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The basic elements of Galois theory for algebraic quantum groups
were given in the paper ‘Galois Theory for Multiplier Hopf
Algebras with Integrals’ by Van Daele and Zhang. In this paper,
we supplement their results in the special case of Galois objects:
algebras equipped with a Galois coaction by an algebraic quantum
group, such that only the scalars are coinvariants. We show
how the structure of these objects is as rich as the one of the
quantum groups themselves: there are two distinguished weak
K.M.S. functionals, related by a modular element, and there is an
analogue of the antipode squared. We show how to reflect the
quantum group across a Galois object to obtain a (possibly) new
algebraic quantum group. We end by considering an example.

© 2008 Elsevier Inc. All rights reserved.

Introduction

The theory of Hopf–Galois extensions centers around special kinds of extensions of unital k-algebras
F ⊆ X over, say, a field k. They are of the following form: There should exist a Hopf algebra (A,Δ)

over k and a coaction α : X → X ⊗k A of (A,Δ) on X , such that F is the set of coinvariant elements
for α, and such that the map

X ⊗
F

X → X ⊗
k

A : x⊗
F

y → (x ⊗ 1)α(y)

is a bijection. Coactions satisfying this last condition are called Galois coactions. In special situations,
one can associate a canonical (A,Δ) and α to such an extension [14], but most of the time one takes
some (A,Δ) and α as part of the data. In case X and A are commutative, one may regard X as

E-mail address: kenny.decommer@wis.kuleuven.be.
1 Research Assistant of the Research Foundation – Flanders (FWO – Vlaanderen).
0021-8693/$ – see front matter © 2008 Elsevier Inc. All rights reserved.
doi:10.1016/j.jalgebra.2008.11.039

https://core.ac.uk/display/82802301?utm_source=pdf&utm_medium=banner&utm_campaign=pdf-decoration-v1
http://www.ScienceDirect.com/
http://www.elsevier.com/locate/jalgebra
mailto:kenny.decommer@wis.kuleuven.be
http://dx.doi.org/10.1016/j.jalgebra.2008.11.039


K. De Commer / Journal of Algebra 321 (2009) 1746–1785 1747
the function space of a bundle over the spectrum of F , with the spectrum of A acting freely and
transitively on every fiber.

An interesting situation arises when F reduces to the scalar field k. In this case (X,α) is called a
Galois object for (A,Δ). The most famous instance of this is the case where X is a finite field extension
of k and A is the function algebra (w.r.t. k) of a finite group G: then a coaction α of (A,Δ) on X will
make (X,α) into a Galois object for (A,Δ) if and only if k ⊆ X is a Galois extension with G as its
Galois group (by a result of Chase, Harrison and Rosenberg).

An important aspect of Hopf–Galois extensions is that they provide equivalences of certain cate-
gories, see e.g. [24] for an overview. As for Galois objects, their isomorphism classes are in one-to-one
correspondence with the isomorphism classes of monoidal equivalences from the category of comod-
ules of (A,Δ) to those monoidal categories which are the category of comodules for some Hopf
algebra (see Theorem 3.2.2 of [24] for the more precise statement).

In the operator algebra framework, the same objects appear under a different name. In [1] a cer-
tain class of ergodic coactions of compact quantum groups on C∗-algebras was created, for which
there exist, in certain cases, a spectral subspace containing the corresponding irreducible corepresen-
tation of the quantum group with a multiplicity strictly greater than the (classical) dimension of this
corepresentation (which is impossible for an ordinary compact group, or even a compact quantum
group of Kac type). These constructed coactions were named ‘of full quantum multiplicity’, which is
precisely the condition that the coaction comes from an associated Galois object (when restricting
all C∗-algebras to natural dense ∗-subalgebras). However, the authors made use of the particular na-
ture of the dual of a compact quantum group, which consists of a direct sum of matrix algebras, and
also of some analytic machinery, which is somewhat in contrast with the techniques from the Hopf
algebra approach.

Motivated by this, we try to develop in this paper a theory of Galois objects which comprises
both the compact quantum group theory, and the Hopf-algebraic theory in case the Hopf algebra has
integrals. Namely, we will consider the structure of Galois objects for algebraic quantum groups. These
latter objects were developed by Van Daele in [26], motivated in turn by finding the right infinite-
dimensional generalization of a finite-dimensional Hopf algebra which still allows for a dual object of
the same kind, and in providing a purely algebraic framework for the study of some of the aspects of
locally compact quantum groups. The main differences with a general ordinary Hopf algebra are the
possible lack of a unit in the algebra, and the existence of a non-zero left invariant functional.

A first study of the general Hopf–Galois theory for algebraic quantum groups appeared in [27],
whose main result is a Morita context between F and the smash product X # Â for an (A,Δ)-Galois
extension F ⊆ X by an algebraic quantum group (A,Δ). As already said, our Galois objects will spe-
cialize this to the situation in which F = k, the ground field.

We come to the specific content of this paper. In the first part, we study the further algebraic
structure of a Galois object (X,α) over an algebraic quantum group (A,Δ). The main results are the
following. There are two distinguished functionals ϕX and ψX on X , with ψX invariant with respect
to the action α. They are related by an invertible element δX inside the multiplier algebra M(X) of
X , namely ϕX ( · δX ) = ψX . They also satisfy the weak K.M.S. condition: if ω is a functional on X ,
we say that it satisfies this condition if there exists an algebra automorphism σω of X such that
ω(yσω(x)) = ω(xy) for all x, y ∈ X . We call a functional satisfying this condition a modular functional.
It is interesting to see this structure, much used in the theory of von Neumann algebras, appear
in a natural way in a purely algebraic (non-finite-dimensional) setting. There also is a distinguished
automorphism θX on X , which plays the rôle of the antipode squared. Finally, we associate a scaling
constant to X , and show that it equals the scaling constant of A. Thus (X,α) is almost as rich in
structure as (A,Δ). We also show that when working with a well-behaving ∗-structure on X and A,
all these maps become simultaneously diagonalizable. We end this part by considering what happens
when (A,Δ) is of a special type, namely compact or discrete.

In the second part, we construct a new algebraic quantum group (C,ΔC ), starting from a Galois
object (X,α) for an (A,Δ). This (C,ΔC ) also comes with a left coaction γ on X , commuting with α
and making (X, γ ) into a (left) Galois object. Then (X,α,γ ) can be called an A-C-bi-Galois object.
Note that when (A,Δ) is of compact type (in particular, a Hopf algebra), there is also a Hopf algebraic
method to obtain a new Hopf algebra from a Galois object (see [22]). This new Hopf algebra will then
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coincide with the algebraic quantum group (C,ΔC ) we construct (by uniqueness), but we want to
emphasize that in our situation, the Hopf algebraic construction has to be supplemented with the
construction of an invariant functional on the new Hopf algebra. After this, we briefly show how A,
X and C can also be grouped together inside an even bigger structure, which can be seen as a (very
special kind of) ‘algebraic quantum groupoid’. Next, we show the connection between bi-Galois objects
and monoidal equivalence of module categories, spending some more time on the ∗-algebraic case.
(We have not investigated if this monoidal equivalence of module categories actually characterizes
bi-Galois objects.) In our calculations, we make essential use of a natural subspace of the dual of X .

In the third part, we examine a concrete example, which will allow us to construct new examples
of algebraic quantum groups of compact type. It illustrates how duality can be used to find in a fairly
easy way the structure of a reflected quantum group. Although we do not leave the Hopf algebraic
framework in this example, we do feel that our approach has some novelty to it.

In Appendix A, we repeat some notions concerning multiplier algebras and algebraic quantum
groups.

We now set down conventions and notations. We work over a fixed field k, i.e. all algebras are
k-algebras. Moreover, all algebras appearing are non-trivial (0 �= 1) and non-degenerate (which means
that sending an element to the map ‘left (resp. right) multiplication with it’ is injective). We denote
the multiplier algebra of an algebra X as M(X), and identify X with its image inside M(X) whenever
convenient. We also identify k with its image k · 1 in M(X) when convenient. We denote the tensor
product over k by ⊗. Whenever it is harmless, we will use the elementary tensor notation x ⊗ y for a
general element of a tensor product (in particular, we use this convention together with the Sweedler
notation). We mostly work with a fixed algebraic quantum group (A,Δ) over k (note that the theory
in [26] is developed in the case k = C, but everything works just as well in the general case). We
denote its antipode with S and its counit with ε. We denote by ϕ a non-zero left invariant functional,
positive if A is a ∗-algebraic quantum group. As a right invariant functional we choose ψ = ϕ ◦ S . We
denote the modular element by δ, and the modular automorphisms of ϕ and ψ by respectively σ
and σ ′ . We take the algebraic convention for the coproduct Δ Â on the dual Â of A: it is determined
by Δ Â(ω1)(x ⊗ y) = ω1(xy) for all x, y ∈ A, ω1 ∈ Â (when properly interpreted). The left integral ϕ Â
of Â is given by ϕ Â(ψ(a·)) = ε(a). For the further theory of algebraic quantum groups, we refer the
reader to [26] and Appendix A.

1. The structure of Galois objects

1.1. Definitions

We begin by recalling some definitions concerning coactions for algebraic quantum groups.
Let X be an algebra. Let α be a right coaction of our fixed algebraic quantum group (A,Δ) on X :

it is an injective homomorphism X → M(X ⊗ A) satisfying

(i) α(X)(1 ⊗ A) = X ⊗ A,
(ii) (1 ⊗ A)α(X) = X ⊗ A, and
(iii) (α ⊗ ι)α = (ι ⊗ Δ)α,

where the third property can be made sense of for example by using the unique extensions of (α ⊗ ι)
and (ι⊗ Δ) to homomorphisms M(X ⊗ A) → M(X ⊗ A ⊗ A) (which exist by the first two conditions).
The maps X ⊗ A → X ⊗ A given by

T1 : x ⊗ a → α(x)(1 ⊗ a),

T2 : x ⊗ a → (1 ⊗ a)α(x)

are then well-defined bijections, their inverses determined by
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T −1
1 : y ⊗ S(b) → (ι ⊗ S)

(
(1 ⊗ b)α(y)

)
,

T −1
2 : y ⊗ S−1(b) → (

ι ⊗ S−1)(α(y)(1 ⊗ b)
)
.

The injectivity of α implies that (ι ⊗ ε)(α(x)) = x for all x ∈ X (where a priori the left-hand side has
to be treated as a multiplier).

The coaction is called reduced if in addition (X ⊗ 1)α(X) ⊆ X ⊗ A. The other inclusion
α(X)(X ⊗ 1) ⊆ X ⊗ A follows from this (see the remark after Proposition 2.5 in [27]).

We can extend α to a map M(X) → M(X ⊗ A), using the bijections T1 and T2: if z ∈ M(X), we can
define α(z) by the identities α(z)(α(y)(1 ⊗ a)) = α(zy)(1 ⊗ a) and ((1 ⊗ a)α(y))α(z) = (1 ⊗ a)α(yz)
for y ∈ X and a ∈ A. The algebra of coinvariants F ⊆ M(X) is then defined as the set of elements f in
M(X) such that α( f ) = f ⊗ 1. Remark that it is a unital algebra.

The following terminology comes from [27]: the coaction α is called Galois, if it is reduced and if
the map

V : X ⊗
F

X → X ⊗ A : x⊗
F

y → (x ⊗ 1)α(y)

is bijective. In fact, the bijectivity already follows from the surjectivity of this map (see Theorem 4.4
in [27]). Also, the map

W : X ⊗
F

X → X ⊗ A : x⊗
F

y → α(x)(y ⊗ 1)

is then bijective, with the inverse map given by

W −1(x ⊗ a) = V −1((1 ⊗ S−1(a)
)
α(x)

)
.

We can now give a definition of our main object of study:

Definition 1.1. Let α be a right Galois coaction of an algebraic quantum group (A,Δ) on a non-
degenerate algebra X . Then (X,α) is called a right Galois object for (A,Δ) if the algebra F of
coinvariants is the scalar field k.

Sometimes, we also use the expression ‘A-Galois object’ instead of ‘Galois object over (A,Δ),’
although this is less precise.

Let (X,α) be an A-Galois object. For a ∈ A, we denote by β(a) the element in M(X ⊗ X) which
satisfies

(x ⊗ 1)β(a) = V −1(x ⊗ a),

β(a)(1 ⊗ y) = W −1(y ⊗ S(a)
)
.

Using the formula for W −1 in terms of V −1, it is not difficult to see that β(a) is indeed a well-defined
multiplier on X ⊗ X for each a ∈ A.

We will show later that also the maps

x ⊗ a → β(a)(x ⊗ 1)

and

x ⊗ a → (1 ⊗ x)β(a)
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are bijections from X ⊗ A to X ⊗ X (see Corollary 1.14). This will allow us to regard β rather as a map
A → M(Xop ⊗ X), which is really the better viewpoint.

For computations we will use the Sweedler notation, denoting α(x) as x(0) ⊗ x(1) and β(a) as
a[1] ⊗ a[2] . Then by definition we have the identities

xa[1]a[2]
(0) ⊗ a[2]

(1) = x ⊗ a,

a[1]
(0)a

[2]x ⊗ a[1]
(1) = x ⊗ S(a),

for all x ∈ X,a ∈ A. Applying ι ⊗ ε, we obtain the formula

xa[1]a[2] = ε(a)x.

We want to remark and warn however that the use of the Sweedler notation here is more delicate
than for Hopf algebras. Indeed, when doing computations with Sweedler notation, it is crucial that all
expressions are covered. We refer to [9] for a careful analysis of this technique, and to Appendix A for
the more intuitive approach.

In the following subsections, we will work with a fixed Galois object (X,α) for the algebraic
quantum group (A,Δ).

1.2. The existence of the invariant functionals

For any functional ω on X , we can interpret (ω ⊗ ι)(α(x)) in a natural way as a multiplier of A.
By an invariant functional on X we mean a functional ω on X such that (ω ⊗ ι)(α(x)) = ω(x)1 for all
x ∈ X . By a δ-invariant functional we mean a functional ω on X such that (ω ⊗ ι)(α(x)) = ω(x)δ for
all x ∈ X (where we recall that δ ∈ M(A) denotes the modular element of (A,Δ)). For the following
proposition, recall also that ϕ denotes a left invariant functional on (A,Δ).

Theorem 1.2. There exists a faithful δ-invariant functional ϕX on X such that

(ι ⊗ ϕ)
(
α(x)

) = ϕX (x)1

for all x ∈ X.

(The notion of faithfulness is recalled in the second paragraph of Section 4.3.)

Proof. Take x, y ∈ X and a ∈ A. Denote z for (ι ⊗ ϕ)(α(x)) ∈ M(X). Then we compute in detail, using
the definition of the extension of α to M(X), of (α ⊗ ι) to M(A ⊗ A), and the defining left invariance
property of ϕ:

α(z)
(
α(y)(1 ⊗ a)

) = α(zy)(1 ⊗ a)

= α
(
(ι ⊗ ϕ)

(
α(x)(y ⊗ 1)

))
(1 ⊗ a)

= (ι ⊗ ι ⊗ ϕ)
(
(α ⊗ ι)

(
α(x)(y ⊗ 1)

)
(1 ⊗ a ⊗ 1)

)
= (ι ⊗ ι ⊗ ϕ)

(
(α ⊗ ι)

(
α(x)

)(
α(y) ⊗ 1

)
(1 ⊗ a ⊗ 1)

)
= (ι ⊗ ι ⊗ ϕ)

(
(ι ⊗ Δ)

(
α(x)

)
(y(0) ⊗ y(1)a ⊗ 1)

)
= (ι ⊗ ι ⊗ ϕ)

(
(ι ⊗ Δ)

(
α(x)(y(0) ⊗ 1)

)
(1 ⊗ y(1)a ⊗ 1)

)
= x(0) y(0) ⊗ (ι ⊗ ϕ)

(
Δ(x(1))(y(1)a ⊗ 1)

)
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= x(0) y(0) ⊗ ϕ(x(1))y(1)a

= (z ⊗ 1)
(
α(y)(1 ⊗ a)

)
,

where the reader should make sure for himself that these expressions are all well-covered. By the
non-degeneracy of the algebra X ⊗ A, it follows that z = (ι ⊗ ϕ)(α(x)) is coinvariant: α(z) = z ⊗ 1.
So z = ϕX (x) for some scalar ϕX (x), since (X,α) is a Galois object. It is clear that ϕX then defines a
linear functional on X .

We show now that this map ϕX is δ-invariant: for x, z ∈ X and a ∈ A, we have

ϕX (x(0))z ⊗ x(1)a = x(0)z ⊗ ϕ(x(1))x(2)a

= x(0)ϕ(x(1))z ⊗ δa

= ϕX (x)z ⊗ δa,

where we used that (ϕ ⊗ ι)(Δ(b)) = ϕ(b)δ for b ∈ A.
Finally, we prove faithfulness. Suppose x ∈ X is such that ϕX (xy) = 0 for all y ∈ X . Then

ϕ(x(1) y(1))x(0) y(0)z = 0 for all y, z ∈ X .

Using the Galois property, it follows that

ϕ(x(1)a)x(0) y = 0 for all y ∈ X and a ∈ A.

The faithfulness of ϕ implies that x(0) y ⊗ x(1) = 0 for all y ∈ X , hence x = 0. Likewise ϕX (yx) = 0 for
all y ∈ X implies x = 0. �
Corollary 1.3. The algebra X has local units: for any finite set of xi ∈ X, there exists y ∈ X with yxi = xi y = xi

for all i.

Proof. The proof is the same as the one of Proposition 2.6 in [10], and will be omitted. �
Theorem 1.4. There exists a non-zero invariant functional ψX on X.

Proof. Choose y ∈ X and put

ψ
y
X (x) = ϕX (x(0) y)ψ(x(1)).

It is easy to see, using the right invariance property of ψ w.r.t. Δ, that this functional is invariant.
Suppose that ψ

y
X is zero for all y ∈ X . Then ϕX (x)ψ(a) = 0 for all x ∈ X and a ∈ A, which is impossible.

So we can choose as ψX some non-zero ψ
y
X . �

We prove a uniqueness result concerning the invariant functionals. We can follow the method of
Lemma 3.5 and Theorem 3.7 of [26] verbatim.

Proposition 1.5. If ψ1
X and ψ2

X are two invariant non-zero functionals on X, then there exists a scalar c ∈ k
such that ψ1

X = cψ2
X .
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Proof. First, we show that if ψX is a non-zero invariant functional on X , then

{
ϕX ( · x)

∣∣ x ∈ X
} = {

ψX ( · x)
∣∣ x ∈ X

}
.

Choose x, y, z in X . Then

α(xy)(z ⊗ 1) =
∑

i

α(xwi)(1 ⊗ ai)

for some wi ∈ X , ai ∈ A. Likewise starting with x, w ∈ X , a ∈ A, there exist yi, zi ∈ X with

∑
i

α(xyi)(zi ⊗ 1) = α(xw)(1 ⊗ a).

If we apply ψX ⊗ ϕ to these expressions we obtain respectively the equalities

ϕX (xy)ψX (z) =
∑

i

ψX (xwi)ϕ(ai),

∑
i

ϕX (xyi)ψX (zi) = ψX (xw)ϕ(a).

Choosing either z with ψX (z) = 1 or a with ϕ(a) = 1, we get respectively ⊆ and ⊇.
Suppose now that ψ1

X and ψ2
X are invariant. Choose y, z1 ∈ X with ϕX (yz1) = 1 and take z2 ∈ X

with ψ1
X ( · z1) = ψ2

X ( · z2). Choosing x ∈ X , applying ψ i
X ⊗ ϕ to (x ⊗ 1)α(yzi) and writing this last

expression as
∑

j(1 ⊗ a j)α(w j zi) for certain w j ∈ X , a j ∈ A, we see that ψ1
X (x) = ϕX (yz2)ψ

2
X (x),

proving that all invariant functionals are scalar multiples of each other. �
1.3. The existence of the modular element

Let ψX be a non-zero invariant functional on X . We prove the existence of a modular element δX ,
relating the functionals ϕX and ψX . We first prove an important proposition, which is a kind of strong
right invariance formula. (It is easily seen, looking at the proof, that this formula is valid for any right
coaction that has an invariant functional.)

Proposition 1.6. For all x, y ∈ X we have

S
(
(ψX ⊗ ι)

(
(x ⊗ 1)α(y)

)) = (ψX ⊗ ι)
(
α(x)(y ⊗ 1)

)
.

Proof. Choose a ∈ A and x, y ∈ X . Pick zi ∈ X and bi ∈ A such that

(1 ⊗ a)α(y) =
∑

i

zi ⊗ bi .

Then by the formula for T −1
2 given in the beginning of this section, we have

y ⊗ S(a) =
∑

i

α(zi)
(
1 ⊗ S(bi)

)
.

If we denote w = S((ψX ⊗ ι)((x ⊗ 1)α(y))), then
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w S(a) =
∑

i

ψX (xzi)S(bi)

=
∑

i

ψX (x(0)zi(0))x(1)zi(1) S(bi)

= ψX (x(0) y)x(1) S(a).

Since a was arbitrary, the formula is proven. �
Theorem 1.7. There exists a unique invertible element δX ∈ M(X) such that ϕX (xδX ) = ψX (x) for all x ∈ X.

Proof. We show first that for all x ∈ X :

ψX (x) = 0 ⇒ ψ(x(1))x(0) = 0.

We know that ψX (x) = 0 implies ψ w
X (x) = 0 for all w ∈ X , i.e. ψ(x(1))ϕX (x(0)w) = 0 for all w ∈ X . So

ψ(x(1))x(0) = 0 by the faithfulness of ϕX .
This means that ψ(x(1))x(0) = cxδ

′
X for some multiplier δ′

X ∈ M(X) and some number cx ∈ k. Now
x → cx is easily seen to be a non-zero invariant functional, and replacing ψX by this invariant func-
tional, we obtain ψ(x(1))x(0) = ψX (x)δ′

X .
Now we show that δ′

X has an inverse δX , and that ϕX (xδX ) = ψX (x). Choose y ∈ X with ψX (y) = 1,
then

ψX (xδ′
X ) = ψX (xy(0))ϕ

(
S(y(1))

)
= ψX (x(0) y)ϕ(x(1))

= ϕX (x).

Since furthermore {ϕX ( · x)} = {ψX ( · x)}, we have that for any x ∈ X there exists y ∈ X with yδ′
X = x.

To show that also left multiplication is surjective, we use another argument. Take x ∈ X and a ∈ A
with ψ(a) = 1. Write x ⊗ a as

∑
i pi(0)qi ⊗ pi(1) for certain pi,qi ∈ X , and put y = ∑

i ψX (pi)qi . Then
δ′

X y = ∑
i ψ(pi(1))pi(0)qi = ψ(a)x = x.

Hence we obtain the formula

ψX (x) = ϕX (xδX ) for all x ∈ X .

By the faithfulness of ϕX , this uniquely determines δX . �
The faithfulness of ϕX then also establishes the following corollary.

Corollary 1.8. Any non-zero invariant functional is faithful.

1.4. The modularity of the invariant functionals

We first prove some identities. The first one is yet again a variant on the notion of strong left
invariance for an algebraic quantum group.

Proposition 1.9. For all x ∈ X and a ∈ A, we have

(i) ϕ(ax(1))x(0) = ϕX (a[2]x)a[1] ,
(ii) ϕ(x(1) S(a))x(0) = ϕX (xa[1])a[2] .
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Proof. The first equation follows from

ϕ(ax(1))zx(0) = ϕ
(
a[2]

(1)x(1)

)
za[1]a[2]

(0)x(0)

= ϕX
(
a[2]x

)
za[1],

for all a ∈ A and x, z ∈ X . The second follows from

ϕ
(
x(1) S(a)

)
x(0)z = ϕ

(
x(1)a

[1]
(1)

)
x(0)a

[1]
(0)a

[2]z

= ϕX
(
xa[1])a[2]z,

for all a ∈ A and x, z ∈ X . �
Lemma 1.10. For all y, p,q ∈ X and a ∈ A, we have

ϕX
(
a[2] y

)
ϕX

(
pa[1]q

) = ϕX
(

yb[1])ϕX
(

pb[2]q
)
, where b = (

S−1σ
)
(a).

(Recall that σ denotes the modular automorphism for (A,Δ).)

Proof. Using the identities of the previous lemma, we get

ϕX
(

yb[1])ϕX
(

pb[2]q
) = ϕ

(
y(1)σ (a)

)
ϕX (py(0)q)

= ϕ(ay(1))ϕX (py(0)q)

= ϕX
(
a[2] y

)
ϕX

(
pa[1]q

)
. �

We show now that ϕX is modular.

Theorem 1.11. There exists an automorphism σX of X such that

ϕX
(

yσX (x)
) = ϕX (xy) for all x, y ∈ X .

Furthermore, ϕX ◦ σX = ϕX .

Proof. Choose x ∈ X , and write x as a sum of elements of the form ϕX (pa[1]q)a[2] with p,q ∈ X
and a ∈ A. Define w as

∑
ϕX (pb[2]q)b[1] with b = (S−1σ)(a). Then the previous lemma shows that

ϕX (yw) = ϕX (xy) for all y ∈ X .
It is clear that w is uniquely determined by this property, so we can denote w = σX (x). Stan-

dard arguments imply that σX is indeed an algebra automorphism. It will leave ϕX invariant because
X2 = X . �
Remark. As for algebraic quantum groups, the concrete way in which σX is constructed is not so
important. What is important is its modular property, which makes up for the fact that ϕX does not
have to be tracial.

Corollary 1.12. The functional ψX is modular with modular automorphism

σ ′
X (x) = δXσX (x)δ−1

X .
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1.5. Formulas

In this section and the next, we collect some formulas. They strongly resemble the formulas which
hold in algebraic quantum groups, and also their proofs are mostly straightforward adaptations. Nev-
ertheless, it is remarkable that Galois objects carry as rich a structure as the algebraic quantum groups
themselves. These results, together with the ones of the following section, show that one can really
consider these Galois objects as a kind of hybrid (algebraic) quantum groups.

Proposition 1.13. For all a ∈ A, we have

(i) α ◦ σ ′
X = (σ ′

X ⊗ S−2) ◦ α,

(ii) ((S−1σ)(a))[1] ⊗ ((S−1σ)(a))[2] = σX (a[2]) ⊗ a[1] .

Proof. Choose x, y ∈ X and a ∈ A. Then

(ψX ⊗ ϕ)
(
(y ⊗ a)α

(
σ ′

X (x)
)) = ψX

(
y(0)σ

′
X (x)

)
ϕ

(
aS−1(y(1))

)
= ψX (xy(0))ϕ

(
aS−1(y(1))

)
= ψX (x(0) y)ϕ

(
aS−2(x(1))

)
= ψX

(
yσ ′(x(0))

)
ϕ

(
aS−2(x(1))

)
,

applying Proposition 1.6 twice. As ϕ and ψX are faithful, the first identity follows. The second formula
was essentially proven in Lemma 1.10. �
Corollary 1.14. The maps

x ⊗ a → β(a)(x ⊗ 1),

x ⊗ a → (1 ⊗ x)β(a)

are bijections from X ⊗ A to X ⊗ X.

Proof. This follows from the second formula. �
Note that this fact is not at all clear at first sight. It allows us for example to construct the

Miyashita–Ulbrich action in this context: A acting on the right of X by x · a = a[1]xa[2] , mak-
ing it a Yetter–Drinfel’d module together with α. It also allows us to regard β rather as a map
β̃ : A → M(Xop ⊗ X). More precisely: denote by S Xop the canonical map Xop → X sending xop to
x for x ∈ X (where op is really just some isomorphism of vector spaces from X to a vector space copy
Xop of X , with Xop then endowed with the multiplication which makes op an anti-isomorphism of
algebras. Also, the reason for writing this as if it were an antipode will become clear later on). Then
indeed β̃ = (S−1

Xop ⊗ ι)β will be a map with the range M(Xop ⊗ X). If however we were ignorant of
the previous corollary, we would only know that β̃(a) is a left multiplier of Xop ⊗ X . Now as is the
case for Galois objects over Hopf algebras, the map β̃ will be a homomorphism. The argument for this
is simple: choose x ∈ X and a,b ∈ A, and write xb[1] ⊗ b[2] = ∑

i pi ⊗ qi for certain pi,qi ∈ X . Then∑
i(pi ⊗ a)α(qi) = x ⊗ ab. Applying V −1 (where V was introduced in the beginning of this section),

we obtain
∑

i pia[1] ⊗ a[2]qi = x(ab)[1] ⊗ (ab)[2] , so xb[1]a[1] ⊗ a[2]b[2] = x(ab)[1] ⊗ (ab)[2] . This proves
that β̃ is a homomorphism.

Definition 1.15. We call β̃ : A → M(Xop ⊗ X) the external comultiplication on A.
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We will also use a Sweedler notation for this map now: β̃(a) = a[1] ⊗ a[2] for a ∈ A.
The following proposition collects some formulas concerning the modular elements.

Proposition 1.16. The following identities hold:

(iii) α(δX ) = δX ⊗ δ,
(iv) β̃(δ) = δXop ⊗ δX (with δXop = (δ−1

X )op),
(v) σX (δX ) = τ−1δX ,

where in the last formula τ denotes the scaling constant of A.

Proof. First note that for any x, y ∈ X we have

ϕX (xy(0))y(1) = ϕX (x(0) y)S−1(x(1))δ,

which is proven in the same way as Proposition 1.6, using the δ-invariance of ϕX . Then if x, y ∈ X ,
we have

ϕX
(
x(yδX )(0)

)
(yδX )(1) = ϕX (x(0) yδX )S−1(x(1))δ

= ψX (x(0) y)S−1(x(1))δ

= ψX (xy(0))y(1)δ

= ϕX (xy(0)δX )y(1)δ.

By faithfulness of ϕX we have α(yδX ) = α(y)(δX ⊗ δ), hence α(δX ) = δX ⊗ δ by definition of α on
M(X).

For the second formula, we have to prove that x(aδ)[1] ⊗ (aδ)[2] = xδ−1
X a[1] ⊗ a[2]δX for all a ∈ A

and x ∈ X . This follows immediately by applying V (which was introduced in the beginning of this
section) and using the previous formula.

As for the final formula, we have for any x ∈ X that

ϕX (δX x) = ϕ(δx(1))δX x(0)

= τ−1ϕ(x(1)δ)δX (x(0)δX )δ−1
X

= τ−1ϕ
(
(xδX )(1)

)
δX (xδX )(0)δ

−1
X

= τ−1ϕX (xδX ),

which means exactly that σX (δX ) = τ−1δX . �
Corollary 1.17. If ϕ′

X is another δ-invariant functional, then there exists c ∈ k with ϕ′
X = cϕX .

Proof. This follows immediately by the uniqueness of an invariant functional and the fact that
ϕ′

X ( · δX ) is invariant. �
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1.6. The square of no antipode?

On X there is a natural unital left Â-module algebra structure defined by ω1 · x = (ι ⊗ ω1)α(x) for
x ∈ X and ω1 ∈ Â. The unitality means that Â · X = X . It allows us to extend the action to a left action
of M( Â) on X .

Consider then the map

θX : X → X : x → σX (δ Â · x),

where δ Â is the modular element of the dual ( Â,Δ Â). It is a bijective homomorphism, which can be
shown using the module algebra structure and the fact that δ Â is grouplike. This θX plays the rôle of
‘the square of the antipode’ for X . Indeed: in case X = A and α = Δ, then θX is exactly S2. We can
use θX to complete our set of formulas.

Proposition 1.18. The following identities hold:

(vi) α ◦ σX = (θX ⊗ σ) ◦ α,

(vii) α ◦ θX = (θX ⊗ S2) ◦ α,

(viii) α ◦ θX = (σX ⊗ σ ′−1) ◦ α,

(ix) σX ◦ θX = θX ◦ σX ,

(x) θX (δX ) = δX ,

(xi) ϕX ◦ θX = ϕX (δ−1
X · δX ) = τϕX .

Proof. We first make some remarks. The vector space M( Â) can still be seen as a subspace of the
vector space dual A∗ of A. As such the element δ Â corresponds with ε ◦ σ−1 = ε ◦ σ ′−1 (see Propo-
sition 5.14 in [16]). Thus we can also write θX (x) = ε(σ−1(x(1)))σX (x(0)). Also, the above formulas are
known to hold in case X = A and α = Δ. We will use them in the course of the proof.

Take x, y ∈ X and a ∈ A. Then

ϕX
(

yθX (x(0))
)
ϕ(aσ(x(1))) = ϕX

(
(δ Â · x(0))y

)
ϕ(x(1)a)

= ϕX (x(0) y)ε
(
σ ′−1(x(1))

)
ϕ(x(2)a)

= ϕX (x(0) y)ϕ
(
σ ′−1(S−2(x(1))

)
a
)

= ϕX (xy(0))ψ
(
aS−1(y(1))

)
= ϕX

(
y(0)σX (x)

)
ψ

(
aS−1(y(1))

)
= ϕX

(
yσX (x)(0)

)
ϕ

(
aσX (x)(1)

)
,

which proves the equality in (vi). The equality in (vii) then follows by the previous one, and the fact
that θA = S2 in case X = A and α = Δ.

Further,

ϕX
(

yθX (x(0))
)
ψ

(
S2(x(1))a

) = ϕX
(

yσX (x(0))
)
δ Â(x(1))ψ

(
S2(x(2))a

)
= ϕX

(
yσX (x(0))

)
ε
(
σ ′−1(x(1))

)
ψ

(
S2(x(2))a

)
= ϕX

(
yσX (x(0))

)
ψ

(
σ ′−1(x(1))a

)
,

which together with (vi) proves (viii).
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The commutation in (ix) is clear. As for (x) we have θX (δX ) = σX (δX )ε(σ−1(δ)), which equals δX

by the formula (v). The same formula (v) also shows immediately the validity of (xi). This concludes
the proof. �

Recall that we already constructed a map S Xop : Xop → X , which was just a given formal isomor-
phism between the underlying vector spaces.

Definition 1.19. We call the map

S Xop : Xop → X : xop → x

the antipode on Xop. We call the map

S X : X → Xop : x → θX (x)op

the antipode on X .

Then indeed, S Xop ◦ S X = θX , so that θX can be considered to be ‘the square of the antipode’!. . . If
the reader feels cheated at this point, we urge him to read on.

For example, the following formulas should give a more direct connection with the defining prop-
erty of an antipode. We will also write θXop(xop) = θX (x)op for x ∈ X .

Proposition 1.20. For all x, y ∈ X and a ∈ A, we have

(xiii) S(a)[1] ⊗ S(a)[2] = S X (a[2]) ⊗ S Xop(a[1]),

(xiv) yop S X (x(0))x(1)[1] ⊗ x(1)[2] = yop ⊗ x,

(xv) yopa[1] S X (a[2]) = ε(a)yop ,

(xvi) β̃ ◦ S2 = (θXop ⊗ θX ) ◦ β̃ ,

(xvii) β̃ ◦ σ = (θXop ⊗ σX ) ◦ β̃ .

We use here the Sweedler notation for the external comultiplication β̃ , introduced in the previous
subsection.

Proof. Applying (ι ⊗ ϕX ( · x)) to θX (a[2]) ⊗ a[1] and using formula (vi), we get

ϕX
(
a[1]x

)
θX

(
a[2]) = ϕX

(
σ−1

X (x)a[1])θX
(
a[2])

= ϕ
(
σ−1

X (x)(1) S(a)
)
θX

(
σ−1

X (x)(0)

)
= ϕ

(
σ−1(x(1))S(a)

)
x(0)

= ϕ
(

S(a)x(1)

)
x(0)

= ϕX
(

S(a)[2]x
)

S(a)[1],

so that S(a)[1] ⊗ S(a)[2] = θX (a[2]) ⊗ a[1] . This is easily seen to be equivalent with the first formula.
As for the second formula, we have to show that for all z ∈ X we have

ϕX
(
x(1)

[2]z
)
x(1)

[1]θX (x(0))y = ϕX (xz)y.



K. De Commer / Journal of Algebra 321 (2009) 1746–1785 1759
This reduces, by Proposition 1.9(i), to proving that

ϕ(x(1)z(1))y(0)θX (x(0))y = ϕX (xz)y.

This follows again by formula (vi) and the defining property of ϕX .
The last formulae are a direct consequence of the first (using Proposition 1.13(ii) for the last

one). �
Note that the second identity in the last proposition shows that

Xop ⊗ X → Xop ⊗ A : yop ⊗ x → yop S X (x(0)) ⊗ x(1)

is the inverse of the map

Xop ⊗ A → Xop ⊗ X : yop ⊗ a → yopa[1] ⊗ a[2],

which correspond to the exact same formula for a (multiplier) Hopf algebra if we replace Xop and X
by A, S X by S and β̃ by the comultiplication map. More directly, we also have that S Xop(a[1])a[2] =
ε(a)1 = a[1] S X (a[2]) (where the unit in the middle is really in different algebras for the left and right
expression). If the reader is still not convinced at this point that S X and S Xop are to be treated as
antipodes, we point him to the third subsection of the third section.

However, we want to give a little warning at this point, as the situation could get a bit confusing
when we consider (X,α) = (A,Δ) (which is evidently a Galois object for (A,Δ)). For then we have an
antipode S for the algebraic quantum group (A,Δ), which will be an anti-isomorphism A → A, but we
also have an antipode S X for the Galois object (A,Δ), which will be an anti-isomorphism A → Aop.
In some sense, for an algebraic quantum group the antipode contains extra information, which is not
present in its square. But for a Galois object, the antipode is really just a formal construction using its
antipode squared.

We want to remark that the notion of an ‘antipode squared’ on a Galois object for a Hopf algebra
was considered more or less in [11], but in a different set-up. Also, the antipode squared there was
a part of the axiom system. The connection with Galois objects and the redundancy of having this
‘antipode squared’ in the axiom system, was established in [23]. The notion of an antipode for a Galois
object was considered explicitly first in [2] (although it differs somewhat from our construction). As
a final remark, note that we can easily get into Grünspans framework of quantum torsors, by means
of the quantum torsor map

(ι ⊗ β̃)α : X → M
(

X ⊗ Xop ⊗ X
)
.

However, we have not developed an independent theory for such ‘algebraic quantum torsors’ (which
seems very plausible to exist).

1.7. Concerning ∗-structures

We now look at the case k = C.

Definition 1.21. Let X be a ∗-algebra and (A,Δ) a ∗-algebraic quantum group. If α : X → M(X ⊗ A)

is a coaction making (X,α) into a Galois object for (A,Δ) (when neglecting the ∗-structure), we call
(X,α) a ∗-Galois object if α is ∗-preserving, and if X satisfies the following non-degeneracy condition:
if

∑
x∗

i xi = 0 for certain xi ∈ X , then xi = 0 for all i.
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By saying that X is a ∗-algebra, we mean that X is equipped with an involutive anti-linear anti-
multiplicative map ∗ . The fact that α is ∗-preserving means that x∗

(0) ⊗ x∗
(1) = (x∗)(0) ⊗ (x∗)(1) for all

x ∈ X (where we note that the ∗-operation can be easily extended to the multiplier algebra level). If
we want to say anything interesting about ∗-Galois objects, it seems that we really have to put the
extra non-degeneracy condition on the ∗-algebra (although I do not know of any examples where it
is not satisfied automatically), for example to be able to arrive at the following statement:

Proposition 1.22. Let (X,α) be a ∗-Galois object for a ∗-algebraic quantum groups (A,Δ). Then the functional
ϕX = (ι ⊗ ϕ)α is positive.

Proof. We have to show that ϕX (x∗x) � 0 for all x ∈ X .
Take non-zero x, y ∈ X , and write α(x)(y ⊗ 1) = ∑

pi ⊗ qi for certain pi ∈ X and qi ∈ A. Then

ϕX (x∗x)y∗ y = (ι ⊗ ϕ)
((

α(x)(y ⊗ 1)
)∗(

α(x)(y ⊗ 1)
))

=
∑
i, j

ϕ
(
q∗

j qi
)

p∗
j pi .

By positivity of ϕ , the matrix (ϕ(q∗
j qi))i, j will be positive-definite, so that we can write ϕX (x∗x)y∗ y =∑

i z∗
i zi for certain zi ∈ X . Then ϕX (x∗x) must necessarily be positive, or else we would violate the

non-degeneracy property of X . �
Remark. We could also have started with a weaker non-degeneracy condition on X , namely the
existence of a non-zero positive functional ω on X . Then choosing y in the above proof such that
ω(y∗ y) = 1, it is easy to conclude that we still have that ϕX is positive. Now by using a local unit
argument for X , one also has that ϕX (x∗) = ϕX (x) for x ∈ X . This means that 〈x, y〉 = ϕX (y∗x) defines
a pre-Hilbert space structure on X . Then by the Cauchy–Schwartz inequality and the faithfulness
of ϕX , we see that ϕX (x∗x) = 0 implies x = 0. Hence, automatically the stronger non-degeneracy
condition on X is satisfied.

We show that ψX can be chosen to be positive. As for ∗-algebraic quantum groups, this is a non-
trivial statement. In that case, the first proof of this statement consisted of establishing an analytic
structure on the ∗-algebraic quantum group (see [17]). In [6], we found an easier way to arrive at
this, in the meantime showing something more about the structure of ∗-algebraic quantum groups.
Namely, almost all structure maps on A are diagonalizable, i.e. there exists a basis of simultaneous
eigenvectors for σ , S2 and left and right multiplication with δ, which implies for example that the
scaling constant is 1. We prove now that also all structure maps on X are diagonalizable.

For instance, take x ∈ X and choose w ∈ X with ϕX (w) = 1. Write x ⊗ w as a sum of ya[1] ⊗ a[2]
for certain y ∈ X and a ∈ A. Write a = ∑

ai with the ai eigenvectors for left multiplication with δ.
Then

xδn
X =

∑
ϕX

(
a[2])ya[1]δn

X

=
∑

ϕX
(
δn

X

(
δ−na

)[2])
y
(
δ−na

)[1]

∈ Span
{
ω

(
a[2]

i

)
ya[1]

i

∣∣ ω ∈ X∗},
showing that Span{xδn

X | n ∈ Z} is finite-dimensional. The same technique shows that Span{δn
X x | n ∈ Z}

and Span{θn
X (x) | n ∈ Z} are finite-dimensional. Since the left action of δ Â is diagonalizable, we also

have that Span{σ n
X (x) | n ∈ Z} is finite-dimensional. As in [6], all these operations can be shown to

be self-adjoint with respect to the scalar product 〈x, y〉 = ϕX (y∗x) on X (possibly after multiplying
the invariant functional, and hence the modular element with a scalar), and since they commute, we
obtain:
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Theorem 1.23. There exists a basis {xi} of X such that all xi are eigenvectors for σX , θX and multiplication
with δX to the left and to the right.

It follows also by the same methods as in [6] that then all these maps have positive eigenvalues
(again, possibly after multiplying the invariant functional with a scalar). In particular, this shows that
δX is of the form (δ

1/2
X )2 for some self-adjoint invertible element δ

1/2
X ∈ M(X). If we then choose z ∈ X

with ϕX ((δ
−1/2
X z)∗δ−1/2

X z) = 1, we have for any x ∈ X that

ψX (x∗x) = ψX
(
x∗x

)
ϕX

(
z∗δ−1

X z
)

= ϕX
(
z∗x∗

(0)x(0)′ z
)
ψ

(
x∗
(1)x(1)′

)
� 0,

showing

Corollary 1.24. The functional ψX is positive.

We also have a nice formula relating β̃ and ∗ . However, we have to choose the good ∗-operation
on Xop for this: (xop)∗ = θX (x∗)op. It is not so hard to see that this is again a ∗-algebra, using that ϕX
is faithful and θX is diagonalizable with positive eigenvalues. Now θX (x)∗ = θ−1

X (x∗): this follows from
the definition of θX , using that σX (x)∗ = σ−1

X (x∗) for x ∈ X (and likewise for σ and x ∈ A), which
follows easily from the fact that ϕX is faithful and ϕX (·∗) = ϕX (·), and using that δ Â = εσ−1 with
also ε(·∗) = ε(·). From this, it follows that S Xop((xop)∗) = (S−1

X (xop))∗ , and S X (x∗) = (S−1
Xop(x))∗ .

Proposition 1.25. For all a ∈ A, we have

β̃(a)∗ = β̃(a∗).

Proof. For any x ∈ X , a ∈ A, we have

ϕ(ax(1))x(0) = ϕX
(
a[2]x

)
a[1],

by Proposition 1.9(i). Applying ∗ , we see that

ϕ
(
x∗
(1) S

(
S(a)∗

))
x∗
(0) = ϕX

(
x∗a[2]∗)a[1]∗.

Since the left-hand side equals ϕX (x∗(S(a)∗)[1])(S(a)∗)[2] by Proposition 1.9(ii), we get that (a[1])∗ ⊗
(a[2])∗ = (S(a)∗)[2] ⊗ (S(a)∗)[1] by the faithfulness of ϕX . Using the identities just before the statement
of the proposition, this becomes S−1

X ((a[1])∗) ⊗ (a[2])∗ = (S(a)∗)[2] ⊗ S Xop((S(a)∗)[1]). Applying S X to
the first leg and using the identity (xiii) in Proposition 1.20, we arrive at the identity stated in the
proposition. �

We want to end this subsection with a remark. As we had said before, Xop was really just some
copy of X as a vector space. Still working in the ∗-algebra setting, let θ

1/2
X be the square root of

θX , seen as an operator on the pre-Hilbert space X : since θX is diagonalizable with positive eigen-
values, this makes sense. Then θ

1/2
X will again be an automorphism on X . Now take Xop = X as a

vector space, and define xop = θ
−1/2
X (x). We get that the ∗-operation on Xop becomes to the original

∗-operation on X . Also, the formulas for the antipodes become S X = θ
1/2
X = S Xop , which are a bit

more symmetric, and which really make θX the square of the antipode now! The fact that S X coin-
cides with θ

1/2
X may seem strange, but we refer again to the discussion in the penultimate paragraph

of the previous subsection.
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1.8. Concerning compactness and discreteness

Definition 1.26. A non-degenerate algebra X is called of compact type if X has a unit. It is called of
discrete type if every subspace of the form xX or Xx, with x ∈ X , is finite-dimensional.

Remark. This terminology is not standard, and we use it solely in this subsection.

Theorem 1.27. Let (X,α) be a Galois object for an algebraic quantum group (A,Δ). Then the algebra X is of
compact type iff A is an algebraic quantum group of compact type. The algebra X is of discrete type iff A is an
algebraic quantum group of discrete type.

Proof. If A is compact, then α(x) ∈ X ⊗ A for any x ∈ X . Choosing x ∈ X with ϕX (x) = 1, we have that
(ι ⊗ ϕ)α(x) ∈ X is a unit of X .

If X is compact, then (x ⊗ 1)α(1) ∈ X ⊗ A for all x ∈ A. Choosing x with ψX (x) = 1, it is again a
small exercise to check that (ψX ⊗ ι)((x ⊗ 1)α(1)) ∈ A is a unit in A.

Now suppose that A is an algebraic quantum group of discrete type. Choose a non-zero left coin-
tegral h ∈ A, so ah = ε(a)h for all a ∈ A. We can scale h so that ϕ(h) = 1. Then for all x, y ∈ X , we
have ϕX (x(S−1(h))[1])(S−1(h))[2] y = ϕ(x(1)h)x(0) y = xy by Proposition 1.9(ii). This shows that X y is
finite-dimensional. Also y X is finite-dimensional, by a similar reasoning.

Conversely, suppose that X is an algebra of discrete type. Take a ∈ A and x �= 0 fixed in X . Write
xa[1] ⊗ a[2] as

∑
i pi ⊗ qi , and choose y ∈ X such that pi y = pi for all i (Corollary 1.3). Then

dim(Aa) = dim{x ⊗ ba | b ∈ A}

= dim

{∑
i

pi yb[1] ⊗ b[2]qi

∣∣∣ b ∈ A

}

� dim span

{∑
i

pi w ⊗ zqi

∣∣∣ w, z ∈ X

}

< ∞.

We show that this is sufficient to conclude that (A,Δ) is an algebraic quantum group of discrete type.
First, applying S , we see that also all aA are finite-dimensional. Choose a ∈ A with ε(a) = 1. Write

I = AaA, which is a finite-dimensional ideal. Because ϕ is faithful, we can choose some ω = ϕ( ·b) ∈ Â
such that ω|I = ε|I . Take e ∈ A with ae = a. Then for all x ∈ A, we have

ϕ(xab) = ϕ(xaeb)

= ω|I (xae)

= ε(x).

Hence ε ∈ Â, and A is an algebraic quantum group of discrete type. �
Note that the proof above shows that the terminology we used is consistent: an algebraic quantum

group is of discrete type (in the sense of [26]) iff its underlying algebra is of discrete type (as defined
in Definition 1.26). Also note that if k = C and X is a ∗-algebra, the condition ‘X is of discrete type’ is
equivalent with X being a direct sum of finite-dimensional matrix algebras.

Proposition 1.28. If (A,Δ) is an algebraic quantum group of discrete type, and (X,α) a Galois object
for (X,α), then X is a Frobenius algebra in the sense of [29]: there exists a left X-module isomorphism
L : X X∗ → X, where X∗ is the dual space of X .
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Here X X∗ denotes functionals of the form x · ω = ω( · x) for ω ∈ X∗ and x ∈ X .

Proof. Let p be the right cointegral of A, so that pa = ε(a)p for all a ∈ A. We assume p normalized,
so that ϕ(p) = 1. We show then that

(x ⊗ 1)β(p) = β(p)(1 ⊗ x)

for all x ∈ X .
Take x, y ∈ X and apply (ι ⊗ ϕX ( · y)) to β(p)(1 ⊗ x). Then we find

(ι ⊗ ϕX )
(
β(p)(1 ⊗ xy)

) = ϕX
(

p[2]xy
)

p[1]

= ϕ(px(1) y(1))x(0) y(0)

= ε(x(1) y(1))x(0) y(0)

= xy

= ϕ(py(1))xy(0)

= ϕX
(

p[2] y
)
xp[1]

= (ι ⊗ ϕX )
(
(x ⊗ 1)β(p)(1 ⊗ y)

)
.

As ϕX is faithful, this implies (x ⊗ 1)β(p) = β(p)(1 ⊗ x) for all x ∈ X .
Consider then

L : X X∗ → X : ω → (ι ⊗ ω)
(
β(p)

)
,

K : X → X X∗ : x → ϕX ( · x).

Then L and K are seen to be X-module morphisms, using the above identity. Moreover, they are each
others inverse: choose x ∈ X and ω ∈ X X∗ , then

ϕX
(

y · (ι ⊗ ω)
(
β(p)

)) = ϕX
(

yp[1])ω(
p[2])

= ϕ
(

y(1) S(p)
)
ω(y(0))

= ϕ
(

S(p)
)
ω(y)

= ϕ(pδ)ω(y)

= ω(y),

showing that K L is the identity. The fact that LK is the identity follows from ϕX (p[2]x)p[1] = x for all
x ∈ X . �
2. Reflecting an algebraic quantum group across a Galois object

It is known that if (A,Δ) is an algebraic quantum group of compact type (or more generally a Hopf
algebra) and (X,α) a Galois object for it, then a second Hopf algebra (C,ΔC ) can be constructed from
(A,Δ) and (X,α) (see [22]). Moreover, this (C,ΔC ) has a left coaction γ on X , and (X,α,γ ) will be
what is termed a A-C-bi-Galois object: it is at the same time a left C-Galois object and right A-Galois
object, with the two coactions commuting. We show that the same holds in our setting. Our approach
is based on duality: we first construct the dual (Ĉ,ΔĈ ), which seems to be more natural here.
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A remark concerning notation: we will always denote elements in the dual X∗ of X by
ω,ω′,ω′′, . . . and the elements in the dual A∗ of A by ω1,ω2,ω3, . . . When elements of X∗ are
indexed by some set I , we will put the index in superscript, so then these elements take the form ωi .

2.1. The dual of a Galois object

Definition 2.1. Let (X,α) be a Galois object for an algebraic quantum group (A,Δ). The restricted dual
of X is the vector space X̂ = {ϕX ( · x) | x ∈ X} inside the dual X∗ of X .

We have shown that then

X̂ = {
ϕX (x · ) ∣∣ x ∈ X

}
= {

ψX ( · x)
∣∣ x ∈ X

}
= {

ψX (x · ) ∣∣ x ∈ X
}

in Theorems 1.7 and 1.11.
Let (X,α) be a Galois object for (A,Δ). Let ( Â,Δ Â) be the dual of (A,Δ) (where we still identify

Â with a space of functionals on A). As already mentioned at some point, we have a left Â-module
structure on X , induced by α, by putting ω1 · x = (ι ⊗ ω1)(α(x)) for x ∈ X and ω1 ∈ Â. This leads to a
right Â-module structure on X∗ , by putting (ω · ω1)(x) = ω(ω1 · x) for ω ∈ X∗ , ω1 ∈ Â and x ∈ X . This
will restrict to a natural right Â-module structure on X̂ . More concretely, we have

ψX ( · x) · ω1 = ω1
(

S(x(1))
)
ψX ( · x(0)), for all x ∈ X, ω1 ∈ Â,

by using Proposition 1.6.
We can dualize the multiplication on X to a map

Δ X̂ : X̂ → (X ⊗ X)∗.

We denote the image of ω by ω(1) ⊗ ω(2) . While we cannot say that this element is ‘in M( X̂ ⊗ X̂)’,
since X̂ has no multiplication, we do have that expressions such as ω(1) ⊗ (ω(2) · ω1) with ω ∈ X̂ and
ω1 ∈ Â define elements of X̂ ⊗ X̂ , and that this provides bijections between X̂ ⊗ Â and X̂ ⊗ X̂ . For
example, the map

V t : X̂ ⊗ Â → X̂ ⊗ X̂ : ω ⊗ ω1 → ω(1) ⊗ (
ω(2) · ω1

)
is just the dual of the map V , introduced at the beginning of the previous section:

(
V t(ω ⊗ ω1)

)
(x ⊗ y) = (ω ⊗ ω1)

(
V (x ⊗ y)

)
.

Again in more concrete terms, we have V t((ϕX ( · x)⊗ϕ(a · )) = ϕX ( ·a[1]x)⊗ϕX (a[2] · ) for x ∈ X , a ∈ A,
by using Proposition 1.9(i).

The space X̂ also carries a natural Â-valued k-bilinear form, determined by

[ω,ω′] Â(a) = (ω ⊗ ω′)
(
β(a)

)
, ω,ω′ ∈ X̂, a ∈ A,

where β is still the map introduced just after Definition 1.1. If we then let Â act on the left of X̂ by
ω1 · ω := ω · S−1̂ (ω1) for ω ∈ X̂ and ω1 ∈ Â, we have
A
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Proposition 2.2. The form [·, ·] Â is Â-bilinear, i.e. for all ω,ω′ ∈ X̂ and ω1 ∈ Â,

[ω,ω′ · ω1] Â = [ω,ω′] Â · ω1,

[ω1 · ω,ω′] Â = ω1 · [ω,ω′] Â .

Proof. This is just a reformulation of the formulas 2.1.2 and 2.1.3 of Lemma 2.7 in [24]. To proof the
linearity on the right for example, note that if ω = ϕX (x · ), then

[ω,ω′] Â(a) = ϕ
(
x(1) S(a)

)
ω′(x(0)),

using the second formula of Proposition 1.9. Then

([ω,ω′] Â · ω1
)
(a) = ϕ

(
x(1) S(a(1))

)
ω′(x(0))ω1(a(2))

= ϕ
(
x(2) S(a)

)
ω′(x(0))ω1(x(1))

= [ω,ω′ · ω1] Â(a).

The other identity can be proven in the same way. �
The following formula shows how the bracket behaves with respect to the left action:

Lemma 2.3. For ω,ω′,ω′′ ∈ X̂ , we have

[ω,ω′] Â · ω′′ = ω′′ · [θ−1
X̂

(ω′),ω
]

Â,

with θ−1
X̂

(ω′) = ω′ ◦ θ−1
X .

Proof. This follows from formula (xiii) of Proposition 1.20. �
2.2. Construction of the reflected algebraic quantum group

In this subsection, we construct a new algebraic quantum group (Ĉ,ΔĈ ), given a Galois object
(X,α). (We use the -̂notation since Ĉ plays the same role as Â.)

Consider the vector space Ĉ spanned by the linear maps [ω,ω′]Ĉ on X̂ , where ω,ω′ ∈ X̂ , defined
by the identity

[ω,ω′]Ĉ · ω′′ = ω · [ω′,ω′′] Â, ω,ω′,ω′′ ∈ X̂ .

This will be an algebra: because of the right linearity of [·, ·] Â we have

b · [ω,ω′]Ĉ = [b · ω,ω′]Ĉ for b ∈ Ĉ .

This also makes the maps of Ĉ on X̂ commute with the action of Â. Moreover, if ω1 ∈ Â then

[ω · ω1,ω
′]Ĉ = [ω,ω1 · ω′]Ĉ ,

which follows from the left Â-linearity of [·, ·] Â . This provides a canonical map π from X̂ ⊗ Â X̂ to Ĉ .

Lemma 2.4. The map SĈ : Ĉ → Ĉ : [ω,ω′]Ĉ → [θ X̂ (ω′),ω]Ĉ is a well-defined bijection.
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Proof. Choose arbitrary x, y ∈ X , and suppose [ω,ω′]Ĉ = 0. Then

([
θ X̂ (ω′),ω

]
Ĉ · ϕX ( · x)

)
(y) = ω′(θX (y(0))

)
ω(x(0))ϕ(y(1)x(1))

= ω(x(0))ω
′(σX (y)(0)

)
ϕ

(
x(1)

(
σX (y)

)
(1)

)
= ([ω,ω′]Ĉ · ϕX (y · ))(x)

= 0,

hence [θ X̂ (ω′),ω]Ĉ = 0. �
This allows us to define a right action of Ĉ on X̂ by setting ω · b = S−1

Ĉ
(b) · ω for ω ∈ B , since by

Lemma 2.3 we have ω′′ · [ω,ω′]Ĉ = [ω′′,ω] Â · ω′ .

Corollary 2.5. The maps [·, ·]Ĉ and [·, ·] Â make X̂ into a strict Morita context between Ĉ and Â.

Remark that this can be used to show that Ĉ is a non-degenerate algebra.

Lemma 2.6. For any finite collection ωi ∈ X̂ there exists b ∈ Ĉ with b · ωi = ωi .

Proof. Put ωi = ϕX ( · yi). Then we have to prove that there exist ω′ j and ω′′ j ∈ X̂ such that for any
x ∈ X

∑
j

ω′ j(x(0))ω
′′ j(yi(0))ϕ(x(1) yi(1)) = ϕX (xyi).

Choose z ∈ X with ϕX (z) = 1. Put ω = ϕX ( · z) and choose ω1 ∈ Â such that ω1(yi(1))yi(0)z ⊗ yi(2) =
yi(0)z ⊗ yi(1) for all i. Put

∑
j ω

′ j ⊗ ω′′ j = ω(1) ⊗ (ω(2) · ω1). Then we have

∑
j

ω′ j(x(0))ω
′′ j(yi(0))ϕ(x(1) yi(1)) = ω(x(0) yi(0))ϕ(x(1) yi(2))ω1(yi(1))

= ω(x(0) yi(0))ϕ(x(1) yi(1))

= ϕX (xyi). �
Proposition 2.7. The projection π : X̂ ⊗ Â X̂ → Ĉ is bijective.

Proof. Suppose π(
∑

i ω
i ⊗ Â ω′ i) = 0. Let b = ∑

j[ω′′ j,ω′′′ j] be a local unit for the ωi . Then

∑
i

ωi ⊗̂
A
ω′ i =

∑
i

b · ωi ⊗̂
A
ω′ i

=
∑
i, j

(
ω′′ j · [ω′′′ j,ωi]

Â

) ⊗̂
A
ω′ i

=
∑
i, j

ω′′ j ⊗̂
A

([
ω′′′ j,ωi]

Â · ω′ i)

=
∑
i, j

ω′′ j ⊗̂
A

(
ω′′′ j · [ωi,ω′ i]

Ĉ

)
= 0. �
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In the following, we will identify X̂ ⊗ Â X̂ with Ĉ .
We can define a right action of Ĉ on X by

x · [ω,ω′]Ĉ = ω(x(0))ω
′(x(1)

[1])x(1)
[2],

and then (b · ω)(x) = ω(x · b) for all b ∈ Ĉ . We can then construct a map

V t
Ĉ

: Ĉ ⊗ X̂ → X̂ ⊗ X̂ : b ⊗ ω → b · ω(1) ⊗ ω(2),

and it will be a bijection. Its inverse is given by

(
V t

Ĉ

)−1
(ω ⊗ ω′) = [

ω,ω′ (1)
]

Ĉ ⊗ ω′ (2),

where the first factor is covered by Â-balancedness and a local unit argument. Note that a same
kind of expression can be used for the inverse of V t (which was introduced in the paragraph before
Proposition 2.2), we have

(
V t)−1

(ω ⊗ ω′) = ω(1) ⊗ [
ω(2),ω′]

Â .

Now we define a comultiplication on Ĉ . We first provide some formal intuition. Note that on X̂ , we
have

Δ X̂ (ω · ω1) = Δ X̂ (ω) · Δ Â(ω1).

Also, using (ab)[1] ⊗ (ab)[2] = b[1]a[1] ⊗ a[2]b[2] for a,b ∈ A, we have

Δ Â

([ω,ω′] Â

) = [
ω(2),ω′ (1)

]
Â ⊗ [

ω(1),ω′ (2)
]

Â .

If we then want ΔĈ (b) · Δ X̂ (ω) = Δ X̂ (b · ω), we are led to

ΔĈ

([ω,ω′]Ĉ

) = [
ω(1),ω′ (2)

]
Ĉ ⊗ [

ω(2),ω′ (1)
]

Ĉ .

We now show that this is a well-defined comultiplication.
Remark that m = [ω(1),ω′ (2)]Ĉ ⊗[ω(2),ω′ (1)]Ĉ automatically has a well-defined meaning as a mul-

tiplier, using Ĉ-linearity of [·, ·]Ĉ . In fact, for c ∈ Ĉ any of the expressions (1 ⊗ c)m, (c ⊗ 1)m,m(1 ⊗ c)

and m(c ⊗ 1) are elements of Ĉ ⊗ Ĉ . Since the action of Ĉ is unital (i.e. Ĉ · X̂ = X̂), we can let m act
on the left of X̂ ⊗ X̂ .

Lemma 2.8. For all ω′′,ω′′′ ∈ X̂ , we have

m · (ω′′ ⊗ ω′′′) = V t(b ⊗ 1)
(

V t)−1
(ω′′ ⊗ ω′′′),

where b = [ω,ω′]Ĉ .

Proof. We have to show that for all ω′′ ∈ X̂ and ω1 ∈ Â, we have

V t(b · ω′′ ⊗ ω1) = m · (ω′′ (1) ⊗ ω′′ (2) · ω1
)
.

Choose c ∈ Ĉ . Then
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(
(c ⊗ 1)m

) · (ω′′ (1) ⊗ ω′′ (2) · ω1
) = [

c · ω(1),ω′ (2)
]

Ĉ · ω′′ (1) ⊗ [
ω(2),ω′ (1)

]
Ĉ · (ω′′ (2) · ω1

)
= (

c · ω(1)
) · [ω′ (2),ω′′ (1)

]
Â ⊗ ω(2) · [ω′ (1),ω′′ (2) · ω1

]
Â

= (
c · ω(1) ⊗ ω(2)

) · (Δ Â

([ω′,ω′′] Â

)
(1 ⊗ ω1)

)
= (c ⊗ 1) · (Δ X̂ (ω · [ω′,ω′′] Â) · (1 ⊗ ω1)

)
= (c ⊗ 1) · (V t(b · ω′′ ⊗ ω1)

)
.

As c was arbitrary, the lemma is proved. �
It is then immediate that if we define

ΔĈ

([ω,ω′]Ĉ

) = [
ω(1),ω′ (2)

]
Ĉ ⊗ [

ω(2),ω′ (1)
]

Ĉ ,

then ΔĈ is a well-defined multiplicative comultiplication Ĉ → M(Ĉ ⊗ Ĉ).
Now we show that (Ĉ,ΔĈ ) is an algebraic quantum group. We will do this by explicitly construct-

ing its counit, its antipode and its left invariant functional. This is sufficient by Proposition 2.9 in [26].
Define by εĈ the map

εĈ : Ĉ → k : [ω,ω′]Ĉ → ω(1)ω′(1).

Lemma 2.9. The functional εĈ is well defined, and satisfies the counit property with respect to ΔĈ .

Proof. The well-definedness is immediate. Choose c ∈ Ĉ , ω,ω′ ∈ X̂ . Then

(ι ⊗ εĈ )
(
(c ⊗ 1)ΔĈ

([ω,ω′]Ĉ

)) = ω(2)(1)ω′ (1)(1)
[
c · ω(1),ω′ (2)

]
Ĉ

= c · [ω,ω′]Ĉ .

The other half of the counit property is proven similarly. �
Lemma 2.10. The map SĈ defined in Lemma 2.4 satisfies the antipode property.

Proof. For one half of it, we have to prove the following identity: for any ω,ω′ ∈ X̂ and c ∈ Ĉ ,

[
θ X̂

(
ω′ (2)

)
,ω(1)

]
Ĉ · [ω(2),ω′ (1) · c

]
Ĉ = ω(1)ω′(1)c.

But the left hand expression equals [[θ X̂ (ω′ (2)),ω(1)]Ĉ · ω(2),ω′ (1) · c]Ĉ . Now for ω′′ ∈ X̂ we have

[
ω′′,ω(1)

]
Ĉ · ω(2) = ω(1)ω′′,

by using Lemma 2.3 and formula (xiv) of Proposition 1.20, so the first expression reduces to
ω(1)[θ X̂ (ω′ (2)),ω′ (1) · c]Ĉ . Using formula (xv) of Proposition 1.20, we find that for ω′′ ∈ X̂

[
θX

(
ω′ (2)

)
,ω′ (1)

]
Ĉ · ω′′ = ω′(1)ω′′,

proving the identity. The other half of the antipode property follows similarly. �
Now we show that Ĉ has a non-zero left invariant functional. Denote by ̂ the map

X̂ → X :ψX ( · x) → x.
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Lemma 2.11. The functional

ϕĈ : Ĉ → k : [ω′,ω]Ĉ → ω′(ω̂)

is well defined and left invariant.

Proof. If x ∈ X and ω1 ∈ Â, then ψX ( · x) · ω1 = ω1(S(x(1)))ψX ( · x(0)). Hence if ω = ψX ( · x), then
ω̂1 · ω = ω1 · ω̂. If also ω′ ∈ X̂ , then (ω′ · ω1)(ω̂) = ω′(ω̂1 · ω). This proves that ϕĈ is well defined on
Ĉ = X̂ ⊗ Â X̂ .

We prove that ϕĈ is left invariant. First note that the expression

(ι ⊗ ϕĈ )ΔĈ

([ω′,ω]Ĉ

)
makes sense as a multiplier of Ĉ . As the action of Ĉ on X is unital, also the expression

((
(ι ⊗ ϕĈ )ΔĈ

([ω′,ω]Ĉ

)) · ω′′)(x)

is meaningful for ω′′ ∈ X̂ and x ∈ X . Since the action of M(Ĉ) is faithful, it is enough to prove that
this expression equals ω′(ω̂)ω′′(x). Define

ξω′′,x : Ĉ → k : b → (b · ω′′)(x).

By unitality we have that (ξω′′,x ⊗ ι)ΔĈ (b) ∈ Ĉ for any b ∈ Ĉ , and a small calculation yields that for
b = [ω′,ω]Ĉ we have

(ξω′′,x ⊗ ι)ΔĈ (b) = ω′′(x(1)
[2])[ω′(x(0)·

)
,ω

( · x(1)
[1])]

Ĉ .

If we then apply ϕĈ and write ω = ψX ( · y), we obtain ω′′(x [2]
(1) )ω′(x(0)x(1)

[1] y), which reduces to
ω′(ω̂)ω′′(x). �

We have proven

Theorem 2.12. Together with the map ΔĈ the algebra Ĉ is an algebraic quantum group.

2.3. X as a bi-Galois object

We still assume that (X,α) is a Galois object for an algebraic quantum group (A,Δ). We use
notation as in the previous subsection.

Denote by C the vector space X̂ ⊗ Â X . Then

Ĉ × C → k : (b,ω ⊗ x) → (b · ω)(x)

is a well-defined pairing. Now since the map X̂ → X : ψX ( · x) → x is left Â-linear, we can define
a natural bijection Ĉ → C by sending [ω,ψX ( · x)]Ĉ to ω ⊗ x. We also have a canonical bijection
(Ĉ )̂ → Ĉ : ϕĈ ( · b) → b for b ∈ Ĉ , where (Ĉ )̂ momentarily denotes the dual of (Ĉ,ΔĈ ). We can use
this to identify C with (Ĉ )̂ , so that there is no conflict of notation. In the following we will denote
ω⊗ Â x by [ω, x]C . Then multiplication in C is essentially defined by

[
ω(1), x

] · [ω(2), y
] = [ω, xy]C .
C C
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Also its counit, antipode and right invariant functional are easily seen to be defined, using the results
on the structure of the dual of an algebraic quantum group, by respectively

εC
([ω, x]C

) = ω(x)

SC
([

ϕX ( · w), x
]

C

) = [
ϕX (x · ), w

]
C ,

ψC
([ω, x]C

) = ω(1)ψX (x).

We have not found a particularly nice form for the comultiplication on C .
It is immediate that the right action of Ĉ on X makes X a unital right Ĉ-module algebra. Then

we know from [27] that there is a left coaction of C on X . If we denote it by γ , then we have the
formula

(ι ⊗ ω)γ (x) = [ω, x]C .

It is also clear that this coaction makes X a left C-Galois object, since the adjoint of the Galois map is
exactly V t

Ĉ
. As X is a Â-Ĉ-bi-module, it is clear that the coactions of C and A commute. This shows

that we are in the situation of the following definition:

Definition 2.13. If (A,ΔA) and (C,ΔC ) are two algebraic quantum groups, then an A-C-bi-Galois object
consists of a triple (X,α,γ ), where (X,α) is a right A-Galois object, (X, γ ) is a left C-Galois object,
and α and γ commute.

Theorem 2.14. If (C,ΔC ) is the algebraic quantum group, and γ : X → M(C ⊗ X) is the left coaction con-
structed from a Galois object (X,α) for an algebraic quantum group (A,Δ), then (X,α,γ ) is an A-C-bi-Galois
object. The δ-invariant functional ϕX for α will be invariant for γ , while the invariant functional ψX for α will
be δ−1

C -invariant for γ .

Proof. We have already shown the validity of the first statement. As for the invariance of ϕX , we
have to show that ϕX (x · b) = ϕX (x)εĈ (b) for x ∈ X and b ∈ Ĉ . Choosing ω ∈ X̂, y ∈ X , we have for all
x ∈ X that

ϕX
(
x · [ω,ϕX (y · )]Ĉ

) = ω(x(0))ϕ
(

y(1) S(x(1))
)
ϕX (y(0))

= ϕX (y)ϕX (x)ω(1)

= ϕX (x)ε
([

ω,ϕX (y · )]Ĉ

)
.

As for the δ−1
C -invariance of ψX , this follows from the fact that

ψX (x)1 = (ψC ⊗ ι)
(
γ (x)

)
.

This shows that ψX bears the same relation to ψC as ϕX did to ϕ , and reasoning by duality the claim
follows. �

We give another characterization of the algebra Ĉ . When x ∈ X , we will denote by Rx the map
‘right multiplication with x’. By B0(X) we denote X ⊗ X̂ seen as finite rank operators on X in the
natural way.

Proposition 2.15. The algebra Ĉ consists exactly of those maps F : X → X which commute with the left action
of Â and such that {Rx F | x ∈ X} ⊆ B0(X)
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Proof. It is not difficult to show that every element of Ĉ satisfies this condition. For the other way,
we first show that F can be seen as an element of M(Ĉ). The commutation of F with the left action
of Â lets identify F with a functional ωF on C = X̂ ⊗ Â X by sending ω ⊗ x to ω(F (x)). As such, for
any c ∈ C , we have (ωF ⊗ ι)(ΔC (c)) ∈ C and (ι ⊗ ωF )(ΔC (c)) ∈ C , for if c = 〈ϕX ( · y), x〉C , then

(ωF ⊗ ι)
(
ΔC (c)

) = ωF (x(−2))ϕX (x(0) y)x(−1)

= ωF (x(−1))ϕX (x(0) y(0))S−1
C (y(−1))

= ϕX
(

F (x)y(0)

)
S−1

C (y(−1)) ∈ C,

while

(ι ⊗ ωF )
(
ΔC (c)

) = ϕX (x(0) y)ωF (x(−1))x(−2)

= ϕX
(
(R y F )(x(0))

)
x(−1) ∈ C .

The remark before Proposition 4.3 of [26] lets conclude that ωF ∈ M(Ĉ), and hence F is the right
action by ωF . As the map sending m ⊗ x ∈ M(Ĉ) ⊗ X to Rxm is seen to be injective, and as Ĉ ⊗ X →
B0(X) : b ⊗ x → Rxb is seen to be a bijection, we conclude that ωF ∈ Ĉ . �
Corollary 2.16. If (C ′,ΔC ′ ) is another algebraic quantum group making X a A-C ′-bi-Galois object, then
(C,ΔC ) and (C ′,ΔC ′ ) are isomorphic as algebraic quantum groups.

Proof. It is enough to prove that the dual (Ĉ ′,ΔĈ ′ ) of C ′ is isomorphic with Ĉ . But the previous
proposition implies that π(Ĉ ′) ⊆ Ĉ , with π the associated faithful representation of Ĉ ′ as opera-
tors on X̂ . Since the Galois property forces the natural map Ĉ ′ ⊗ X̂ → X̂ ⊗ X̂ to be an isomor-
phism, we have π(Ĉ ′) = Ĉ . The comultiplications necessarily coincide, since ΔĈ ′ (c)(Δ X̂ (ω)(1⊗ω1)) =
ΔĈ (c)(Δ X̂ (ω)(1 ⊗ ω1)) for all c ∈ C,ω ∈ X̂ and ω1 ∈ Â (having already identified Ĉ ′ with Ĉ as an al-
gebra). �

In fact, it follows easily by the foregoing that the Galois coaction γ ′ of C ′ on X will then
also be isomorphic with γ (i.e. the isomorphism φ : C ′ → C of algebraic quantum groups satisfies
(φ ⊗ ι)γ ′ = γ ), since the comodule structure is determined by the module structure for its dual. Thus,
as in the Hopf algebra situation, there is a one-to-one correspondence between Galois objects and
bi-Galois objects.

We end this subsection with another definition:

Definition 2.17. If (A,ΔA) and (C,ΔC ) are two algebraic quantum groups, we call them monoidally
equivalent if there exists a (non-trivial) A-C-bi-Galois object (N,α,γ ).

2.4. Linking quantum groupoids and their duals

We want to warn that this subsection is mainly for motivation, and details are not provided.
A more systematic and independent treatment of the following notions will be given in [7] (in the
multiplier Hopf algebra case) and [8] (in the algebraic quantum group case).

We want to show that there is a nice way in which Ĉ, X̂, Â and their comultiplications can be
put together inside a groupoid-like object. To make notation a bit more systematic, we now denote
Q̂ 11 = Ĉ , Q̂ 12 = X̂ and Q̂ 22 = Â. Denote by Q̂ 21 or X̂op (which is for now just a formal notation!) the
vector space consisting of linear maps X̂ → Â of the form ω → [ω′,ω] Â . Then we can form a 2 by 2

matrix algebra of the form Q̂ = ( Q̂ 11 Q̂ 12

Q̂ 21 Q̂ 22

)
. As a vector space, this is just the direct sum of its entries.

But the matrix notation is convenient to see how the algebra structure works: one just checks that
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if we apply the ordinary matrix multiplication rules, we always obtain a coupling between objects

of which we know a composition. For example,
( 0 ω

0 0

) · ( 0 0
0 ω1

) = ( 0 ω·ω1
0 0

)
, while

( 0 ω

0 0

) · ( 0 0
[ω′,·] Â 0

) =( [ω,ω′]Ĉ 0
0 0

)
since (ω · ) ◦ ([ω′, ·] Â) = [ω,ω′]Ĉ on X̂ .

There is an easy comultiplication structure available on Q̂ . First, we introduce a comultiplication
on X̂op by putting Δ X̂op ([ω, ·] Â) = [ω(2), ·] Â ⊗ [ω(1), ·] Â , where the range has again to be interpreted
in some generalized multiplier space M( X̂op ⊗ X̂op), using that X̂op is a Â-Ĉ-bimodule in a natural
way. Then the comultiplication on Q̂ is simply ΔQ̂ ((ωi j)i j) = (Δ̂i j(ωi j))i j , where the entries on the
right are to be seen as elements of M(Q̂ ⊗ Q̂ ), again simply by using matrix multiplication rules,
and where the Δ̂i j are just the natural comultiplications which we had introduced on the Q̂ i j (for
example, Δ̂i j = Δ X̂ ). Note however, that while ΔQ̂ is a well-behaved coassociative homomorphism, it
is not unit-preserving (i.e., is not non-degenerate)!

The non-unitality of the comultiplication is the reason why (Q̂ ,ΔQ̂ ) should really be treated as
an algebraic quantum groupoid, although such an object has not yet been defined in an axiomatic
way. Hence, we only show that Q̂ comes equipped with all the structure one would expect from an
algebraic quantum groupoid, drawing inspiration from [4] (where a theory of weak Hopf algebras is
developed, which are very near to quantum groupoids).

Define ε X̂ (ω) = ω(1) for ω ∈ X̂ , and ε X̂op([ω, ·] Â) = ω(1). These, and the counits for Â and Ĉ , we
will then also write with the index notation as we did for the comultiplications on the Q̂ i j . Defin-
ing εQ̂ : Q̂ → k by (ωi j)i j → ∑

i, j ωi j(1), we get a counit on Q̂ , satisfying the weak multiplicativity

condition in Definition 2.1 of [4]. Defining also S X̂ : X̂ → X̂op : ω → [ω, ·] Â , S X̂op : X̂op → X̂ : [ω, ·] Â →
θ X̂ (ω), and S Q̂ : Q̂ → (ωi j)i j → (̂S ji(ω ji))i j , we get that this last map S Q̂ will satisfy the antipode
conditions in Definition 2.1 of [4].

Since the unit in the multiplier algebra of Q̂ obviously satisfies the weak comultiplicativity state-
ment of that Definition, it is clear why we can call (Q̂ ,ΔQ̂ ) a weak multiplier Hopf algebra. But
since we are working with algebraic quantum groups, we also expect some integral structure. Now
(Q̂ ,ΔQ̂ ) has to be pictured as a quantum groupoid with an underlying classical set consisting of 2

objects: this corresponds to the 2-dimensional algebra spanned by e1 = ( 1 0
0 0

)
and e2 = 1−e1 ∈ M(Q̂ ).

Then Q̂ can be pictured as being the groupoid algebra of some (quantum) space of arrows between
these two objects, with ( Â,Δ Â) and (Ĉ,ΔĈ ) playing the role of the endomorphism groups of the
points. Since in the finite-dimensional classical case, we expect invariant functionals to be given by a
balanced sum of Dirac functionals at the unit endomorphisms of the two objects (in analogy with the
group algebra case), it should seem quite natural to take ϕQ̂ : Q̂ → k : (ωi j)i j → ∑

i ϕ̂i(ωii) as a left
invariant functional, where ϕ̂1 = ϕĈ and ϕ̂2 = ϕ Â . We omit however here the real justification for this
terminology, and refer again to [8] for more details.

Next, we sketch what the dual of this linking algebraic quantum groupoid looks like (for since
finite-dimensional weak Hopf algebras are self-dual, one should expect a duality theory for algebraic
quantum groupoids). This dual should of course be connected with X, A and C . Since now the comul-
tiplication is the dual of some kind of matrix multiplication, we expect to see expressions roughly of
the form xij → ∑

k yik ⊗ zki . The concrete picture is as follows.
Put Q = C ⊕ Xop ⊕ X ⊕ A, with the direct sum algebra structure. We write it also as Q = Q 11 ⊕

Q 21 ⊕ Q 12 ⊕ Q 11. We then have a natural pairing between Q and Q̂ : for xij ∈ Q ij and ωkl ∈ Q̂ kl , we
put 〈ωkl, xij〉 = δk,iδl, jωi j(xij): the only expression for which this is not yet defined then, is the one

between Xop and X̂op. This is determined by 〈[ω, ·] Â, xop〉 = ω(θX (x)).

This pairing then leads to eight different comultiplications on the parts of Q : We define Δ
j
ik(xij) ∈

M(Q ij ⊗ Q jk) for xij ∈ Q ij by the property that (ωi j ⊗ ω′
jk)(Δ

j
ik(xij)) = (ωi j · ω′

jk)(xij) for all ωi j ∈ Q̂ i j

and ω′
jk ∈ Q̂ jk . These fit perfectly with the maps we already had constructed: it is easy to check

that Δ1
11 = ΔC , Δ1

12 = γ , Δ2
12 = α, Δ2

22 = ΔA and Δ1
22 = β̃ . The map Δ1

21 for example is given by
Δ1

21(xop) = (x(0))
op ⊗ S−1

C (x(−1)), which gives a right coaction on Xop (which makes it even into a
right C-Galois object).
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We can group these comultiplications together in one comultiplication for Q , which is then given
as ΔQ (xik) = Δ1

ik(xik) + Δ2
ik(xik) for xik ∈ Q ik . A counit is defined on Q by the formula εQ (xij) =

δi, jεi(xij), while an antipode is determined by putting S Q (x) = S X (x) and S Q (xop) = S Xop(xop) for
x ∈ X (our final argument for our claim that S X and S Xop are antipodes!), and using just the ordinary
antipode maps on the C and A-parts. Then some calculations should reveal that again, this gives us
the structure of a ‘weak multiplier Hopf algebra’ on Q . Moreover, we have a ‘left invariant functional’
ϕQ , which is now given as just the algebraic left integrals on the A and C-parts, by ϕX on X , and by
ψX ◦ S−1

X on Xop. Then (Q ,ΔQ ) will be like the function algebra on a ‘quantum’ groupoid, with ϕX
the operation of integrating out along a Haar system, and then applying the counting measure on the
(finite) basis.

We want to end by remarking that this quantum groupoid viewpoint of Galois objects for Hopf
algebras appeared already in [3] (see also [12]), but in a somewhat non-symmetric way, and without
considering the dual picture (it also seems to have been implicit in earlier work by Schauenburg [22]).
It is an important ingredient in generalizing the theory to the locally compact quantum group case
(see [5]).

2.5. Concerning ∗-structures

Suppose now again that (A,Δ) is a ∗-algebraic quantum group, and (X,α) a ∗-Galois object. Then
we know that ϕX is a positive functional on X . We can introduce on X̂ the ∗-operation

ω∗(x) = ω(x∗).

Lemma 2.18. For all ω ∈ X̂ and ω1 ∈ Â, we have

(ω · ω1)
∗ = ω∗

1 · ω∗.

Proof. Choose x ∈ X , then

(ω · ω1)
∗(x) = (ω · ω1)(x∗)

= ω
(
x∗
(0)

)
ω1

(
x∗
(1)

)
= ω∗(x(0))

(
S−1

Â

(
ω∗

1

))
(x(1))

= (
ω∗

1 · ω∗)(x). �
Now consider the following ∗-operation on the dual C of Ĉ :

[ω, x]∗C := [ω∗, x∗]C .

By the previous lemma, it is seen to be a well-defined involution. Writing elements of C in the form
(ι ⊗ ω)(γ (x)), and using the formula

(ω∗)(1) ⊗ (ω∗)(2) = (
ω(2)

)∗ ⊗ (
ω(1)

)∗
,

we find that ∗ is anti-multiplicative on C . Finally, ΔC is ∗-preserving, which is again easily seen by
writing an element of C in the aforementioned form and using that γ is ∗-preserving.

Now we show that ψC is positive. Take c ∈ C and z ∈ X with ϕX (z∗z) = 1. Write c ⊗ z as∑
i γ (xi)(1 ⊗ yi), then c∗c = ∑

i, j(ι ⊗ ϕX ((yi)
∗ · y j))(γ ((xi)

∗x j)), so

c∗c =
∑
i, j

〈
ϕX

(
(yi)

∗ · y j
)
, (xi)

∗x j
〉
C .
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Applying ψC , we get

ψC (c∗c) =
∑
i, j

ϕX
(
(yi)

∗ y j
)
ψX

(
(xi)

∗x j
)

� 0,

since the matrices (ai, j) = (ϕX ((yi)
∗ y j)) and (bi, j) = (ψX ((xi)

∗x j)) are both positive definite. Hence

Theorem 2.19. If (X,α) is a ∗-Galois object for a ∗-algebraic quantum group (A,Δ), then the reflected alge-
braic quantum group (C,ΔC ) also has the structure of a ∗-algebraic quantum group.

We can also consider the corresponding ∗-operation on Ĉ . Then we have a formula corresponding
to the one of the above lemma, namely for ω ∈ X̂ and b ∈ Ĉ , we have

(b · ω)∗ = ω∗ · b∗.

Remark. In some sense, this ∗-operation is not the right one to consider on a conceptual level: one
should rather use the (external) ∗-operation X̂ → X̂op (with notation as in the previous subsection),
with ω∗(xop) = ω(x∗) (considering X̂op as functionals on Xop). Then we see that, with this definition,
actually (S X̂ (ω))∗(x) = ω(x∗) for x ∈ X , which is more in line with the definition for the ∗-structure
on the dual of a ∗-algebraic quantum group. See again [7] and [8] for further discussion.

We end again by giving a definition:

Definition 2.20. Let (A,ΔA) and (C,ΔC ) be two ∗-algebraic quantum groups. We call them monoidally
∗-equivalent if there exists a (non-trivial) A-C-∗-bi-Galois object (N,α,γ ).

Here a ∗-bi-Galois object (N,α,γ ) is just a bi-Galois object such that (N,α) is a right A-∗-Galois
object and (N, γ ) is a left C-∗-Galois object. One can easily show that (C,ΔC ) (as a ∗-algebraic
quantum group) is again uniquely determined by (N,α).

2.6. Monoidal equivalence

Definition 2.21. If (D,Δ) is an algebraic quantum group, we denote by D-Rep the monoidal category
of unital left D-modules, where a morphism between two objects V and W is a linear map V → W
which intertwines the module structure.

Note that this category is indeed monoidal by the usual tensor product of two modules, because of
the unitality assumption. (We recall that the unitality of a left D-module M means that D · M = M .)

Theorem 2.22. If (A,ΔA) and (C,ΔC ) are monoidally equivalent algebraic quantum groups, then the cate-
gories of unital left modules for their duals are monoidally equivalent.

Proof. We construct a monoidal equivalence between Â-Rep and Ĉ-Rep. This equivalence is given by
the functor F = X̂ ⊗ Â −. This functor is monoidal with respect to the natural isomorphism

n⊗ : ω ⊗̂
A
(v ⊗ w) → (

ω(1) ⊗̂
A

v
) ⊗ (

ω(2) ⊗̂
A

w
)
,

where it is clear how to interpret this and how to show bijectivity (using Â ⊗ Â V = V ).



K. De Commer / Journal of Algebra 321 (2009) 1746–1785 1775
We briefly argue how to construct the inverse, without entering into details. Using the symmetric
quantum groupoid picture from Section 2.4, we know that Xop a right C-Galois object (by the ‘comul-
tiplication part’ Δ1

21), and we can apply on Ĉ-Rep the functor X̂op ⊗Ĉ −. Then X̂op ⊗Ĉ ( X̂ ⊗ Â −) is seen
to be naturally equivalent with the identity, using first the isomorphism X̂op ⊗Ĉ X̂ → Â : [ω, ·] Â ⊗ω′ →
[ω,ω′] Â , then by using that Â ⊗ Â − is simply the identity. �

Suppose now again that A is a ∗-Galois object. We can equip the category of unital left Â-modules
with an anti-linear conjugation functor ConjÂ by sending (V ,π) to (V ,π), where V is the conjugate
vector space of V and with

π(ω1) · v = S Â

(
ω∗

1

) · v.

There is a natural isomorphism

nConj : (ConĵC ◦ (
X̂ ⊗̂

A
−) ◦ ConjÂ

) → X̂ ⊗̂
A

−,

given by

ω ⊗̂
A

v → θ X̂ (ω∗) ⊗̂
A

v,

where we use the ∗-structure on X̂ introduced in the beginning of the previous subsection. To see
that this is well defined, we have to prove that

θ X̂

(
(ω · ω1)

∗) ⊗̂
A

v = θ X̂ (ω∗) ⊗̂
A

S Â

(
ω∗

1

) · v,

for all ω ∈ X̂,ω1 ∈ Â and v ∈ V . Now (ω · ω1)
∗ = ω∗ · S−1

Â
(ω∗

1) by Lemma 2.18, and θ X̂ (ω · ω1) =
θ X̂ (ω) · S2

Â
(ω1) by (vii) of Proposition 1.20, which proves the identity. To prove that it is a natural

transformation, we have to show that

θ X̂

((
SĈ

(
b∗) · ω)∗) = b · θ X̂ (ω∗)

for b ∈ Ĉ and ω ∈ X̂ . But θ X̂ ((SĈ (b∗) · ω)∗) = θ X̂ (S−2
Ĉ

(b) · ω∗), so the identity follows by the ‘mirror
version’ of the identity (vii) in Proposition 1.20.

Now look at the category Â-Rep∗ of unital left Â-modules which have a pre-Hilbert space structure
such that the resulting representation of Â is ∗-preserving. The morphisms in the category are now
required to have an adjoint. If V is an object in this category, we have a canonical morphism Sc :
V ⊗ V → ε, sending v ⊗ w to 〈v, w〉. Note that we take the convention where the scalar product is
antilinear on its second argument. Using the natural isomorphisms for tensoring and conjugating, the

map Sc is sent to a map ( X̂ ⊗ Â V ) ⊗ ( X̂ ⊗ Â V ) → ε. This provides a sesquilinear form on X̂ ⊗ Â V . We
will show in Proposition 2.23 that it equips X̂ ⊗ Â V with a pre-Hilbert space structure. This is the
categorical approach to arrive at the induced Hilbert space structure.

We can also use a specific Â-valued inner product on X̂ to perform the induction, given by

〈ω,ω′〉 Â = [ω∗,ω′] Â,

again using the ∗-structure on X̂ introduced in the beginning of the previous subsection. The fact that
〈·,·〉 Â is a Â-valued inner product means that it is a sesquilinear map with values in Â, antilinear in
the first argument, such that
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1. 〈ω,ω′〉∗̂
A

= 〈ω′,ω〉 Â ,
2. 〈ω,ω〉 Â � 0 with equality iff ω = 0, and
3. 〈ω,ω′ · ω1〉 Â = 〈ω,ω′〉 Â · ω1 for ω1 ∈ Â.

Moreover, we have

4. 〈b · ω,ω′〉 Â = 〈ω,b∗ · ω′〉 Â , b ∈ Ĉ .

We will prove this below. We can then make an inner product on X̂ ⊗ Â V by setting

〈ω ⊗ v,ω′ ⊗ w〉 = 〈
v, 〈ω,ω′〉 Â · w

〉
.

This is the C∗-algebraic approach (cf. [21]).
Finally, there is a von Neumann algebraic approach. Namely, introduce in Â the inner product deter-

mined by 〈ω1,ω2〉 = ψ Â(ω∗
2ω1) (i.e. 〈ϕ( · a),ϕ( · b)〉 = ϕ(b∗a)), and introduce in X̂ the inner product

determined by

〈
ϕX ( · y),ϕX ( · x)

〉 = ϕX (x∗ y).

For ω ∈ X̂ , denote by Lω the map Â → X̂ which sends ω1 to ω · ω1. Then L∗
ωLω′ will be left multipli-

cation with some element of Â, and identifying the operator with this element, we can define

〈ω ⊗ v,ω′ ⊗ w〉 = 〈
v, L∗

ωLω′ · w
〉
.

Remark however that with this scalar product on X̂ , the right or left representation of Â on X̂ is in
general not a ∗-representation. This is because the left action of Â on X̂ is not an analogue of the left
multiplication of Â on Â.

Proposition 2.23. All three sesquilinear forms on X̂ ⊗ Â V coincide, providing this space with a pre-Hilbert
space structure such that the induced representation of Ĉ is ∗-preserving.

Proof. We first show that L∗
ωLω′ = 〈ω,ω′〉 Â . This means that for all ω,ω′ ∈ X̂ and ω1,ω2 ∈ Â we

have

〈ω · ω1,ω
′ · ω2〉 = 〈

ω1, 〈ω,ω′〉 Âω2
〉
.

Writing ω′ = ϕX ( · x) and ω2 = ϕ( · a), we have

〈ω · ω1,ω
′ · ω2〉 = 〈

ω · ω1,ϕX ( · x(0))ϕ
(
δS(x(1))a

)〉
= (ω · ω1)

(
x∗
(0)

)
ϕ

(
a∗ S(x(1))

∗δ
)
,

while

〈
ω1, 〈ω,ω′〉 Âω2

〉 = 〈
ω1,ω

∗(x(0))ϕ
( · x(1)

)
ϕ

(
δS(x(2))a

)〉
= ω

(
x∗
(0)

)
ϕ

(
a∗ S(x(2))

∗δ
)
ω1

(
x∗
(1)

)
,

which shows the equality.
Now we show the equivalence of the categorical and the C∗-algebraic approach. In the categorical

approach, we have for ω ∈ X̂ that
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〈
ω(1) · ω1 ⊗ v,

(
ω(2) ◦ θ−1

X

)∗ ⊗ w
〉 = F (Sc)(ω ⊗ v ⊗ w)

= ω(1)〈v, w〉,

where F still denotes the functor X̂ ⊗ Â −. Since

〈(
θ−1

X̂

(
ω(2)

))∗
,ω(1)

〉
Â = ω(1)ε,

we are done.
From the von Neumann algebraic picture, it follows that this inner product is indeed positive

(using that the ∗-structure on Â is exactly the adjoint of left multiplication with respect to the stated
scalar product on Â). From the categorical picture, it follows quite immediately that the resulting
representation of Ĉ is ∗-preserving. Finally, also the non-degeneracy of the inner product follows
from the categorical viewpoint: for the vectors of length zero in F (V ) form a subobject of V , which
is sent to 0 by F −1.

The fact that the Â-valued map is indeed a Â-hermitian product follows then in a straightforward
manner from the categorical and von Neumann algebraic viewpoint. �

So in any case, X̂ ⊗ Â − can be lifted to a functor between the ∗-representation categories.

Proposition 2.24. The natural transformation n⊗ is unitary.

Proof. This follows by using the C∗-algebraic picture, and using the identity

Δ Â

(〈ω,ω′〉 Â

) = 〈
ω(1),ω′ (1)

〉
Â ⊗ 〈

ω(2),ω′ (2)
〉
Â . �

The map nConj however will only be unitary in case S2 = ι, and moreover, if this is not the case,

no unitary intertwiner between X̂ ⊗ V and X̂ ⊗ V can be constructed. We can however repair this
situation by changing the definition of the conjugation operator: now we send (V ,π) to (V ,π) with

π(ω1) · v = R Â(ω1)∗ · v,

where R Â is the unitary antipode for Â (see [20]). As remarked already in the previous section, note

that we can take the square θ
1/2
X of the positive diagonalizable operator θX , i.e. θ

1/2
X : X → X is a

diagonalizable map X → X with positive eigenvalues, and θ
1/2
X (θ

1/2
X (x)) = θX (x) for all x ∈ X . This

θ
1/2
X will still be a multiplicative automorphism of X .

Proposition 2.25. The map

ω ⊗̂
A

v → θ
1/2
X̂

(ω∗) ⊗̂
A

v

provides a well-defined unitary intertwiner between X̂ ⊗ V and X̂ ⊗ V .

Proof. To see if this map is well defined, we have to check the identity

θ
1/2
X̂

(
(ω · ω1)

∗) = θ
1/2
X̂

(ω∗) · R Â

(
ω∗

1

)
,

with ω ∈ X̂ , ω1 ∈ Â. Using Lemma 2.18, this reduces to proving that
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θ
1/2
X̂

(ω · ω1) = θ
1/2
X̂

(ω) · θ1/2
Â

(ω1),

where θ Â = S2
Â

and θ
1/2
Â

is its positive root (so that θ
1/2
Â

◦ R Â = S Â ). This follows from θ X̂ (ω · ω1) =
θ X̂ (ω) · S2

Â
(ω1), by taking ω an eigenvector for θ X̂ and ω1 an eigenvector for S2

Â
.

The way to prove that this is a natural transformation is very similar, and we omit it.
Finally, to prove unitarity we have to prove the identity

R Â

([ω′,ω] Â

) = [
θ

−1/2
X̂

(ω), θ
1/2
X̂

(ω′)
]

Â,

where ω,ω′ ∈ X̂ . Applying θ
1/2
Â

and using Lemma 2.18, this reduces to proving that

[
θ

1/2
X̂

(ω), θ
1/2
X̂

(ω′)
]

Â = θ
1/2
Â

([ω,ω′] Â

)
.

This identity is true when θ
1/2
X̂

is replaced by θ X̂ and θ
1/2
Â

is replaced by S2
Â

, using formula (xvi) of
Proposition 1.20. Again by using an eigenvector argument, it is also true as stated. �

In any case, Proposition 2.24 was already sufficient to conclude:

Theorem 2.26. Let (A,ΔA) and (C,ΔC ) be two monoidally ∗-equivalent ∗-algebraic quantum groups.
Then the monoidal ∗-categories of unital ∗-representations in Hilbert spaces of their duals are monoidally
∗-equivalent.

For the notions of ∗-category and monoidal ∗-equivalence, we refer for example to [19].

3. An example

The following examples of infinite-dimensional Hopf algebras with a left invariant functional can
be found in [26] and [28]. We slightly generalize the construction to fit them both in a family.

Definition 3.1. Let n > 1, m � 1 be natural numbers, and λ ∈ k such that λm is a primitive nth root of
unity. Let An,m

λ be the unital algebra over k generated by elements a, a−1 and b, and with defining
relations: a−1 is the inverse of a, ab = λba and bn = 0. Then we can define a comultiplication on An,m

λ

determined on the generators by

Δ(a) = a ⊗ a,

Δ(b) = b ⊗ am + 1 ⊗ b.

This makes (An,m
λ ,Δ) an algebraic quantum group of compact type.

To prove that this comultiplication is indeed well defined, we only have to use the well-known fact
that (s + t)l = sl + tl when s, t are variables satisfying the commutation st = qts with q a primitive
lth root of unity (see e.g. [15]). Now (An,1

λ ,Δ) is the example in [28], and with the further relation

an = 1, this reduces to the two-generator Taft algebras. The Hopf algebra (An,2
λ ,Δ) is isomorphic with

the example constructed in [26].
The left invariant functional ϕ of (A,Δ) = (An,m

λ ,Δ) is defined by ϕ(apbq) = δp,0δq,n−1, p ∈ Z,
0 � q < n. As A is infinite-dimensional, the dual Â is necessarily of discrete type and not compact, i.e.
it is a genuine multiplier Hopf algebra. This is a difference with the Taft algebras, which are self-dual.
Remark that there can still be defined a pairing between A and itself, but it will be degenerate.
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In [18] the Galois objects for the Taft algebras were classified. It provides the motivation for the
following construction. Fix (A,Δ) = (An,m

λ ,Δ) as above, and assume moreover that λ is a primitive
nth root of unity and m and n are coprime. The condition ‘λm is a primitive nth root of unity’ follows
from this assumption.

Definition 3.2. Take μ ∈ k. Let X = Xn,m
λ,μ be the unital algebra generated by x, x−1 and y, with the

defining relations: x−1 is the inverse of x, xy = λyx and yn = μxmn . A right coaction α of (A,Δ) on X
is defined on the generators by

α(x) = x ⊗ a,

α(y) = y ⊗ am + 1 ⊗ b.

It is again easy to show that this has a well-defined extension to the whole of X .

Proposition 3.3. (X,α) is a right A-Galois object.

Proof. First of all, we have to see if X is not trivial. We follow standard procedure. Let V be a vector
space over k which has a basis of vectors of the form ep,q with p ∈ Z and 0 � q < n. Define operators
x′ and y′ by

x′ · ep,q = ep+1,q for all p ∈ Z, 0 � q < n,

y′ · ep,q = λ−pep,q+1 if p ∈ Z, 0 � q < n − 1,

y′ · ep,n−1 = μλ−pep+nm,0 if p ∈ Z.

Then it is easy to see that x′ is invertible and that x′ y′ = λy′x′ . Also:

y′n · ep,q = λ−p(n−1−q) y′ 1+q · ep,n−1

= μλ−p(n−1−q)λ−p y′q · ep+nm,0

= μλ−p(n−1−q)λ−pλ−pqep+nm,q

= μλ−pnep+nm,q

= μx′mn · ep,q.

This gives us a non-trivial representation of X . Moreover, it is easy to see that this representation is
faithful.

Define by β̃ : A → Xop ⊗ X the homomorphism generated by

β̃(a) = (
x−1)op ⊗ x,

β̃(b) = −(
yx−m)op ⊗ xm + 1 ⊗ y.

This is well defined: for example, we have

β̃(b)n = ((−yx−m)n)op ⊗ xmn + μ
(
1 ⊗ xmn)

= (
(−1)nλmn(n−1)/2 + 1

)
μ

(
1 ⊗ xmn)

= 0,
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using that λm is a primitive root of unity. Denoting β = (S Xop ⊗ ι)β̃ with S Xop the canonical map
Xop → X , and writing β(c) = c[1] ⊗ c[2] for c ∈ A, it is easy to compute that

z(0)z(1)
[1] ⊗ z(1)

[2] = 1 ⊗ z,

c[1]c[2]
(0) ⊗ c[2]

(1) = 1 ⊗ c

for all z ∈ {x, y, x−1} and c ∈ {a,b,a−1}, and hence for all z ∈ X, c ∈ A. This is enough to know that
the action is Galois. �

The extension k ⊆ X will be cleft (see e.g. Definition 2.2.3 in [24]), by the comodule isomorphism
ΨX : X → A : xp yq → apbq , p ∈ Z and 0 � q < n. The associated scalar cocycle η is given by η(apbq ⊗
arbs) = 0, except for q = s = 0, where it is 1, and when q + s = n, in which case it equals μλ−rq . (We
want to thank the referee for pointing out that this Hopf algebra is. . . pointed, so that any Galois
object is automatically cleft (see [13]).)

We determine the extra structure occurring in this example. First note that we have shown that
the elements of the form xp yq with p ∈ Z and 0 � q < n form a basis. Then we have

ϕX
(
xp yq) = δq,n−1δp,0 for p ∈ Z, 0 � q < n,

ψX
(
xp yq) = δq,n−1δp,m(1−n)λ

−m for p ∈ Z, 0 � q < n,

δX = x(n−1)m,

σX (x) = λ−1x, θX (x) = x

σX (y) = y, θX (y) = λm y,

by some easy computations (where we have used notation as in the first section). It is of course the
nature of the example which makes the structure so similar to the one of A.

Now we determine the associated algebraic quantum group (C,ΔC ). Note that we could determine
the structure with the help of the cocycle, but we wish to directly use the Galois object itself, since
this is easier. In particular, we exploit the pairing between (C,ΔC ) and its dual (Ĉ,ΔĈ ).

We first give a heuristic reasoning. We determine the algebra structure of Ĉ . We need a description
of the dual Â of An,m

λ . It has a basis consisting of expressions epdq with p ∈ Z and 0 � q < n, where
ep ∈ Â and d ∈ M( Â), such that epeq = δp,qep , dep = ep−md and dn = 0. With c = ∑

k λ−kek ∈ M( Â),
the comultiplication is determined by

Δ(ep) =
∑

t

et ⊗ ep−t,

Δ(d) = d ⊗ c + 1 ⊗ d.

Now the left action of Â on X is given by

es · xp yq = δp,s−mqxp yq,

d · xp yq = Cqxp yq−1, 0 < q < n,

d · xp = 0,

where Cq = (1−λmq)
(1−λm)

λm(q−1) . Consider the operators gs and h acting on the right of X by
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xp yq · gs = δp,−sxp yq,

xp yq · h = Cq xp+m yq−1, 0 < q < n − 1,

xp · h = 0.

Then it is easy to see that h and gs commute with the left action of Â. We see that h · gs = gs+m · h,
that gs gt = δs,t gs and that hn = 0. The span of gshq will form our algebra Ĉ . Now denote by up,q the
elements in C such that 〈up,q, erds〉 = δp,rδq,s , and denote u = u−1,0, v = u0,0 and w = u0,1. Then we
have γ (x) = u ⊗x and γ (y) = v ⊗ y + w ⊗xm by using the action of Ĉ . Since this has to commute with
α, we find that v = 1. Using that yn = μxmn we find that μ+ wn = μumn , and using xy = λyx, we get
uw = λwu. Furthermore, the fact that x is invertible gives that u is invertible. This then completely
determines the structure of C . The coalgebra structure is determined by the usual

Δ(u) = u ⊗ u,

Δ(w) = w ⊗ um + 1 ⊗ w.

We can now make things exact.

Proposition 3.4. Let C be the unital algebra generated by three elements u, u−1 and w, with defining rela-
tions: u−1 is the inverse of u, uw = λwu and μ · 1 + wn = μumn. Then C is not trivial. We can define a unital
multiplicative comultiplication ΔC on C , given on the generators by

ΔC (u) = u ⊗ u,

ΔC (w) = w ⊗ um + 1 ⊗ w,

making it an algebraic quantum group of compact type. It has a left coaction γ on X determined by

γ (x) = u ⊗ x,

γ (y) = 1 ⊗ y + w ⊗ xm,

making it a A-C-bi-Galois object.

Proof. It is easy to see that ΔC and γ can be extended, that ΔC is coassociative and γ a coaction,
and that γ commutes with the right coaction of A. Since now C is already a bi-algebra, it follows
from the general theory of Hopf–Galois extensions that if γ can be shown to make X a left C-Galois
object, then automatically C will be a Hopf algebra, hence the reflected algebraic quantum group of A.

We can again show this by explicitly constructing a homomorphism β̃C : C → X ⊗ Xop, βC =
(ι ⊗ S Xop)β̃C , βC (c) = c[−2] ⊗ c[−1] . On generators it is given by βC (u) = x ⊗ x−1 and βC (w) =
y ⊗ x−m − 1 ⊗ yx−m . Again the same chore shows that it has a well-defined extension to C , and
that it provides the good inverse for the Galois map associated with γ . This concludes the proof. �
Remarks. 1. If the characteristic of k is zero, then C will not be isomorphic to A when μ �= 0. For
in A, the only group-like elements are powers of a. Thus any isomorphism would send u to a power
al of a. But then μ(almn − 1) would have to be an nth power in A, hence, dividing out by b, also in
k[a,a−1]. This is impossible.

2. As we have remarked, this example is a cocycle (double) twist construction by a cocycle η. We
have already given the 2-cocycle as a function on A ⊗ A. But it is also natural to see it as a multiplier
of Â ⊗ Â. Then we have the expression
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η = 1 ⊗ 1 + μ

n−1∑
q=0

1

(λm;λm)q−1 · (λm;λm)n−q−1
dq ⊗ dn−qcq,

with the notation for the dual as before, and where (a; z)k denotes the z-shifted factorial [15]. Now
consider the algebra generated by c and d as the fiber at λm of the field of algebras on C0 with the
fiber in z generated by cz,dz with cz invertible, dn

z = 0 and czdz = zdzcz , and with the extra relation
ck

z = 1 if z is a primitive kth root of unity. Then we can formally write

η = 1 ⊗ 1 + μ · lim
z→λm

1

(z; z)n−1
(dz ⊗ cz + 1 ⊗ dz)

n,

where we take a limit over points which are not roots of unity. In this way, since c,d generate a
finite-dimensional 2-generator Taft algebra, we find back a part of the cocycles of [18]. In fact, any of
those cocycles should give a cocycle inside M( Â ⊗ Â), hence a cocycle functional on A ⊗ A. We have
however not carried out the computations in this general case.

3. There does not seem to be any straightforward modification of the two-generator Taft algebra
Galois objects that provides a Galois object for the dual of some An,m

λ . It would be interesting to see
if such non-trivial Galois objects exist.

Appendix A

A.1. Multipliers

Let A be a non-degenerate algebra over a field k, with or without a unit. The non-degeneracy
condition means that ab = 0 for all b ∈ A implies a = 0, and ab = 0 for all a ∈ A implies b = 0. As
a set, the multiplier algebra M(A) of A consists of couples (λ,ρ), where λ and ρ are linear maps
A → A, obeying the following law:

aλ(b) = ρ(a)b, for all a,b ∈ A.

In practice, we write m for (λ,ρ), and denote λ(a) by ma and ρ(a) by am. Then the above law
is simply an associativity condition. With the obvious multiplication by composition of maps, M(A)

becomes an algebra, called the multiplier algebra of A. Moreover, if k = C and A is a ∗-algebra, M(A)

also carries a ∗-operation: for m ∈ M(A) and a ∈ A, we define m∗ by m∗a = (a∗m)∗ and am∗ = (ma∗)∗ .
There is a natural map A → M(A), letting an element a correspond with left and right multi-

plication by it. Because of non-degeneracy, this algebra morphism will be an injection. In this way,
non-degeneracy compensates the possible lack of a unit. Note that, when A is unital, M(A) is equal
to A.

Let B be another non-degenerate algebra, and f a non-degenerate algebra homomorphism A →
M(B), where by the non-degeneracy we mean that f (A)B = B = B f (A). Then f can be extended to an
algebra morphism from M(A) to M(B), by defining f (m)( f (a)b) = f (ma)b and (bf (a)) f (m) = bf (am)

for m ∈ M(A),a ∈ A and b ∈ B .

A.2. Multiplier Hopf algebras

A regular multiplier Hopf algebra [25] consists of a couple (A,Δ), with A a non-degenerate algebra,
and Δ, the comultiplication, a non-degenerate homomorphism A → M(A ⊗ A). Moreover, (A,Δ) has
to satisfy the following conditions:

• (Δ ⊗ ι)Δ = (ι ⊗ Δ)Δ (coassociativity).
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• The maps

TΔ2 : A ⊗ A → M(A ⊗ A) : a ⊗ b → Δ(a)(1 ⊗ b),

T1Δ : A ⊗ A → M(A ⊗ A) : a ⊗ b → (a ⊗ 1)Δ(b),

TΔ1 : A ⊗ A → M(A ⊗ A) : a ⊗ b → Δ(a)(b ⊗ 1),

T2Δ : A ⊗ A → M(A ⊗ A) : a ⊗ b → (1 ⊗ a)Δ(b)

all induce linear bijections A ⊗ A → A ⊗ A.

The first condition can be made sense of by showing that (Δ ⊗ ι) and (ι ⊗ Δ) are non-degenerate
maps A ⊗ A → M(A ⊗ A ⊗ A), hence can be extended to M(A ⊗ A). The T -maps can be used to
define a counit (which will be a homomorphism from A to k) and an antipode (which will be an anti-
automorphism). Both counit and antipode will be unique, and will satisfy the corresponding equations
of those defining them in the Hopf algebra case.

When A is a ∗-algebra over C and Δ is ∗-preserving, we call (A,Δ) a regular multiplier Hopf ∗-
algebra. In this case ε is a ∗-homomorphism, while S satisfies S(a∗) = (S−1(a))∗ .

A.3. Algebraic quantum groups

An algebraic quantum group [26] is a regular multiplier Hopf algebra (A,Δ) for which there exists
a non-zero functional ϕ on A such that

(ι ⊗ ϕ)
(
Δ(a)(b ⊗ 1)

) = ϕ(a)b, for all a,b ∈ A.

A ∗-algebraic quantum group is an algebraic quantum group which is at the same time a multiplier
Hopf ∗-algebra, such that the functional ϕ is positive: for every a ∈ A, we have ϕ(a∗a) � 0. This extra
condition is very restrictive.

For any algebraic quantum group, the functional ϕ will be unique up to multiplication with a
scalar. It will be faithful in the following sense: if ϕ(ab) = 0 for all b ∈ A or ϕ(ba) = 0 for all b ∈ A,
then a = 0. The functional ϕ is called the left invariant functional. Then (A,Δ) will also have a func-
tional ψ , such that

(ψ ⊗ ι)
(
Δ(a)(1 ⊗ b)

) = ψ(a)b, for all a,b ∈ A.

This map ψ is called the right invariant functional. If A is a ∗-algebraic quantum group, then ψ can
still be chosen so that it is positive.

For any algebraic quantum group, there exists a unique automorphism σ of the algebra A, satisfy-
ing ϕ(ab) = ϕ(bσ(a)) for all a,b ∈ A. It is called the modular automorphism. There also exists a unique
invertible multiplier δ ∈ M(A) such that

(ϕ ⊗ ι)
(
Δ(a)(1 ⊗ b)

) = ϕ(a)δb,

(ϕ ⊗ ι)
(
(1 ⊗ b)Δ(a)

) = ϕ(a)bδ,

for all a,b ∈ A. It is called the modular element.
There is a particular number that can be associated with an algebraic quantum group. Since ϕ ◦ S2

is a left invariant functional, the uniqueness of ϕ implies there exists τ ∈ k such that ϕ(S2(a)) =
τϕ(a), for all a ∈ k. One can also show that σ(δ) = τ−1δ. If A is a ∗-algebraic quantum group then
τ = 1 [6].
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Note that all formulas which are proven in the second section of this article were known to hold
when X = A and α = Δ (in which case β = (S ⊗ ι) ◦ Δ), and we have used some of them in proving
our statements.

To any algebraic quantum group (A,Δ), one can associate another algebraic quantum group
( Â,Δ Â) which is called its dual. As a set it consists of functionals on A of the form ϕ( · a) with
a ∈ A, where ϕ is the left invariant functional on A. Its multiplication and comultiplication are dual
to respectively the comultiplication and multiplication on A. Intuitively, this means that

Δ Â(ω1)(a ⊗ b) = ω1(ab),

(ω1 · ω2)(a) = (ω1 ⊗ ω2)
(
Δ(a)

)
,

for a,b ∈ A and ω1,ω2 ∈ Â, but some care is needed in giving sense to these formulas.
The counit on Â is defined by evaluation in 1, while the antipode is the dual of the antipode of A:

if S Â denotes the antipode of Â, then

S Â(ω1)(a) = ω1
(

S(a)
)
,

for ω1 ∈ Â and a ∈ A. The left integral ϕ Â of Â is determined by ϕ Â(ψ(a · )) = ε(a).
If A is a ∗-algebraic quantum group, then one can endow Â with the ∗-operation ω∗

1(a) =
ω1(S(a)∗) for ω1 ∈ Â and a ∈ A. Then ϕ Â turns out to be a positive left invariant functional, so that
also ( Â,Δ Â) is a ∗-algebraic quantum group.

A.4. Covering issues

When working with multiplier Hopf algebras, it is advantageous to use the Sweedler notation
to gain insight into certain formulas. However in this context this is not as straightforward as for
Hopf algebras. The problem is that if (A,Δ) is a multiplier Hopf algebra, then Δ(a) is an element
of M(A ⊗ A), and can in general not be written as a sum of elementary tensors. So if we denote
Δ(a) = ∑

a(1) ⊗ a(2) , then this is purely formal, as the right-hand side is no well-defined sum of
finitely many elements. This gives problems if we want to apply a map to one of the legs of Δ(a).
This is the situation in which we need coverings. For elements of the form Δ(a)(1 ⊗ b) with a,b ∈ A
are finite sums of elementary tensors in A ⊗ A, so if we denote this by

∑
a(1) ⊗ a(2)b, there is no

trouble in applying a map to the first leg. We then say that ‘the variable a(2) is covered on the
right by b’. Although this seems simple, the situation can become quite complicated when multiple
coverings are needed (see e.g. the examples in [9]). However, in our paper the situation is not so
bad, probably because we are working with algebraic quantum groups in stead of general multiplier
Hopf algebras: mostly it is seen at first sight if an expression is well covered or not. This is why we
have opted not to emphasize the covering issues too much, since this would probably have obscured
certain proofs and statements.
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