
ARTICLE IN PRESS

brought to you by COREView metadata, citation and similar papers at core.ac.uk

provided by Elsevier - Publisher Connector 
1439-6092/$ - se

doi:10.1016/j.od

�Correspondi

E-mail addre
Organisms, Diversity & Evolution 5 (2005) 1–13
www.elsevier.de/ode
Evolution of Suessenguthia (Acanthaceae) inferred from morphology,

AFLP data, and ITS rDNA sequences

Alexander N. Schmidt-Lebuhna,�, Michael Kesslera, Julia Müllerb

aAbt. Systematische Botanik, Albrecht-von-Haller-Institut für Pflanzenwissenschaften, Universität Göttingen, Untere Karspüle 2,
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Abstract

The phylogeny and evolution of Suessenguthia (Acanthaceae), a genus of six species from the Andean foothills and
adjacent Amazonia in Bolivia, Peru and western Brazil, are discussed based on morphological and molecular
(amplified fragment length polymorphism, ITS rDNA) data. Suessenguthia forms a paraphyletic group at the base of
the larger genus Sanchezia. The non-overlapping geographical distribution of closely related species suggests that
parapatric or allopatric speciation is the major mode in the genus. A major evolutionary tendency promoting
diversification of the group presumably was a change from bee- to hummingbird pollination, resulting in a successive
adaptation of flower morphology and inflorescence structure.
r 2005 Elsevier GmbH. All rights reserved.

Keywords: Acanthaceae; Suessenguthia; Sanchezia; Flower morphology; Andes; AFLP
Introduction

The tropical Andes and adjacent lowlands are one of
the world’s botanically richest regions and support a
very large number of endemic plant species (Myers et al.
2000). Yet, relatively little is known about the evolu-
tionary pathways and mechanisms that have led to the
proliferation of the flora (Young et al. 2002). Very few
species-level phylogenetic studies of tropical Andean
plants have been published, and these treat mostly high-
montane taxa, e.g. Gentianella (von Hagen and Kadereit
2001) or Polylepis (Kessler 1995).
e front matter r 2005 Elsevier GmbH. All rights reserved.

e.2004.04.006

ng author.

ss: schmidtleb@yahoo.de (A.N. Schmidt-Lebuhn).
In the present study, we have analyzed the evolution
of Suessenguthia (Acanthaceae), a genus with six species.
Suessenguthia was described by Merxmüller (1953), and
revised by Wasshausen (1970) and Schmidt–Lebuhn
(2003). It differs from the larger and better known genus
Sanchezia R. & P. by having four functional stamens,
versus one pair of stamens reduced to staminodia
(Leonard and Smith 1964) (Fig. 1D and E). Both genera
belong to tribe Trichanthereae, together with Bravaisia

DC., Trichanthera HBK and Trichosanchezia Mildbraed
(Daniel 1988). This tribe is characterized by bicolporate
pollen grains with a characteristically banded surface
sculpturing, bipolarly pointed cystoliths, and an almost
radially symmetric corolla. It is also remarkable in the
mostly herbaceous to shrubby family Acanthaceae for
including several tree species.
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Fig. 1. Inflorescence structures and corolla shapes in Suessen-

guthia and Sanchezia. (A) Regular thyrsus as in Suessenguthia

multisetosa, S. wenzelii, and S. vargasii. (B) Monochasium as

in S. trochilophila, S. barthleniana, S. koessleri, and most

species of Sanchezia. (C) Short, infundibiliform corolla of S.

multisetosa. (D) Tubular corolla of S. trochilophila. (E) Corolla

of Sanchezia skutchii, with reduced lobes.
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Suessenguthia was selected as a study group because
of its tractable size and relatively restricted distribution,
which enabled us to study all species in the field. Our
work consisted of a taxonomic revision (Schmidt-
Lebuhn 2003) and a phylogenetic analysis aimed at
elucidating the evolution and biogeography of the genus.
Specific questions were: What is the phylogenetic
relationship of Suessenguthia to Sanchezia? Which
speciation mechanisms have been prevalent in Suessen-

guthia? Can the phylogenetic history of the genus be
linked to morphological character changes? We based
our phylogenetic analysis on morphological characters
and data obtained from ITS rDNA sequences and
amplified fragment length polymorphism (AFLP).
AFLP data have been used successfully for population
genetics as well as phylogenetic analyses at the level of
closely related species (e.g. Hodkinson et al. 2000; Zhang
et al. 2001). So far, phylogenetic studies of Acanthaceae
using molecular methods have focussed on the main
evolutionary lineages within the family (McDade and
Moody 1999; McDade et al. 2000; Manktelow et al.
2001) rather than on species-level relationships.
Material and methods

Morphological data

Populations of all species of Suessenguthia were
studied and sampled in Bolivia and Peru in July–Sep-
tember 2000. Herbarium specimens were borrowed from
M, MO, NY, and US (acronyms according to Holmgren
et al. 1990). In addition, the collections at B, CUZ, LPB,
M, and USZ were studied on site. Altogether, herbarium
specimens from a total of 120 different collections served
as the basis for the morphological analysis.

The morphological data matrix (Table 1) includes all
species of Suessenguthia, and three species of Sanchezia.
The two varieties of S. vargasii as well as two
geographically distant populations of the variable
species S. trochilophila were included separately. Tri-

chanthera gigantea (HBK) Nees, a representative of the
type genus of the Trichanthereae, was added to the data
matrix for comparison (voucher specimens: Dodson 5846

[AAU], Holm-Nielsen et al. 26040 [AAU], Løjtnant &

Molau 15241 [AAU], Zak & Jaramillo 2326 [MO]).
From a total of about 50 morphological characters

examined in the course of the taxonomic revision, 26
characters with two or three character states each were
selected for the cladistic analysis (Table 2). All characters
with three possible states were regarded as ordered
(Wagner parsimony), because an unambiguous evolution-
ary order was evident, with one character state intermediate
between the two most different states. Polymorphic
character states were scored as such; characters not existing
in the outgroup were scored as missing data.

Sampling and DNA extraction for molecular

analysis

Plant material (young leaves) was collected freshly
during fieldwork and dried with silica gel. A total of 15
specimens representing all species of Suessenguthia and
three species of Sanchezia were studied with molecular
methods (Appendix A). For comparison, a specimen of
Ruellia puri (Nees) Mart. ex Jackson was included, and
sequences for the ITS rDNA regions of Sanchezia

speciosa Leonard and Ruellia californica (Rose) I.M.
Johnston were obtained from GenBank (accession
numbers AF169835 and AF167704, respectively;
McDade et al. 2000).

Total genomic DNA extraction followed the protocol
of Hellwig et al. (1999). Some samples were extracted
anew for AFLP analysis, using the ‘‘Puregene DNA
Isolation Kit’’ (Gentra Systems) as recommended by the
manufacturer, in order to test whether the previous
results would be reproduced.

Sequencing of the ITS rDNA region

Parts of the rDNA containing the ITS1, 5.8S, and
ITS2 regions were amplified with the primers NS7m
(Friedl 1996) and ITS4 (White et al. 1990). Amplifica-
tions were performed in 50 ml volumes containing 2 mM
MgCl2, 1% DMSO, 1� PCR buffer, 0.75 U Taq DNA
polymerase (Silverstar, Eurogentec), 0.2 mM primer,
50 mM of each dNTP, and 1 ml of genomic DNA, as
follows: 300 s at 95 1C, 33 cycles of 40 s at 94 1C, 30+2 s
at 50 1C and 120+2 s at 72 1C, six cycles of 40 s at 94 1C,
and 120 s at 72 1C.

PCR products were purified by a precipitation of at
least 1 h with 1 vol isopropanol and 0.1 vol sodium-
acetate (pH 4.0). Cycle sequencing was carried out with
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Table 1. Data matrix for the cladistic analysis based on morphological data

Character 1 2 3 4 5 6 7 8 9 10 11 12 13 14 15 16 17 18 19 20 21 22 23 24 25 26 27

Suessenguthia vargasii

Wassh. var. vargasii

1 0 0 1 0 0 0 1 1 1 0 0 0 1, 2 1 2 0, 1 0 1 1 0 1 1 2 2 0 1

Suessenguthia vargasii

Wassh. var. hirsuta

Schmidt-Lebuhn

1 0 0 1 0 0, 1 2 1 1 1 0 0 0 1 1 2 2 0 1 1 0 1 1 2 2 0 1

Suessenguthia

multisetosa (Rusby)

Wassh. & Wood

0, 1 0,

1, 2

0,

1, 2

1 0 0 0,

1, 2

1 0 1 0 0 0 0 0 2 2 0 0 0 0 0 0 0, 1 0 0 0

Suessenguthia wenzelii

Schmidt-Lebuhn

1 0 0 1 0 0, 1 1 1 0, 1 1 0 0 0 0 0 2 2 0 1 1 0 1 1 1, 2 0 0 0, 1

Suessenguthia

trochilophila Merxm.

(Pilcopata, Peru)

1 0,

1, 2

0 1 1 1 2 1 1 0 0 0 1 0, 1 0 2 1 0 1 1 0 1 0 2 1 0 1

Suessenguthia

trochilophila Merxm.

(Bolivia)

1, 2 0,

1, 2

0 1 1 1 2 1 1 0 0 0 1 0, 1 0 2 1 0 1 1 0 1 1 2 1 0 1

Suessenguthia

barthleniana Schmidt-

Lebuhn

1, 2 1 1 1 1 1 2 1 1 1 0 1 1 0, 1 0 0,

1

1 0 1 1 0 1 0 1 0 0 0

Suessenguthia

koessleri Schmidt-

Lebuhn

1 0 0 1 1 1 0 1 1 1 0 0 1 0, 1 0 2 0 1 1 1 1 2 2 2 1 0 1

Sanchezia

parvibracteata

Sprague &

Hutchinson

1 0 0 1 1 1 — 1 0 1 0 0 2 1 0 0 — 1 1 1 1 2 2 0 — 1 1

Sanchezia oblonga R.

& P.

1, 2 1 1 1 1 1 — 1 1 1 1 0 2 1 0 0 — 0 1 1 1 2 2 2 0 1 1

Sanchezia skutchii

Leonard & Smith

1 0 0 1 1 1 — 1 0 1 0 0 1 1 0 0 — 0 1 1 1 2 2 1 0 1 1

Trichanthera gigantea

HBK

0 0 1 0 0 — 0 0 0 1 0 — — — — 0 — — 0, 1 0 0 0 — 2 0 0 1
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Table 2. Characters and character states for the cladistic analysis based on morphological data

Character State 0 State 1 State 2 Treatment of

multiple states

1. Growth form Tree Shrub Weak shrub/herb Ordered

2. Leaf margin Entire Dentate —

3. Leaf veins (per side) Fewer than 10 More than 10 —

4. Flowers concentrated to

headlets

No Yes —

5. Inflorescence Regularly

thyrsoid

Thyrsus with

apical monochasia

—

6. Indumentum of young

internodes (vegetative and

inflorescence) — length

o0.6 mm 0.6–1.1 mm 41.1 mm Ordered

7. Bracts Small, scale-like Large,

conspicuous

—

8. Color bracts/calyx Green Reddish —

9. Outer bracts — apex Attenuate Acute Rounded Ordered

10. Outer bracts — shape Ovate Elliptical —

11. Outer bracts — base Adnate Rounded —

12. Inner bracts — apex Slender, attenuate Acute Rounded Ordered

13. Inner bracts — shape Ovate Elliptical Obovate Ordered

14. Inner bracts — base Acute Decurrent —

15. Indumentum of bracts —

abundance

Absent Sparse Dense Ordered

16. Indumentum of bracts — length o0.6 mm 0.6–1.1 mm 41.1 mm Ordered

17. Subhyaline margin of calyx

lobes

Absent Present —

18. Corolla tube — length p3.5 cm 43.5 cm —

19. Corolla tube — shape Infundibiliform Cylindrical —

20. Corolla lobes — length X1.0 cm p0.8 cm —

21. Corolla lobes — orientation Spreading

forwards distally

from tube

Spreading at right

angles to tube

Recurved

backwards toward

tube

Ordered

22. Intensity of floral color Pale (pink) Medium (pink) Intense (red,

orange, yellow)

Ordered

23. Indumentum of corolla —

abundance

Absent Sparse Dense Ordered

24. Indumentum of corolla —

length

o0.6 mm 0.6–1.1 mm 41.1 mm Ordered

25. Number of fertile stamens 4 2 (plus 2

staminodia)

—

26. Position of anthers All included At least one pair

exserted

—
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the Thermo Sequenase Sequencing kit with 7-deaza-
dGTP (Amersham Pharmacia) using the primers 1800F
(Friedl 1996), ITS4 (see above), and ITS2N (Beck et al.
1998), as follows: 120 s at 95 1C, 18 cycles of 18 s at
95 1C, 25 s at 51 1C and 40 s at 70 1C, six cycles of 20 s at
95 1C, and 60 s at 70 1C.

The sequencing reactions were analyzed by gel
electrophoresis using a LI-COR LR 4200 DNA-
sequencer and employing the e-Seq software 1.1 (LI-
COR) and the AlignIR 1.2 software (LI-COR). All
sequences were manually aligned using BioEdit (Hall
1999).
AFLP procedure

AFLP procedures followed Mannschreck et al. (2002)
and Vos et al. (1995). A part of the restriction fragments
produced by digestion of total genomic DNA with two
different restriction enzymes are amplified and separated
with electrophoresis. For analysis, the different-sized
fragments produced by each sample are used to
construct a binary data matrix, treating the fragments
as absent or present. About 100 ng of genomic DNA
were double-digested with the restriction enzymes MseI
and EcoRI (New England Biolabs). Restriction and
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ligation were performed in an 11 ml volume containing
1� T4 DNA ligase buffer, 0.05 mM NaCl, 0.05 g/l BSA,
restriction enzymes MseI (1 U) and EcoRI (5 U), 5 pmol
of EcoRI-adapter, 50 pmol MseI-adapter, and 1 U of T4
DNA ligase (New England Biolabs) which was incu-
bated for 2 h at 37 1C.

The ligation product was diluted with 39 ml of sterile
water and then pre-amplified with the primer combina-
tion EcoRI+A/MseI+C (5-GACTGCGTACCAATT
+A-3, 5-GATGAGTCCTGAGTA+C-3). The pre-
amplification was performed in a 20 ml volume contain-
ing 4 ml of ligation product, 1� PCR buffer, 1.5 mM
MgCl2, 250 mM of each dNTP, 5 pmol of each pre-
primer, and 0.5 U Taq DNA polymerase (Silverstar,
Eurogentec), with the following temperature profile:
5 min at 94 1C, 20 cycles of 20 s at 94 1C, 30 s at 56 1C,
and 120 s at 72 1C.

The pre-amplification product was diluted 10 times
with TE buffer, and 3 ml was used as template in the
selective amplification taking place in a 20 ml volume
containing 1� PCR buffer, 1.5 mM MgCl2, 250 mM of
each dNTP, 5 pmol MseI selective primer, 1 pmol EcoRI
(IRD700 fluorescence labeled) selective primer, and
0.5 U Taq DNA polymerase (Silverstar, Eurogentec).
The thermocycler was run with the following tempera-
ture profile: 1 min at 94 1C, 10 cycles of 20 s at 94 1C, 30 s
at 65–1 1C, 120 s at 72 1C, 20 cycles of 20 s at 94 1C, 30 s
at 56 1C, and 120+4 s at 72 1C. For the selective
amplification six different primer combinations were
tested for their level of variability within and among
species with a small number of samples: Eco+A/
Mse+CA, Eco+A/Mse+CTA, Eco+AAG/Mse+C,
Eco+AAG/Mse+CAT, Eco+ACT/Mse+CTA and
Eco+ACG/Mse+CAT. One of them, Eco+ACG (5-
GACTGCGTACCAATT+ACG-3)/Mse+CAT (5-GA
TGAGTCCTGAGTA+CAT-3), was chosen for finger-
printing all samples.

Selective amplification products were separated on an
LI-COR LR 4200 DNA-sequencer along with a labeled
50–700 bp sizing standard. Raw AFLP fragment data
were analyzed by visual comparison. A binary data
matrix was produced scoring fragments between 170
and 700 bp of length as present (1) or absent (0). To test
for reproducibility of the results, some samples were
analyzed a second time using a different DNA extrac-
tion protocol (see above), and in some cases two plants
of the same population were analyzed. Reproducibility
was very high; only in some cases fragments were
missing in a repeated analysis. Because that was clearly
due to an overall weak reaction, these selective
amplifications were excluded from the analysis.

Principal coordinates analysis

Principal coordinates analysis (PCO) was performed
on the AFLP data to visualize genetic distance between
the species. A distance matrix was calculated from the
binary AFLP data matrix with the genetic distance
estimation program of the Treecon software package
(Van de Peer and De Wachter 1994) using Nei and Li’s
(1979) formula. This method was chosen because it
takes into account shared fragments only, but not
shared absence of fragments, thus reducing the amount
of homoplasy. The distance matrix was submitted to
PCO on SYSTAT 7.0 for Windows (SYSTAT 1997).

Cladistic analysis

Phylogenetic trees were calculated using PAUP 4.0b5
(Swofford 1997). For morphological data, a heuristic
search for maximum parsimony trees with all characters
equally weighted was conducted with the following
options in effect: MulTrees, tree-bisection-reconnection
branch swapping, multistate taxa interpreted as poly-
morphism, starting trees obtained via random stepwise
addition with 10 repetitions, branches collapsed if
maximal branch length is zero.

The same parsimony analysis was then repeated using
a successive approximation approach to character
weighting (Farris 1969, 1988). The characters were re-
weighted based on their rescaled consistency (RC) index
values calculated in the previous analysis, i.e. characters
that showed high homoplasy were given lower weight.
The procedure was repeated until the tree length could
not be further reduced by re-weighting. Trees obtained
from analyses based on morphological data were rooted
using T. gigantea as outgroup.

A minimum-distance analysis based on AFLP data
was conducted with the following options: starting trees
obtained by neighbor joining, negative branch lengths
allowed, but set to zero for tree score evaluation,
distance measure set to restriction site difference (Nei
and Li 1979). Search strategy was the same as with the
morphological data. The tree obtained from analysis
based on AFLP data could not be rooted with T.

gigantea as outgroup because no molecular sample was
available. To facilitate comparison of the results of the
two analyses, the tree was rooted using the ingroup
species found to be the most basal in the morphological
analysis.

In all cases, bootstrap values (Felsenstein 1985) were
calculated with 1000 replicates to estimate the support
for individual branches.
Results

Morphological analysis

Maximum parsimony analysis of the morphological
data with equally weighted characters produced two
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equally parsimonious trees (not shown). They differ only
in the position of S. barthleniana amidst, or as sister to,
the two populations of S. trochilophila. Tree length was
80 steps, consistency index (CI) ¼ 0.75, retention index
(RI) ¼ 0.64, RC index ¼ 0.48. All branches received low
bootstrap support values (50–70).

The successive approximations approach produced a
single most parsimonious tree identical in topology with
one of the trees from the equally weighted approach
(Fig. 2), with S. barthleniana as sister to S. trochilophila.
Tree length was reduced to 19.3 steps, CI ¼ 0.88,
RI ¼ 0.91, RC ¼ 0.81. This single tree therefore was
chosen as the best phylogenetic hypothesis.

The chosen tree (Fig. 2) clearly shows Suessenguthia

multisetosa as the most basal species of the ingroup.
Suessenguthia wenzelii and S. vargasii diverge next,
though the position of S. wenzelii receives low bootstrap
support. The remaining species form a relatively well-
supported clade comprising the poorly supported group
of S. trochilophila and S. barthleniana and a well-
supported subclade consisting of S. koessleri and
Sanchezia. The relationship of S. barthleniana and S.

trochilophila to each other and the relationships in
Sanchezia are rather poorly supported.
ITS rDNA sequence data

The ITS rDNA region of eight specimens included in
the project was sequenced completely. In total (ITS1,
Fig. 2. Single most parsimonious tree based on morphological

data, using a successive character re-weighting approach.

Bootstrap values are given at the branches. Broken lines

indicate branches on which the two equally parsimonious trees

from the analysis using equally weighted characters disagreed.

B ¼ Bolivia; P ¼ Pilcopata, Peru.
5.8S plus ITS2), it comprises 619–621 bp. The region
was sequenced partly for three other specimens.
Differences between the ITS rDNA sequences of the
different species of Suessenguthia were few and insuffi-
cient for a cladistic analysis. Only very few positions are
parsimony informative and even these yield some
contradictory information (Table 3). Peruvian S. trochi-

lophila (Schmidt-Lebuhn 37; see Appendix A) and all
studied species of Sanchezia share two nucleotide
positions (ITS2 positions 43 and 72), matching the
results of the AFLP analysis. They share this feature
with the two species of Ruellia, but this may be due to
homoplasy, because Ruellia as a member of a different
tribe is related to Suessenguthia relatively distantly. S.

multisetosa, S. wenzelii, and S. vargasii together are
separated from the other species of Suessenguthia/

Sanchezia by a single common substitution (ITS1
position 51). Some variable and informative positions
do not match the results of the morphological and the
AFLP analysis. A small area at the end of the ITS2
region, including ITS2 positions 205–208, appears to be
quite variable, but this may be artifactual as that is also
an area of high base ambiguity.
AFLP analysis

The chosen primer combination yielded 165 frag-
ments, 161 of them polymorphic. In a first step, a single
unrooted tree was recovered from the minimum-
distance analysis. The tree was then rooted using S.

multisetosa, the most basal species in the cladistic
analysis based on morphological data, as an outgroup
in order to facilitate comparison between the results
produced by the two data sets (Fig. 4).

As in the tree based on morphological data, the first
species to diverge are S. wenzelii and S. vargasii. The
remaining species again form one clade, but it is not as
well supported and differs in the arrangement of the
species belonging to it. S. barthleniana, which in the
morphological analysis was closest to S. trochilophila,
has the basal position in this clade. The remainder of the
group falls into a well-supported subgroup of Bolivian
S. trochilophila, and a poorly supported subgroup
comprising Peruvian S. trochilophila and Sanchezia,
with the position of S. koessleri not resolved. Thus, in
this case the different samples of S. trochilophila, the
most variable species of Suessenguthia (Schmidt-Lebuhn
2003), do not form a monophyletic group in the
phylogenetic tree. Instead, the only Peruvian specimen
for which molecular data are available (Pilcopata)
appears as sister to Sanchezia, whereas the two
morphologically very similar Bolivian populations and
S. koessleri, the species most strongly resembling
Sanchezia morphologically, have more distant positions.
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Table 3. Variable ITS and 5.8S rDNA base residues among the species included in the molecular analysis

Region ITS1 5.8S ITS2

Position 1 2 31 37 51 66 70 72 107 8 228 43 72 92 205 206 207 208

Ruellia californica C G G C T N G T C A C G T G G C G C

Ruellia puri ? ? C T T G G T C A C G T T S - G -

Sanchezia speciosa C G G C C G G T C A C G T T G C G C

Sanchezia skutchii G A G C C G G T C A C G T C M - G -

Sanchezia parvibracteata G A A C C G G T C - C G T C M - - C

Suessenguthia trochilophila (Peru) Y G K C C G G T A A C G T C M - G C

Suessenguthia trochilophila (Bolivia) Y T T A C G T T M A C T C Y A C G C

Suessenguthia koessleri ? ? G C C G T T A A C T C T A - G -

Suessenguthia barthleniana ? ? ? ? ? ? ? ? ? ? C K C T A - G C

Suessenguthia wenzelii C G G C A G G T A - C T C T - C - C

Suessenguthia multisetosa (Yungas) C R G C A G T C C A M T C Y M - G C

Suessenguthia multisetosa (Chiquitanı́a) G A R A H A K C M A A T C C A C G -

Suessenguthia vargasii S G G A A A K T M G A T C C A - G C

Note: To simplify the table, positions uninformative for Suessenguthia and Sanchezia are excluded. Question marks indicate missing data, hyphens

indicate sequence gaps. Position numbers refer to position on sequence of Suessenguthia multisetosa from the Bolivian Yungas (Schmidt-Lebuhn 67;

see Appendix A).

Fig. 3. Principal coordinates plot of the AFLP analysis for the first two Principal coordinates (81.5% of the total variation).

Suessenguthia species are represented by circles, Sanchezia species by triangles. B1 ¼ Tumupasa, Bolivia; B2 ¼ Carmen Florida,

Bolivia; P ¼ Pilcopata, Peru; SC ¼ Chiquitanı́a dry forests, Bolivia; Y ¼ Bolivian Yungas.

A.N. Schmidt-Lebuhn et al. / Organisms, Diversity & Evolution 5 (2005) 1–13 7
Principal coordinates analysis

Variance of the first two principal coordinates
accounted for 81.5% of the total variation (Fig. 3).
The first axis (52.6%) separated the species included
from Suessenguthia and Sanchezia into three groups,
one of S. multisetosa and S. wenzelii, one of S. vargasii

and S. barthleniana in an intermediate position, and one
of S. trochilophila, S. koessleri, and Sanchezia. The
second axis (28.9%) showed a greater distance between
S. vargasii and S. barthleniana as well as between
Sanchezia and a remaining group of S. trochilophila

and S. koessleri. S. wenzelii clusters very closely with
S. multisetosa; S. koessleri occupies a position close to
S. trochilophila. The three accessions of S. trochilophila

are more dispersed than the three different species of
Sanchezia included in the analysis.
Comparison of the results based on morphological

and AFLP data

If the rooting of the tree based on AFLP data is
accepted, the two analyses agree on some important
aspects, such as the positions of S. wenzelii and S.

vargasii as the first to diverge following basal S.

multisetosa. The remaining species (including Sanche-

zia), all characterized by the possible synapomorphy of
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inflorescences with most heads arranged in apical
monochasia (Fig. 1, Table 4), form a monophyletic
group in both analyses. The two analyses resolve
relationships within this group differently and disagree
in particular with respect to which species of Suessen-

guthia is sister to Sanchezia. On the basis of only three
species of the latter genus included in this work, no final
decision can be made. However, the three examined
species of Sanchezia form one well-supported clade in
both the morphological and the AFLP analysis.
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Discussion

Phylogenetic relationship of Suessenguthia and

Sanchezia

Both the morphological and the AFLP analysis
placed Sanchezia as a monophyletic unit within Sues-

senguthia. This close relationship is not surprising,
considering that the genera are similar enough to be
readily confused by many collectors and that Sanchezia

differs morphologically only in having one pair of
stamens reduced to staminodia. Because the presence of
two pairs of functional stamens is the common and
hence presumably ancestral state within Acanthaceae,
the emergence of Sanchezia from Suessenguthia by the
reduction of flower organs is logically consistent.
Sanchezia here is provisionally assumed to be mono-
phyletic on the basis of this synapomorphy and the
monophyly of the three species studied in the AFLP
analysis.

As a result of Sanchezia being nested within Suessen-

guthia, the latter genus becomes a paraphyletic unit.
Strictly speaking, Suessenguthia therefore can no longer
be maintained as a taxon. Suessenguthia, Sanchezia, and
Trichosanchezia, a monotypic genus with four fertile but
unappendaged stamens, together may form a mono-
phyletic group, Sanchezia s. l., possibly supported by the
synapomorphy of the flowers concentrated to thyrsoid
heads surrounded by showy bracts, versus solitary
flowers in Bravaisia and Trichanthera. However, we
refrain from changing the taxonomic status of either
Suessenguthia or Sanchezia until the related genera,
particularly four-stamened Trichosanchezia, and more
species of Sanchezia have been included in a phyloge-
netic analysis. Any taxonomic changes made on the
basis of our current understanding certainly would be
preliminary and perhaps misleading.

Speciation modes within Suessenguthia

The AFLP analysis in combination with the present
distribution of the species suggests several events of
allopatric/parapatric speciation (Fig. 5). Perhaps the
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most convincing case is presented by S. koessleri which
apparently evolved by the divergence of geographically
marginal populations of S. trochilophila. While present
range certainly does not have to coincide with range at
time of speciation, the close phylogenetic relationship
(as seen in the AFLP analysis) and probably quite recent
speciation events (as evidenced by the almost identical
ITS sequence data) strongly suggest that the current
situation reflects the one at the time of speciation. The
close geographical proximity of these species makes it
difficult to decide whether speciation took place para-
patrically (sensu Grant 1981; allopatric speciation type
II sensu Mayr 1963) or allopatrically (type I of Mayr
1963). Further cases of presumed allopatric or para-
patric speciation are presented by S. barthleniana (whose
phylogenetic position is too ambiguous to draw firm
conclusions) and by the variety hirsuta of S. vargasii.
This long-haired form is known only from a small,
marginal population at the edge of the distribution of
S. vargasii.

For the origin of S. wenzelii, several possibilities are
conceivable. The species is morphologically and geo-
graphically intermediate between S. multisetosa and S.

trochilophila, combining the bract characteristics of the
former with the flower morphology and floral color (and
therefore the presumed pollinator) of the latter. The
type population is located in the Bolivian Yungas at the
northern margin of the local distribution of S. multi-

setosa. S. trochilophila, though it has not been found in
the same area, occurs in the adjacent Amazonian
lowlands and lower Andean foothills, from where it
could have migrated to the east along river valleys.
Schmidt-Lebuhn (2003) postulated a hybrid origin of
S. wenzelii on the basis of this morphological and
geographical intermediacy. The results of the PCO
presented here indicate a very close relationship of
S. wenzelii to S. multisetosa, making this concept less
convincing. It thus seems more probable that S. wenzelii

speciated allopatrically or parapatrically from marginal
populations of S. multisetosa, but it is also possible that
introgression played a role in the origin of this
interesting species.

S. trochilophila is by far the morphologically most
variable species of the genus, and the three populations
sampled for molecular data were placed in two different
branches in the AFLP tree (Fig. 4), making it
paraphyletic with regard to all of Sanchezia. This is
mirrored by the dispersion of the accessions in the PCO
(Fig. 3), especially in contrast to the clustered position
of the clearly distinguishable species of Sanchezia. It is
thus likely that S. trochilophila, as presently construed,
includes a number of closely related taxa whose
taxonomic delimitation and status, and evolution, can
be elucidated only with additional material. While
constant in indument, inflorescence structure, bract
and bractlet shape, and corolla characteristics, the
species shows considerable variability in growth height,
leaf margin configuration, and size of the bracts.
Presently, S. trochilophila is known from only 29
collections from about 13 widely scattered localities,
and it is therefore impossible to adequately evaluate the
morphological variation seen among the collections.

Overall, the predominance of allopatric/parapatric
speciation events found here corresponds well with
studies of montane species in the Andes (e.g. Simpson
1983; Kessler 1995) and the Alps (e.g. Hungerer and
Kadereit 1998; Zhang et al. 2001; Comes and Kadereit
2003).
Character evolution in Suessenguthia

Vegetatively, all species of Suessenguthia and Sanche-

zia are fairly similar. The main differences between
species are found in the arrangement of the inflor-
escences, flower and bract morphology and coloration,
and pollination type. All these characters are closely
correlated according to the phylogenetic hypotheses
developed here.

The phylogenetically basal species recovered in our
analyses, S. multisetosa, has an inflorescence of the
heads arranged in regular thyrsus (Fig. 1A), so that
many flowers open more or less simultaneously. The
flowers are pale pinkish with broadly expanded corolla
lobes and an infundibiliform corolla tube, and the
stamens are included in the corolla (Fig. 1C). This
morphology and field observations all show that this
species is insect-pollinated, specifically by large bees.
S. wenzelii is very similar, differing mainly in its tubular,
strongly pink corolla and usually exserted stamens.
S. vargasii, the next basal species in the phylogenetic
analyses, has a similar thyrsoid inflorescence; the flowers
are again tubular and of a strong pink coloration. They
clearly are pollinated by hummingbirds. All other
species of Suessenguthia, and most species of Sanchezia,
have their heads arranged in inflorescences mainly
consisting of monochasia (Fig. 1B), thus opening the
flowers consecutively (in one species of Sanchezia the
heads are arranged monopodially instead of sympo-
dially, but this is a rare exception). This arrangement
enables the plants to open a few flowers in each
inflorescence sequentially over a lengthy time period.
This presumably is an adaptation to pollination by
hummingbirds, which require a steady supply of nectar
and are unable to efficiently use large amounts of nectar
produced over a short-time period, as in bee-pollinated
S. multisetosa (Bawa 1990; Endress 1994). Within the
hummingbird-pollinated species of Suessenguthia, the
species with the most highly derived corolla is S.

koessleri, carrying narrow, bright red flowers with small,
recurved corolla lobes. This corolla shape and a very
intense color (usually yellow, orange, red) are also
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Fig. 4. Bootstrap consensus tree of the minimum-distance analysis based on AFLP data. The tree is rooted with S. multisetosa as

outgroup to facilitate comparison with the tree based on morphological data (Fig. 2). Bootstrap values are given at the branches.

B1 ¼ Tumupasa, Bolivia; B2 ¼ Carmen Florida, Bolivia; P ¼ Pilcopata, Peru; SC ¼ Chiquitanı́a dry forests, Bolivia; Y ¼ Bolivian

Yungas.
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typical of Sanchezia (Fig. 1E), which additionally often
has brightly colored bracts subtending the flowers. These
showy inflorescences have made some species of San-

chezia popular in cultivation. In Suessenguthia, the bracts
are normally tainted reddish at the apex or in the upper
half, but remain green or whitish in the lower part.
Biogeography and evolution of Suessenguthia and

Sanchezia

Summing up all of the above considerations, we can
draw an evolutionary and biogeographical scenario for
Suessenguthia and Sanchezia. Overall, the geographic
distribution of the species of Suessenguthia shows a
gradient from fairly dry, seasonal habitats in central
Bolivia to more humid and less seasonal habitats in
northern Bolivia, southern Peru, and adjacent Brazil
(Fig. 5). Most species of Sanchezia are found in the even
more humid and less seasonal region extending from
central Peru to Ecuador. This climatic gradient corre-
sponds to the morphological trend from insect-polli-
nated S. multisetosa to well-adapted hummingbird-
pollinated species such as S. koessleri and all species of
Sanchezia. This pollinator shift presumably reveals
adaptations to the regionally most common and/or
suitable pollinators. Hummingbirds are fairly uncom-
mon in drought-deciduous forests because of the
seasonal shortage of nectar (Stiles 1981; Arizmendi
and Ornelas 1990). In contrast, insects readily survive
nectar-free periods and can reappear en masse during
the flowering season. Correspondingly, insect pollina-
tion is more common in dry-forest regions (Gentry 1995;
Kessler and Krömer 2000). In humid regions, pollina-
tion by birds appears to be advantageous, and many
plant groups shift toward this pollination type in
evergreen tropical forest habitats (Gottsberger 1986).
This shift is plainly evident in Suessenguthia. Field
observations show that populations of Suessenguthia

and Sanchezia usually are small and scattered, a
situation requiring efficient, far-ranging pollinators such
as hummingbirds. Notable exceptions are S. multisetosa

and the wide-ranging group of Sanchezia oblonga R. &
P. and its allies.

Intriguingly, in our study group hummingbird polli-
nation correlates with much higher speciation rates than
insect pollination. Even though S. multisetosa is the
presumed sister to all other species of Suessenguthia and
Sanchezia, it has not speciated. Thus, we are faced with
two equally old lineages, one with a single insect-
pollinated species and the other with 460 humming-
bird-pollinated species. A parallel situation, with higher
species richness among animal-dispersed fleshy-fruited
plants than among their dry-fruited sister groups, has
been documented by Smith (2001). This was interpreted
as evidence that key evolutionary innovations enabling
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Fig. 5. Phylogenetic hypothesis based on AFLP data, correlated with the currently known areas of distribution of the different

species of Suessenguthia, presuming S. multisetosa to be the most basal species. The tree from Fig. 4 has been simplified here by

uniting Sanchezia and Bolivian S. trochilophila to respective single branches. Note the general tendency of migration from the

seasonal, dry-forest habitats of eastern Bolivia to increasingly tropical, non-seasonal habitats to the northwest.
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plants to utilize previously unexploited ecological
niches, in this case fleshy fruits permitting animal
dispersal, promote speciation (see also Bremer and
Eriksson 1992; Futuyma 1998). This hypothesis cer-
tainly could be applied to the situation in Suessenguthia

and Sanchezia as well. However, it is also conceivable
that animal pollination and dispersal influence the
genetic population structure of the plant species in some
way that promotes speciation, for example by reducing
gene flow between populations. Finally, it is possible
that the high species richness of hummingbird-polli-
nated species of Suessenguthia and Sanchezia represents
only a spurious correlation, and that speciation rates in
these genera are determined by their biogeographical
settings. For example, S. barthleniana and many species
of Sanchezia are restricted to isolated valleys on the
lower eastern Andean slopes. Their distributions might
have been influenced by successive climatic cycles,
leading to population expansions and fragmentations.
More detailed studies of the population structure of
closely related bird- and insect-pollinated plant species
are needed to evaluate the contribution of pollination
ecology to the speciation rates of tropical plants.
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Appendix A. Alphabetical list of taxa included

in the molecular analyses, with voucher

specimens and GenBank accession numbers

Ruellia puri (Nees) Mart. ex Jackson. Origin: Bolivia,
Dep. Santa Cruz, Prov. Velasco; voucher: Schmidt-

Lebuhn 18 (GOET, LPB, US); use: ITS; GenBank No.
AY530731.

Sanchezia oblonga R. & P. Origin: Peru, Dep. Cuzco,
Pilcopata; voucher: Schmidt-Lebuhn 33 (GOET, US);
use: AFLP.

Sanchezia parvibracteata Sprague & Hutchinson.
Origin: cultivated at Botanical Garden of the University
of Göttingen; voucher: Schmidt-Lebuhn 249 (GOET);
use: AFLP, ITS; GenBank No. AY530733.

Sanchezia skutchii Leonard & Smith. Origin: culti-
vated at Botanical Garden of the University of
Göttingen; voucher: Schmidt-Lebuhn 95 (GOET); use:
AFLP, ITS; GenBank No. AY530732.

Suessenguthia barthleniana Schmidt-Lebuhn. Origin:
Bolivia, Dep. La Paz, Yolosa; voucher: Schmidt-Lebuhn

30 (GOET); use: AFLP.

Suessenguthia barthleniana Schmidt-Lebuhn. Origin:
Bolivia, Dep. La Paz, Yolosa; voucher: Schmidt-Lebuhn

31 (GOET); use: AFLP, ITS; GenBank No. AY530737.
Suessenguthia koessleri Schmidt-Lebuhn. Origin: Bo-

livia, Dep. Pando, Agua Dulce; voucher: Schmidt-

Lebuhn 50 (GOET, LPB, US); use: AFLP.
Suessenguthia koessleri Schmidt-Lebuhn. Origin: Bo-

livia, Dep. Pando, near Riberalta; voucher: Schmidt-

Lebuhn 55 (GOET, LPB, US); use: AFLP.

Suessenguthia koessleri Schmidt-Lebuhn. Origin: Bo-
livia, Dep. Pando, near Riberalta; voucher: Schmidt-

Lebuhn 56 (GOET); use: AFLP, ITS; GenBank No.
AY530736.

Suessenguthia multisetosa (Rusby) Wassh. & Wood.
Origin: Bolivia, Dep. Santa Cruz, Prov. Velasco;
voucher: Schmidt-Lebuhn 24 (GOET, LPB, US); use:
AFLP, ITS; GenBank No. AY530740.

Suessenguthia multisetosa (Rusby) Wassh. & Wood.
Origin: Bolivia, Dep. La Paz, Caranavi; voucher:
Schmidt-Lebuhn 67 (GOET, LPB, US); use: ITS;
GenBank No. AY530739.

Suessenguthia multisetosa (Rusby) Wassh. & Wood.
Origin: Bolivia, Dep. La Paz, Caranavi; voucher:
Schmidt-Lebuhn 68 (GOET); use: AFLP.

Suessenguthia trochilophila Merxmüller. Origin: Peru,
Dep. Cuzco, Pilcopata; voucher: Schmidt-Lebuhn 37

(GOET, US); use: AFLP, ITS; GenBank No. AY530734.
Suessenguthia trochilophila Merxmüller. Origin: Boli-

via, Dep. La Paz, Tumupasa; voucher: Schmidt-Lebuhn

46 (GOET, LPB, US); use: AFLP.

Suessenguthia trochilophila Merxmüller. Origin: Boli-
via, Dep. La Paz, Tumupasa; voucher: Schmidt-Lebuhn

47 (GOET); use: AFLP, ITS; GenBank No. AY530735.
Suessenguthia trochilophila Merxmüller. Origin: Boli-
via, Dep. Beni, Carmen Florida; voucher: Schmidt-

Lebuhn 61 (GOET, LPB, US); use: AFLP.
Suessenguthia vargasii Wasshausen var. vargasii.

Origin: Peru, Dep. Cuzco, Pilcopata; voucher:
Schmidt-Lebuhn 35 (GOET, US); use: AFLP, ITS;
GenBank No. AY530741.

Suessenguthia wenzelii Schmidt-Lebuhn. Origin: Boli-
via, Dep. Beni, Puente Rio Quiquibey; voucher:
Schmidt-Lebuhn 64 (GOET, LPB); use: AFLP, ITS;
GenBank No. AY530738.

Suessenguthia wenzelii Schmidt-Lebuhn. Origin: Boli-
via, Dep. Beni, Puente Rio Quiquibey; voucher:
Schmidt-Lebuhn 66 (GOET); use: AFLP.
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