reduction of both lymphocyte and DC coloniza-

ion of secondary lymphoid organs, associated with se-
ere immunologic alterations (Forster et al., 1999); inter-
stingly, this condition is mimicked by a natural mutation
plt) in the gene encoding SLC, a CCR7 ligand (Gunn et
l., 1999). Similarly, a lethal phenotype, with abnormal
evelopment of multiple organs, results from either
XCR4 or SDF-1 gene knockout in mice (see below).
Inflammatory chemokines are mostly responsible for

he recruitment of immune cells, including granulocytes,
emory T cells, natural killer (NK) cells, monocytes, and

mmature DC, to sites of microbial invasion and inflam-
ation. Due to the redundancy of the inflammatory che-
okine system, deletion of individual genes does not

enerally cause the dramatic phenotypic alterations
een in the case of housekeeping chemokines. For ex-
mple, MIP-1a knockout mice show a reduced inflam-

matory response against coxsackie virus infection; nev-
ertheless, viral clearance consistently occurs, albeit de-
layed (Cook et al., 1995). Another striking example is a
congenital deficiency of human CCR5 (CCR5-D32) in
populations of Caucasian origin, which is not associated
with any evident phenotype, except for natural resistance
to human immunodeficiency virus (HIV) infection (see
below).

A wide variety of cell types produce inflammatory
chemokines upon activation by stimuli of bacterial (e.g.,
LPS) or viral (e.g., double-stranded RNA) origin, as well
as by early inflammatory cytokines (e.g., TNF-a, IL-1b,
FN-g). The initial distress signal is emitted primarily by
esident tissue cells, such as endothelial cells and fibro-
lasts, with subsequent amplification by professional
ntigen-presenting cells (e.g., DC and macrophages)
nd T cells. Among the latter, CD81 cytotoxic T lympho-
ytes (CTL) are increasingly recognized as an important
ource of immunomodulatory substances, including che-
okines (Conlon et al., 1995). As CTL can detect and kill

irus-infected cells before the release of infectious par-
icles, their chemokine-secreting activity may be essen-
ial during the early stages of infection, before the devel-
pment of a full-blown inflammatory reaction, as well as
uring infection by noncytopathic viruses which induce

imited inflammatory responses (Price et al., 1999). Be-
ides their ability to synthesize chemokines de novo,
TLs also possess a unique rapid-intervention mecha-
ism, as their cytolytic granules are loaded with pre-

ormed chemokine pools that can be quickly discharged
pon activation. For example, RANTES and MIP-1a are
tored, along with granzyme A, within the cytolytic gran-
les of CD81 T cells (Wagner et al., 1998). Another major

reservoir of RANTES in blood is represented by the
a-granules of platelets, which release it almost instantly
upon activation (Kameyoshi et al., 1992). This peculiar
feature of the RANTES physiology is still incompletely
understood, but it is certainly relevant to the role played
by platelets in antimicrobial host defense, as well as to
the involvement of RANTES in tissue repair mechanisms
and, possibly, in thrombus dissolution.

Costimulatory function. The physiological effects of

chemokine-elicited intracellular signaling are not limited
to the activation of a chemotactic program. Indeed, che-
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mokines provide a costimulus that amplifies both prolif-
erative and cytokine-secretive T-cell responses (Taub
et al., 1996). This function may allow antiviral immune
responses to proceed beyond a critical threshold under
conditions of low antigenic load or during infection by
noncytopathic viruses. A separate observation is the
unique T-cell mitogenic effect exerted by RANTES at
micromolar concentrations (Bacon et al., 1995), but the

hysiological significance of this phenomenon remains
ncertain.

Effector function. Several lines of evidence indicate
hat signal transduction through chemokine receptors
an directly activate cellular effector mechanisms. For
xample, different chemokines elicit the production of
icrobicidal oxygen radicals and bioactive lipids in
onocytes or the release of cytoplasmic storage granule

ontent, such as proteases from neutrophilic granulo-
ytes and monocytes, histamine from basophils, and
ytotoxic peptides from eosinophils (Baggiolini et al.,
994). Chemokines were also shown to potentiate CTL
ffector functions by at least two independent mecha-
isms: enhanced degranulation (Taub et al., 1996) and
pregulation of Fas-ligand expression (Hadida et al.,
999). Enhanced degranulation has also been demon-
trated for NK cells, upon stimulation with a variety of CC
hemokines (Loetscher et al., 1996). These observations

corroborate the concept that chemokines do not serve
merely as road signs for directional migration, but rather
as fine regulators of complex immune response pro-
grams.

Polarization function. A series of recent observations
has linked the differential expression of chemokines and
chemokine receptors with T-cell cytokine-secretion pat-
terns, according to the T-helper (Th)1/Th2 paradigm. Fol-
lowing the demonstration of a preferred secretion of the
CCR5 ligands, RANTES, MIP-1a, and MIP-1b, by Th1-
polarized cell lines and clones (Schrum et al., 1996), the
finding that CCR3 is selectively expressed by Th2 cells
(Sallusto et al., 1997) provided the first evidence that
chemokine receptors may represent markers of polar-
ized cytokine responses. Other putative Th2 markers
have subsequently been identified, including CCR4 and
CCR8 (Bonecchi et al., 1998; Sallusto et al., 1998; Zingoni
et al., 1998), whereas CCR5 and CXCR3 have been im-
plicated as Th1 markers (Bonecchi et al., 1998; Loetscher
et al., 1998; Sallusto et al., 1998). However, there are
many potential caveats to a simplistic equivalence be-
tween the expression of certain chemokine receptors
and Th1/Th2 responses. First, it must be emphasized
that the expression of chemokine receptors is dramati-
cally affected by the cell activation status, as illustrated
by the equivalent levels of CXCR3 expression seen in
freshly activated Th1 and Th2 cells (B. Moser, personal

communication), as well as by the downmodulating ef-
fect of specific chemokine ligands; second, in vitro find-
ings, using polarized T-cell lines or clones, may not
reflect the actual chemokine-receptor expression in vivo;
third, during polarized in vivo responses, specific che-

okine receptors may be expressed primarily by cells
ther than CD41 T cells, as shown by the presence of
CR3 primarily on mast cells and eosinophils in tissues
ffected by systemic sclerosis, a Th2-dominated disor-
er (Annunziato et al., 1999).

Despite the above caveats, the putative link between
hemokines and cytokine-secretion patterns has impor-

ant implications, as it suggests that the chemokine sys-
em may play a direct role in the generation and/or
mplification of polarized responses. The results of DNA
oimmunization studies in mice reinforce this hypothe-
is. Using plasmids encoding both HIV antigens and
hemokines, a distinctive skewing effect was docu-
ented for individual chemokines, with RANTES and
CP-1 inducing Th1-skewed responses, associated with
arked CTL activation, and MIP-1a seemingly favoring

Th2 polarization (Kim et al., 1998). By contrast, subse-
quent studies showed a Th1 predominance following
MIP-1a coimmunization (Lu et al., 1999), while MCP-1

nockout mice were found to be unable to mount Th2
esponses (Gu et al., 2000). These discrepancies empha-

size the preliminary nature of these observations. Also,
the mechanisms whereby chemokines may induce Th1/
Th2 polarization remain unclear. An attractive hypothesis
is that chemokine receptor-mediated signaling might di-
rectly activate specific polarization programs in naive
cells. In support of this concept, in vitro treatment with
MIP-1a or MCP-1 was shown to drive Th0 cells toward a
Th1 or Th2 pattern, respectively (Karpus and Kennedy,
1997). However, a selective recruitment of functionally
prepolarized cells is also likely to occur. Regardless of
the mechanism involved, the expression of specific che-
mokines and chemokine receptors may represent a ba-
sic mode of amplification of Th1 and Th2 responses.
These concepts raise the possibility of employing che-
mokines, either individually or in appropriate combina-
tions, as specific “adjuvants” for modulating the pattern of
immunity elicited by antimicrobial or antitumor vaccines.

“Molecular hacking:” Appropriation and
reprogramming of chemokines and chemokine
receptors by viruses

Over the course of a long parallel evolution, viruses
have established with their natural hosts a relationship
based on a wise balance between aggressiveness and
respect. A rapid extinction of the host is not an effective
survival strategy, as illustrated by the equally rapid ex-
tinction of the epidemic foci of certain zoonoses in hu-

mans, such as Ebola virus infection. Analysis of the
genetic makeup of viruses and their multicellular hosts
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reveals the vestiges of a long and balanced chess game,
during which each player has responded to the con-
tender’s attacks, move after move, with the implementa-
tion of adequate defense systems. One of the most
remarkable stratagems enacted by viruses has been the
hijacking of the genetic information encoding key host
molecules involved either in antimicrobial immunity or in
cell survival and proliferation. Often, the misappropriated
genes have been modified over the course of the evolu-
tion, in order to better serve the viral purposes, such as
reducing the efficacy of innate and acquired immune
responses, enhancing the spread of the infection, or
ensuring a longer life span to parasitized cells.

“Molecular hackers” have been hitherto recognized
within three families of viruses: Retroviridae, Poxviridae,
and Herpesviridae. Retroviruses have restricted their

hoice to cellular protooncogenes which govern the
ell’s survival and proliferation, whereas poxviruses and

T

Chemokine Homologues, Chemokine-Binding Proteins, and C

Virus
Coding gene

(gene product) Cellular homolo

Herpesviridae

mCMV m131 (MCK-1) CC chemokines
M33 CCR1

hCMV (HHV-5) UL146 (vCXC-1) IL-8
UL147 (vCXC-2) IL-8
US27 ?
US28 CCR1

UL33 CCR1
HHV-6 U83 CC chemokines

U12 CC chemokine rec
U51 CC chemokine rec

HHV-7 U12 CC chemokine rec
HHV-8 K6 (vMIP-I) MIP-1a

K4 (vMIP-II) MIP-1a

K4.1 (vMIP-III) MIP-1b
ORF74 CXCR2

VS ORF74/ECRF3 CXCR2

oxviridae

CV MC148R (vMCC-1) CTACK
Variola virus G3R ?
Vaccinia virus C23L (B29R) ?
Myxoma virus MT7 IFN-g receptor

MT1 ?
hope virus D1L ?
winepox K2R CC chemokine rec
apripox Q2 (3L) CC chemokine rec
owpox D1L ?
erpesviruses have selected multiple protein families,
ncluding fine immune response modulators. In particu-

s
p

ar, chemokines and chemokine receptors have repre-
ented prime targets of molecular appropriation by these

arge DNA viruses (Table 2), thus providing strong evo-
utionary evidence of the key role played by these mol-
cules in antiviral defense mechanisms. The intense

nvestigation in this area is driven not only by the interest
n elucidating new paradigms of viral immune evasion,
ut also by the possibility of human exploitation of viral
ntichemokine strategies for the therapy of inflammatory
iseases.

Viral chemokines. One of the main strategies of ma-
ipulation of the chemokine system by herpesviruses
onsists in the expression of viral chemokines, which
enerally show some degree of genetic and functional
omology to their cellular counterparts (Table 2). These
hemokines may act by different mechanisms, including
ecruitment of new target cells for infection, antagonism
f cellular chemokines, and induction of “diverting” Th2-

ine Receptor Homologues Encoded by Large DNA Viruses

Proposed function

Chemokine agonist (target cell recruitment?)
Functional receptor? (infected cell dissemination)
Chemokine agonist (target cell recruitment?)
?
?
Functional CC chemokine receptor

HIV-1 coreceptor
?
Chemokine agonist (target cell recruitment?)
Functional CC chemokine receptor
Chemokine sequestration?
?
Chemokine agonist on CCR8 (Th2 skewing?), angiogenesis
Chemokine agonist on CCR3 (Th2 skewing?), angiogenesis,

broad-spectrum chemokine antagonist
Chemokine agonist on CCR4 (Th2 skewing?), angiogenesis
Constitutive signaling, cellular transformation
Functional CXC chemokine receptor

Broad-spectrum chemokine antagonist
CC chemokine binding/inhibition
CC chemokine binding/inhibition
Broad-spectrum chemokine binding/inhibition
CC chemokine binding/inhibition
CC chemokine binding/inhibition
?
?
CC chemokine binding/inhibition
ABLE 2

hemok

gues

eptors
eptors
eptors

eptors
eptors
kewed or nonspecific inflammatory reactions. The im-
ortance of viral chemokines for pathogenicity is illus-
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trated by the experimental ablation of the CC chemokine
homologue MCK-1 in murine CMV, which results in a
reduced tissue spread in vivo, with decreased inflamma-
tory responses and rapid viral clearance (Fleming et al.,

999). Human herpesviruses encode several chemokine
omologues, including the CXC chemokines UL146 and
L147 of human CMV (Penfold et al., 1999) and the CC
hemokines U83 of human herpesvirus (HHV)-6 (Zou et
l., 1999) and vMIP-I, vMIP-II, and vMIP-III of Kaposi-
arcoma herpesvirus or HHV-8 (Boshoff et al., 1997; Stine
t al., 2000). Most of these molecules act as functional
gonists, at least on selected receptors; for example,
MIP-I is selectively active on CCR8 (Dairaghi et al.,
999), vMIP-II on CCR3 (Boshoff et al., 1997), and vMIP-III

on CCR4 (Stine et al., 2000). Since all of these receptors
have been linked to Th2 responses, their activation may
drive local immune responses toward a Th2-like pattern,
thereby hindering Th1-polarized antiviral responses. Un-
like other herpesvirus-encoded chemokines, vMIP-II also
acts as a broad-spectrum chemokine antagonist, with
the ability to reduce inflammatory responses in vivo
(Chen et al., 1998). Of potential relevance to the highly
vascularized nature of Kaposi sarcoma, all the HHV-8-
encoded chemokines exhibit some degree of angiogenic
activity in the chick chorioallantoic membrane assay
(Boshoff et al., 1997).

Although less frequently than herpesviruses, poxvi-
ruses have also seized chemokine genes from their
hosts. An example is the MC148R gene of molluscum
contagiosum virus (MCV), which encodes a potent broad-
spectrum chemokine antagonist (Damon et al., 1998),
with homology to the cellular CC chemokine CTACK.

Chemokine-binding proteins. Another viral strategy for
counteracting chemokine activities is the adsorption and
inactivation of chemokines by specific viral proteins or,
less frequently, by viral chemokine receptors (Table 2).
Several poxviruses encode soluble chemokine-binding
proteins, belonging to two major classes, none of which
shows homology with chemokine receptors or other host
proteins (Lalani et al., 2000). The first class of molecules
is represented by myxoma virus MT7, which binds mem-
bers of all chemokine families through their proteogly-
can-binding domains, thereby hindering their interaction
with the cell surface and the extracellular matrix. The
second class, prototyped by MT1 of myxoma virus, en-
compasses several related proteins, 35–40 kDa in size,
which bind CC chemokines with high affinity. Their mech-
anism of action involves direct inhibition of chemokine-
receptor binding, thus limiting the recruitment of inflam-
matory cells to infected tissues. Finally, chemokine de-
pletion can also be accomplished by adsorption to
membrane-bound viral chemokine receptors (see be-

low), as exemplified by the US28 gene product of human
CMV and the U51 gene product of HHV-6, both of which
were shown to bind and deplete extracellular RANTES
(Billstrom et al., 1999; Milne et al., 2000).

Viral chemokine receptors. Several herpesviruses and
poxviruses encode chemokine receptor-like molecules
which maintain, in most cases, functional competence
(Table 2). This suggests that chemokine-induced intra-
cellular signaling and directional migration of infected
cells may be instrumental for sustaining and disseminat-
ing the infection. Consistent with this concept, it has
been shown that deletion of the M33 gene, which en-
codes a chemokine-receptor homologue, markedly de-
creases the ability of murine CMV to grow in salivary
glands, a privileged site of viral replication (Davis-Poyn-
ter et al., 1997). Viral chemokine receptors are generally
shared by several chemokine agonists, as illustrated by
the human CMV US28 gene product, which behaves as
a broad-spectrum CC chemokine receptor (Neote et al.,
1993), or the herpesvirus saimiri (HVS) ECRF3 gene prod-
uct, which is activated by multiple CXC chemokines
(Ahuja and Murphy, 1993).

The gene product of ORF74 of HHV-8 provides a
unique example of viral reprogramming of chemokine
receptors. In spite of its high homology and colinearity
with the ECRF3 gene of HVS, as well as more distant
relatedness with CXCR2, the HHV-8 receptor is function-
ally divergent because it displays a constitutive, ligand-
independent signaling activity (Arvanitakis et al., 1997);
several chemokines act as inverse agonists on this re-
ceptor, causing a reduction of the basal signaling tone
upon binding (Rosenkilde et al., 1999). A single amino
acid residue within the second intracellular loop has
been fingered as the determinant of the constitutive
activation of the ORF74 gene product, since the same
mutation was shown to induce constitutive activation of
CXCR2 (Burger et al., 1999). Transfection of ORF74 pro-
motes the growth of rodent fibroblasts (Arvanitakis et al.,
1997), suggesting an oncogene-like activity that may play
a part in Kaposi sarcomagenesis.

The “accidental antagonists:” Chemokines as specific
blockers of viral receptors

Although chemokines are implicated at several levels
in the host mechanisms of antiviral defense, the chemo-
kine system has not evolved as a specific form of anti-
viral protection. Nevertheless, selected members of the
a and b chemokine families were “accidentally” trans-
formed into specific antiviral factors when primate and
feline immunodeficiency retroviruses, as well as at least
one species of rodent poxvirus, “chose” chemokine re-
ceptors as critical components of their cellular receptor
complex. The first close encounter between chemokines
and immunodeficiency retroviruses occurred in 1995,

with the identification of three members of the CC-che-
mokine family, namely RANTES, MIP-1a, and MIP-1b, as
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potent and specific CD81 T-cell-derived inhibitors of both
uman (HIV-1 and -2) and simian (SIV) immunodeficiency
iruses (Cocchi et al., 1995). Shortly thereafter, indepen-
ent research led to the identification of a chemokine

eceptor-like molecule, CXCR4/fusin, as a critical cofac-
or (or coreceptor, along with the classic CD4 receptor)
or HIV-1 envelope-mediated cell fusion (Feng et al.,
996). Remarkably, CXCR4 was shown to serve as a
oreceptor exclusively for T-cell line-tropic HIV-1 strains,
hereas RANTES, MIP-1a, and MIP-1b displayed a se-

lective inhibitory activity against non-T-cell line-tropic
HIV-1 strains. The natural convergence of these two
discoveries triggered an authentic chain reaction of
events that in a few months led to the elucidation of
several unsolved issues in HIV biology, opening new
perspectives for the development of therapeutic and pro-
phylactic strategies. Based on its ligand specificity for
RANTES, MIP-1a, and MIP-1b, a second chemokine re-
ceptor, CCR5, was rapidly recognized as the major co-
receptor used by non-T-cell line-tropic HIV-1 isolates
(reviewed in Berger et al., 1999). In addition, several
minor HIV coreceptors were identified (e.g., CCR2b,
CCR3, CCR8, CX3CR1, GPR1, STRL33/Bonzo, GPR15/BOB,
APJ), but their in vivo biological relevance remains un-
certain. The differential usage of chemokine receptors
has provided the long-sought-after physiological key for
interpreting the biological variability among HIV-1 iso-
lates. A novel classification of HIV-1 isolates based on
coreceptor usage has therefore been proposed (Fig. 1),
with the recognition of three major variants differing in
their ability to use either CCR5 (R5), CXCR4 (X4), or both
coreceptors interchangeably (X4R5). However, it must be
emphasized that the biological and clinical significance
of X4 and X4R5 strains is widely overlapping, which

FIG. 1. Classification of HIV-1 variants based on coreceptor usage.
Most human CD41 T-cell lines express CXCR4 but not CCR5; PM1 is a

nique CD41 T-cell clone coexpressing CXCR4 and CCR5. CXCR4 is a
unctional HIV-1 coreceptor both in primary CD41 T cells and in in

vitro-differentiated macrophages.
would reduce the major HIV variants to two, with CXCR4
usage as the main discriminative criterion (CXCR42 and
XCR41). The recent dramatic developments in the field
have rendered obsolete all the previous nomenclature
[i.e., syncytium-inducing (SI) vs non-syncytium-inducing
(NSI), T-tropic vs M-tropic, rapid/high vs slow/low], since
it has been documented that all viral variants do form
syncytia, provided that target cells express sufficient
levels of the relevant coreceptor; moreover, most, if not
all, primary HIV-1 isolates, regardless of their coreceptor
usage, can productively infect both primary CD41 T lym-
phocytes and mononuclear phagocytes. Indeed, at vari-
ance with previous suggestions, CXCR4 was recently
shown to be a functional coreceptor for infection of
human macrophages by primary CXCR41 strains,
whereas the failure of long-term T-cell line-adapted X4
strains to grow in these cells is to be ascribed to posten-
try restriction factors (Verani et al., 1998).

Recently, the focus on the relation between chemo-
kines and viruses has widened, with the recognition that
also a DNA virus, myxoma virus, can exploit chemokine
receptors for infection of target cells (Lalani et al., 1999).
Similar to promiscuous HIV-1 strains, myxoma virus was
shown to use at least three different chemokine recep-
tors, namely CCR1, CCR5, and CXCR4; infection was
specifically inhibited by the respective chemokine li-
gands. Whether additional receptor molecules, analo-
gous to CD4 in the case of immunodeficiency retrovi-
ruses, are required for myxoma virus infection remains to
be established.

In vivo evolution of HIV-1: There is AIDS without
CXCR4. During the natural history of HIV-1 infection, a
typical pattern of viral evolution has been documented
(Fig. 2), with the invariable predominance of CCR5-de-
pendent (CXCR42) strains during the early clinical

FIG. 2. Representative patterns of HIV-1 evolution in vivo. A signifi-
ant proportion of patients never show any evidence of infection by
XCR41 HIV-1 despite progression of the disease. Promiscuous iso-

lates can use interchangeably CXCR4 and CCR5, as well as some
minor coreceptors. In uncloned viral isolates, usage of multiple core-

ceptors can be ascribed either to bona fide envelope promiscuity or,
alternatively, to simultaneous infection by different biological variants.
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stages, followed by the acquisition of CXCR4 usage and
increasing coreceptor promiscuity, in parallel with the
appearance of immunological and clinical signs of dis-
ease progression (Scarlatti et al., 1997). Often, promis-
cuous isolates use interchangeably CXCR4 and CCR5,
as well as minor coreceptors like CCR3, CX3CR1, and/or
others, reflecting either the presence of bona fide multi-
tropic strains or a simultaneous infection by multiple
biological variants. However, it is important to emphasize
that this pattern of viral evolution is by no means the rule
in the course of HIV-1 infection (Fig. 2). In fact, in approx-
imately half the patients infected with clade-B and in up
to 80% of those infected with clade-C HIV-1, usage of
CXCR4 can never be documented throughout the course
of the disease (Koot et al., 1993; deRoda Husman et al.,
1999; Peeters et al., 1999; Ping et al., 1999), indicating
hat the emergence of CXCR41 variants is not an abso-
ute requirement for the development of AIDS. Thus,
espite a lower cytopathogenicity documented both in

ymphoid tissue culture systems (Margolis, 1998) and in
eterochimeric SCID-hu thy/liv mice (Camerini et al.,
000), CXCR42 variants are sufficient to induce the full

complement of immunologic defects leading to AIDS.
Interestingly, however, late-stage CXCR42 biological
clones from nonswitcher AIDS progressors seem to be
inherently more pathogenic than early-stage isolates, as
they were shown to induce thymocyte depletion in
SCID-hu mice (Scoggings et al., 2000); the increased
pathogenicity of these strains is apparently unrelated to
the use of additional, still undefined, coreceptors, as
suggested by their inability to grow in cells from CCR5-
deficient subjects (deRoda Husman et al., 1999).

The above considerations raise some important ques-
tions. Being dispensable for the development of AIDS, do
CXCR41 HIV-1 variants simply represent a peculiar type
of opportunistic infection? Since small changes within
the variable loops of gp120, most notably the V3 loop, are
sufficient to confer CXCR4 usage, and in light of the
remarkable infidelity of the viral replication machinery, a
continuous emergence of CXCR41 variants would be
expected; yet, CXCR41 viruses fail to appear for many

ears or never appear, in a high proportion of patients,
hroughout the disease course. Why? This apparent par-
dox can be explained by postulating a selective hin-
rance to the in vivo transmission and spread of CXCR41

variants in immunocompetent subjects. Several clinical
observations corroborate this concept. First, horizontal
transmission of CXCR41 HIV-1 appears to occur very
rarely, as indicated by the extremely low infection rate in
people with congenital CCR5 deficiency (see below).
Second, in a few documented cases of in vivo transmis-
sion of a heterogeneous HIV-1 population (with admixed
CXCR42 and CXCR41 variants), selective suppression of

1
he CXCR4 component was documented after resolu-
ion of the primary infection (Cornelissen et al., 1995;
athey et al., 1997). Furthermore, longitudinal follow-up
f some patients undergoing viral phenotypic switch has
emonstrated that, after their first appearance, CXCR41

variants do not rapidly and irreversibly become predom-
inant, but rather tend to fluctuate and eventually disap-
pear (Fig. 2), while CXCR42 variants remain consistently
detectable (Ida et al., 1997; Shankarappa et al., 1999). All
hese observations imply the existence of negative se-
ective forces acting against CXCR41 variants, the nature
f which is currently unknown. A role has recently been
uggested for the CXCR4 ligand, SDF-1, which was found

o be highly expressed in the epithelium of the genital
ucosae (Agace et al., 2000). This observation could

elp to explain the preferential in vivo transmission of
XCR42 strains; however, given its low expression in

blood cells and lymphoid tissues, SDF-1 is unlikely to
explain the selective suppression of CXCR41 variants
ollowing the establishment of systemic infection. Do
dditional endogenous antiviral factors exist, which se-

ectively target CXCR41 variants? Neutralizing antibodies
re unlikely to play a part, as they do not seem to
iscriminate between HIV-1 variants based on corecep-

or usage (Trkola et al., 1998; LaCasse et al., 1999). Could
the cellular distribution of CCR5 and CXCR4 explain the
different fates of the two viral variants in vivo? An intrigu-
ing hypothesis stems from the observation of a consti-
tutive association of CD4 with CCR5 on the cellular
surface (Xiao et al., 1999). Thus, IL-2-stimulated, prolifer-
ating cells, albeit coexpressing CCR5 and CXCR4, would
be preferentially infected by CCR5-using strains, result-
ing in a productive infection; conversely, CXCR41 viral

articles would be predominantly internalized by resting
D41 T cells, which express CXCR4 but not CCR5, re-
ulting in an abortive infection.

Use of chemokine receptors and pathophysiology of
IV infection. The use of chemokine receptors has crit-

cal implications for the pathogenesis, transmission, and
mmune control of HIV infection. The direct engagement
f chemokine receptors by HIV may in itself represent a
athogenetic factor, as suggested by the observation

hat gp120-induced apoptosis of different cell types, in-
luding CD81 T cells and neurons, may be mediated by

signaling through CXCR4 (Herbein et al., 1998; Meucci et
al., 1998; Biard-Piechaczyk et al., 2000).

Because the availability of functional chemokine re-
ceptors on specific cell types is a critical requisite for HIV
entry, any genotypic or phenotypic host factors modulat-
ing their expression can markedly affect the viral trans-
mission and tissue tropism. Several genetic polymor-
phisms of chemokines and chemokine receptors have
been described, some of which can influence the sus-
ceptibility to or the course of HIV infection, either by
reducing chemokine-receptor expression or by enhanc-

ing the production of suppressive chemokines. The first
conclusive evidence that resistance to HIV can be ge-
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netically determined was obtained with the identification
of a homozygous 32-base-pair deletion within the coding
sequence of the CCR5 gene (CCR5-D32) in multiply ex-

osed HIV-seronegative individuals (Samson et al., 1996;
Liu et al., 1996); both CD41 T lymphocytes and macro-

hages derived from these subjects are inherently resis-
ant to infection by CXCR42 HIV-1 strains, due to the

absence of CCR5 on their surface membrane. By con-
trast, CCR5-D32 heterozygotes do not show a reduced
risk of infection, but their disease course is delayed. This
unique experiment of nature attests to the pivotal role of
CCR5 in both person-to-person and cell-to-cell transmis-
sion of HIV-1 in vivo, downplaying the role of other viral
coreceptors, including CXCR4, at least during the early
phases of HIV-1 infection. Moreover, the lack of any
apparent phenotype in CCR5-deficient people, while con-
firming the redundancy of the inflammatory chemokine
system, provides a rational basis for the development of
CCR5-targeted therapeutic approaches. Additional ge-
netic polymorphisms of both chemokine receptors (e.g.,
CCR2, CCR5) and chemokines (e.g., SDF-1, RANTES)
have subsequently been linked to a slower disease pro-
gression (reviewed in Berger et al., 1999). However,
some of these associations remain controversial. Con-
versely, a homozygous polymorphism in the CX3CR1
gene was recently associated with accelerated progres-
sion of HIV-1 disease (Faure et al., 2000). It is important
to emphasize that multiple genetic polymorphisms may
occur in the same individual, giving rise to a wide range
of different phenotypes.

The choice of CCR5 as a primary coreceptor renders
HIV vulnerable to the inhibitory activity of the CCR5
ligands RANTES, MIP-1a, and MIP-1b. Thus, the endog-
enous production of these chemokines in response to
HIV infection represents a critical factor for the in vivo
spread of this infection. A central paradox of HIV infec-
tion is indeed the fact that the virus induces the in vivo
production of large amounts of its own natural inhibitors.
In lymphoid tissue, which represents a primary site of
viral replication, a dramatic expression of RANTES, MIP-
1a, and MIP-1b was documented since the early stages

f HIV-1 infection (Trumpfheller et al., 1998). MIP-1a and
MIP-1b were detected predominantly in CD681 macro-
phages within germinal centers, whereas massive
amounts of RANTES mRNA were seen in the T-cell-
dependent extrafollicular zone; strikingly, the levels seen
in control lymph nodes, with mycobacterial infection or
HIV-unrelated follicular hyperplasia, were markedly
lower or null. Similarly, RANTES overexpression was
seen in lymph node cell suspensions derived from HIV-
1-infected subjects (Triozzi et al., 1998), in plasma of
patients with primary HIV-1 infection (Malnati et al.,
1998), and in mononuclear cells from intestinal lymphoid

tissue (Ndolo et al., 1999), lymph nodes, peripheral blood,

nd bronchoalveolar lavage (Cheret et al., 1999) during
rimary SIV infection in macaques. Several important
uestions arise from these observations. What is the
xact role of this sustained chemokine production in the
atural history of HIV/SIV infection? Does it provide a
hysiological explanation for the inherently slow course
f these lenti-viral infections? Is this a survival strategy

or HIV/SIV, aimed at preventing widespread viral repli-
ation in vivo, which would lead to a rapid extinction of

the host? Does it at the same time represent a pathoge-
netic factor which could, in the long term, compromise
the immunologic function? What is the underlying mech-
anism? Is this mechanism specific for HIV/SIV infection
or does it merely reflect a particularly robust nonspecific
immune activation? Providing an answer to these ques-
tions will not only advance our understanding of the
physiology of HIV infection, but also open new perspec-
tives for the development of effective therapeutic and
preventive strategies.

An unorthodox correlate of protection. For almost two
decades, investigators have strived to identify correlate
markers of vaccine-induced protection from SIV infection
in experimental nonhuman primate models, as well as of
natural protection in exposed–uninfected (EU) human
subjects. However, the evidence obtained with the clas-
sic protection correlates has been inconclusive. Several
recent observations suggest that the long-sought-after
correlates may be provided by an unconventional type of
immune response, associated with the release of high
levels of CCR5-binding chemokines. Whether such che-
mokines play a direct protective role in vivo or, alterna-
tively, are simply linked with other, still undefined, anti-
viral mechanisms remains to be established. Of note,
CCR5 and its ligands are preferentially expressed in
Th1-polarized responses (see above), which are essen-
tial in the control of intracellular pathogens like retrovi-
ruses.

The first indication that chemokine levels might corre-
late with vaccine-induced protection from SIV challenge
came from studies in macaques immunized by the tar-
geted iliac–lymph node route: in all the protected ani-
mals, as well as in a single naturally resistant one,
mitogen-activated CD81 T cells were found to release
ncreased amounts of soluble virus-suppressive factors,

ainly consisting of CCR5-binding chemokines, com-
ared to nonprotected animals (Lehner et al., 1996).
hese observations were confirmed in subsequent SIV
r SHIV vaccination studies using a variety of immuniza-

ion protocols (Heeney et al., 1998; Gaudin et al., 1998;
ang et al., 1998; Caufour et al., 1999); a booster effect
as seen upon secondary immunization, suggesting the

nvolvement of memory CD81 T cells (Wang et al., 1999).
Although chemokine secretion is not unexpected among
memory T-cell responses elicited by specific antigen

stimulation (Moss et al., 1997), the uniqueness of this
phenomenon lies in the polyclonal nature of the CD81
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T-cell response. Remarkably, a similar type of immune
response may also be linked to natural HIV resistance,
as suggested the increased prevalence of a high-RAN-
TES/low-CCR5 phenotype in EU subjects, associated
with Th1 polarization and decreased susceptibility of
CD41 T cells to HIV-1 infection (Paxton et al., 1998, and
personal communication). All the above observations
suggest the existence of a link between cognate and
innate immune mechanisms, which seem to act in syn-
ergy for the control of HIV infection; nevertheless, the
pathways whereby this connection is established remain
obscure. The elucidation of such mechanisms might
eventually lead to the development of novel vaccine
strategies for the prevention of HIV infection.

Chemokines as new therapeutic principles. The dis-
covery of the HIV-suppressive chemokines has opened
new perspectives for the therapy of AIDS. Indeed, com-
pounds capable of hindering the interaction between the
viral envelope and the coreceptors might effectively com-
plement the current poly-chemotherapy regimens, by
aiming at a third molecular target, besides the two viral
enzymes, reverse transcriptase and protease. According
to the paradigm established for anticancer therapy more
than two decades ago, such multiplication of molecular
targets is essential for the long-term prevention of the
development of drug resistance.

By virtue of the pivotal role it plays in the transmission
and spread of HIV-1, the CCR5 coreceptor represents a
prime target for new therapeutic strategies (Lusso, 1997),
also in consideration of the apparent lack of immuno-
logic alterations associated with its congenital defi-
ciency. Different approaches have been proposed, in-
cluding the use of natural chemokines, either in soluble
form or with an endoplasmic reticulum-localization tag
for intracellular CCR5 trapping (intrakines), full-length or
small-peptide chemokine derivatives, and nonpeptide
compounds. Particular emphasis has been posed on the
need to produce nonsignaling molecules, in order to
avoid potentially harmful inflammatory side effects, as
well as putative enhancing effects on the replication of
CXCR41 strains (Kinter et al., 1998). Promising small-

olecule nonpeptide CCR5 blockers have recently been
eveloped, which are devoid of agonistic activity (Baba
t al., 1999; B. Baroudy, personal communication). Nev-
rtheless, the perspective of employing CCR5-targeted
gents in the therapy of HIV infection is stirring contro-
ersy, mainly related to the putative risk of exerting a
elective pressure on the virus, thereby favoring the
cquisition of CXCR4 usage. Although such a viral phe-
otypic switch was indeed observed in a proportion of

nfected SCID-hu mice treated with modified RANTES
nalogues (Mosier et al., 1999), there are reasons to
elieve that this scenario will not occur in humans. As

iscussed above, the endogenous production of CCR5-
inding chemokines in HIV-infected lymphoid tissue al-
eady provides a strong in vivo selective pressure in
favor of CXCR4 usage (Trumpfheller et al., 1998); this
notwithstanding, CXCR41 HIV-1 strains emerge only in a
imited proportion of patients and only after several years
f sustained viral replication, suggesting the existence,

n vivo, of negative forces that selectively restrain
XCR41 viruses. Thus, the exogenous administration of

CCR5-targeted agents would be unlikely to induce the
early emergence of CXCR41 HIV-1 strains; on the con-
rary, such agents should act in synergy with endoge-
ous chemokines in suppressing the spread of CXCR42

HIV-1 strains, thereby also reducing the rate of sponta-
neous mutations which may favor the acquisition of
CXCR4 usage.

In addition to CCR5, CXCR4 represents a primary tar-
get of new antiviral drugs, both for preventing the emer-
gence of CXCR41 variants and for the treatment of pa-
tients with advanced disease. Small CXCR4-targeted
molecules have been identified, including the bicyclam
AMD3100 (Schols et al., 1997) which was already recog-
nized as an effective anti-HIV agent before the discovery
of the HIV coreceptors. However, it is important to em-
phasize that a functional blockade of CXCR4 may cause
severe side effects related to the crucial role of this
housekeeping receptor in organ development and ho-
meostasis. Indeed, both CXCR4 and SDF-1 knockout
mice show a lethal phenotype, with severe defects not
only in the B-lymphoid and myeloid compartments, but
also in nonhematopoietic tissues, such as the heart and
the brain (Nagasawa et al., 1996; Ma et al., 1998; Zou et
al., 1998).

In conclusion, the extraordinary advances in HIV biol-
ogy during the past 5 years, in particular the elucidation
of the complex relation between the virus and the che-
mokine system, have raised a cautious optimism on the
possibility of developing effective new strategies for the
control of HIV infection. Specifically, with the availability
of specific blockers of the two main HIV coreceptors,
CCR5 and CXCR4, it will be possible to design highly
efficacious multidrug therapeutic protocols targeting
three distinct steps in the viral life cycle: entry, reverse
transcription, and maturation. The implementation of
such protocols might eventually succeed in achieving
the ultimate goal of anti-HIV treatment, which is still
beyond the reach of the current therapeutic weapons:
virus eradication.
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Fenyö, E. M., and Lusso, P. (1997). In vivo evolution of HIV-1 core-
ceptor usage and sensitivity to chemokine-mediated suppression.
Nat. Med. 3, 1259–1265.

Schols, D., Struyf, S., Van Damme, J., Este, J. A., Henson, G., and De
Clercq, E. (1997). Inhibition of T-tropic HIV strains by selective an-
tagonization of the chemokine receptor CXCR4. J. Exp. Med. 186,
1383–1388.

Schrum, S., Probst, P., Fleischer, B., and Zipfel, P. F. (1996). Synthesis of
the CC-chemokines MIP-1 alpha, MIP-1 beta, and RANTES is asso-
ciated with a type 1 immune response. J. Immunol. 15, 3598–3604.

Scoggins, R. M., Taylor, J. R., Patrie, J., van’t Wout, A. B., Schuitemaker,
H., and Camerini, D. (2000). Pathogenesis of primary R5 human
immunodeficiency virus type 1 clones in SCID-hu mice. J. Virol. 74,
3205–3216.
Shankarappa, R., Margolik, J. B., Gange, S., Rodrigo, A. G., Upchurch, D.,
Farzadegan, H., Gupta, P., Rinaldo, C. R., Learn, G. H., He, X., and
Mullins, J. I. (1999). Consistent viral evolutionary changes associated
with the progression of human immunodeficiency virus type 1 infec-
tion. J. Virol. 73, 10489–10502.

Stine, J. T., Wood, C., Hill, M., Epp, A., Raport, C. J., Scweickart, V. L.,
Endo, Y., Sasaki, T., Simmons, G., Boshoff, C., Clapman, P., Chang, Y.,
Moore, P., Gray, P. W., and Chantry, D. (2000). KSHV-encoded CC
chemokine vMIP-III is a CCR4 agonist, stimulates angiogenesis, and
selectively chemoattracts TH2 cells. Blood 95, 1151–1157.

Taub, D. D., Ortaldo, J. R., Turcovski-Corrales, S. M., Key, M. L., Londo,
D. L., and Murphy, W. J. (1996). Beta chemokines costimulate lym-
phocyte cytolysis, proliferation, and lymphokine production. J. Leu-
kocyte Biol. 59, 81–89.

Triozzi, P. L., Bresler, H. S., and Aldrich, W. A. (1998). HIV type 1-reactive
chemokine-producing CD81 and CD41 cells expanded from in-
fected lymph nodes. AIDS Res. Hum. Retrovir. 14, 643–649.

Trkola, A., Ketas, T., Kewalramani, V. N., Endorf, F., Binley, J. M., Katinger,
H., Robinson, J., Littman, D. R., and Moore, J. P. (1998). Neutralization
sensitivity of human immunodeficiency virus type 1 primary isolates
to antibodies and CD4-based reagents is independent of coreceptor
usage. J. Virol. 72, 1876–1885.

Trumpfheller, C., Tenner-Racz, K., Racz, P., Fleischer, B., and Frosch, S.
(1998). Expression of macrophage inflammatory protein (MIP)-1al-
pha, MIP-1beta, and RANTES genes in lymph nodes from HIV1
individuals: Correlation with a Th1-type cytokine response. Clin. Exp.
Immunol. 112, 92–99.

Verani, A., Pesenti, E., Polo, S., Tresoldi, E., Scarlatti, G., Lusso, P.,
Siccardi, A. G., and Vercelli, D. (1998). CXCR4 is a functional core-
ceptor for infection of human macrophages by CXCR4-dependent
primary HIV-1 isolates. J. Immunol. 161, 2084–2088.

Wang, Y., Tao, L., Mitchell, E., Bogers, W. M. J. M., Doyle, C., Bravery, C.,
Bergmeier, L. A., Kelly, C. G., Heeney, J. L., and Lehner, T. (1998). Generation
of CD8 suppressive factor and b chemokines, induced by xenogeneic
immunization, in the prevention of simian immunodeficiency virus infec-
tion in macaques. Proc. Natl. Acad. Sci. USA 95, 5223–5228.

Wang, Y., Tao, L., Mitchell, E., Bergmeier, L., Doyle, C., and Lehner, T.
(1999). The effect of immunization on chemokines and CCR5 and
CXCR4 coreceptor functions in SIV binding and chemotaxis. Vaccine
17, 1826–1836.

Xiao, X., Wu, L., Stantchev, T. S., Feng, Y. R., Ugolini, S., Chen, H., Shen,
Z., Riley, J. L., Broder, C. C., Sattenau, Q. J., and Dimitrov, D. S. (1999).
Constitutive cell surface association between CD4 and CCR5. Proc.
Natl. Acad. Sci. USA 96, 7496–7501.

Zingoni, A., Soto, H., Hedrick, J. A., Stopacciaro, A., Storlazzi, C. T.,
Sinigaglia, F., D’Ambrosio, D., O’Garra, A., Robinson, D., Rocchi, M.,
Santoni, A., Zlotnik, A., and Napolitano, M. (1998). The chemokine
receptor CCR8 is preferentially expressed in Th2 but not Th1 cells.
J. Immunol. 161, 547–551.

ou, P., Isegawa, Y., Nakano, K., Haque, M., Horiguchi, Y., and Yama-
nishi, K. (1999). Human herpesvirus 6 open reading frame U83 en-
codes a functional chemokine. J. Virol. 73, 5926–5933.

ou, Y. R., Kottman, A. H., Kuroda, M., Taniuchi, I., and Littman, D. R.

(1998). Function of the chemokine receptor CXCR4 in haematopoi-
esis and in cerebral development. Nature 393, 595–599.


	TABLE 1
	TABLE 2
	FIG. 1
	FIG. 2
	ACKNOWLEDGMENTS
	REFERENCES

