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the prostate, which leads to obstruction of urine outflow and considerable morbidity in a majority of
older men. Senescent cells accumulate in human tissues, including the prostate, with increasing age.
Expression of proinflammatory cytokines is increased in these senescent cells, a manifestation of the
senescence-associated secretory phenotype. Multiplex analysis revealed that multiple cytokines are
increased in BPH, including GM-CSF, IL-1a, and IL-4, and that these are also increased in senescent
prostatic epithelial cells in vitro. Tissue levels of these cytokines were correlated with a marker of
senescence (cathepsin D), which was also strongly correlated with prostate weight. IHC analysis
revealed the multifocal epithelial expression of cathepsin D and coexpression with IL-1e in BPH tissues.
In tissue recombination studies in nude mice with immortalized prostatic epithelial cells expressing
ILl-1e and prostatic stromal cells, both epithelial and stromal cells exhibited increased growth.
Expression of IL-1a in prostatic epithelial cells in a transgenic mouse model resulted in increased
prostate size and bladder obstruction. In summary, both correlative and functional evidence support
the hypothesis that the senescence-associated secretory phenotype can promote the development
of BPH, which is the single most common age-related pathology in older men. (Am J Pathol 2014,
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Benign prostatic hyperplasia (BPH) is an extremely common
disease of older men. By the eighth decade of life, approxi-
mately 80% of men have anatomical evidence of BPH, and
half of these men exhibit symptoms of this disease.' This
benign growth of the prostate leads to obstruction of urine
outflow and causes considerable morbidity in older men.
Complications of BPH, such as acute urinary retention and
urinary tract infection, can occasionally lead to death. Up to
30% of men may require treatment for this condition at some
time in their lives, and in the United States more than one
billion dollars is spent annually on the medical and surgical
treatment of this disease.’ Thus, BPH is a disease that affects
the majority of older men and is of considerable medical
importance, but its pathogenesis is still obscure.

There are three major zones in the prostate: peripheral,
central, and transition. These are not simply anatomical or
histological regions, but have different behaviors in the
aging prostate. The transition zone (TZ), which is located
around the prostatic urethra, gives rise to BPH. Although
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other factors can play a role in the symptom complex
characteristic of BPH, the overgrowth of TZ tissue around
the prostatic urethra is clearly of importance in the patho-
genesis of this disease. The TZ commonly increases more
than 30-fold in size during development of BPH, and both
epithelial and stromal elements contribute to this growth.”

Cellular senescence is a process that limits proliferation
of human cells (and animal cells in general).” The senes-
cence response can be induced by a variety of cellular al-
terations.” Intrinsic senescence occurs in human cells in
response to telomere shortening and/or telomere uncapping
as a result of repeated rounds of cell division. Senescence
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can also be induced by a variety of nontelomeric signals,
such as oxidative stress, DNA damage, and inappropriate
expression of oncogenes.” Cellular senescence is subject to
complex regulation by p53, p16, and other key proteins.”

Senescent cells accumulate in human tissues,’ including the
prostate,”” with increasing age. These senescent cells have
altered function, including increased expression of proin-
flammatory cytokines, growth factors, and proteases—
all of which may alter the function of adjacent cells.'"'" This
phenomenon is known as the senescence-associated secretory
phenotype. The senescent cells that accumulate with
increasing age may contribute to the aging phenotype and age-
related pathologies by secreting factors that act in a paracrine
manner on adjacent cells and extracellular matrix. Previous
studies from our research group indicated that senescent
prostatic epithelial cells express at least two proinflammatory
cytokines, IL-1o. and IL-8.”'*~'* With the present study, we
extend those initial studies and provide both correlative and
functional evidence that the senescence-associated secretory
phenotype can promote the development of BPH, which is
the single most common age-related pathology of older men.

Materials and Methods
Tissue Acquisition

Samples of prostate from normal or hyperplastic TZ tissue
were taken from radical prostatectomies; a small part of the
tissue was cultured and the rest was snap-frozen in liquid
nitrogen. The tissues were determined to be free of carci-
noma, as described previously.'” Paraffin-embedded tissues
from radical prostatectomy specimens were used for tissue
microarray (TMA) construction. All tissues were collected
with informed consent with the approval of the Baylor
College of Medicine Institutional Review Board.

Primary Epithelial Cell Culture

Prostatic TZ tissues were harvested and used to establish
primary epithelial cultures; serial samples of cultures were
collected for protein or RNA extraction. Primary prostatic
epithelial cells were cultured in prostate epithelial growth
medium with penicillin/streptomycin (Clonetics; Lonza,
Walkersville, MD) and were passaged at approximately 80%
confluence over a period of several weeks. Early-passage cells
were highly proliferative; late-passage cells exhibited senes-
cent morphology and were slow to replicate.

Tissue Culture

Human post-pubertal prostate PNT1a cells were obtained
from the European Collection of Cell Cultures (Porton
Down, UK) and maintained in RPMI 1640 medium with
10% fetal bovine serum (FBS). The human prostate stromal
cell line 191 (described previously'®) was obtained from Dr.
David Rowley, Baylor College of Medicine. The 191 cells
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were cultured in FBS medium containing Dulbecco’s
modified Eagle’s medium, 5% Nu-Serum (BD Biosciences,
San Jose, CA), 5% FBS, 10 ng/mL insulin, 0.2 ng/mL
testosterone, and penicillin—streptomycin antibiotics.

Transfection of PNT1a Cells with IL-1o. cDNA

Human IL-1o was PCR amplified from a human cDNA pool
using primers forward 5'-AAGTGAGATGGCCAAAGTT-
CC-3’ and reverse 5-TCTTGGGCAGTCACATACAA-3’
and was cloned in-frame into pcDNA 3.1/V5-His TOPO
(Life Technologies, Carlsbad, CA). Clones were screened by
HindIII digestion to check orientation and PCR-amplified to
verify the presence of the IL-1a insert. Positive clones were
sequenced in two directions, to confirm sequence integrity.
The vector was stably transfected into PNT1a cells using
FuGENE 6 transfection reagent (Roche Diagnostics, Indi-
anapolis, IN) according to the manufacturer’s instructions,
under Geneticin (Gibco; Life Technologies, Carlsbad, CA)
selection. Control cells were established by transfecting an
empty pcDNA 3.1/V5 vector. Protein expression was veri-
fied using an IL-la enzyme-linked immunosorbent assay
(ELISA) (R&D Systems, Minneapolis, MN).

Differential Reactive Stroma Model

We performed xenograft experiments using a variation of
the differential reactive stroma model'’ to establish PNT1a
tumors subcutaneously in nude mice. PNT1a control or
PNTl1a—IL-1a cells were combined with 191 stromal cells
in a 4:1 ratio, with Matrigel, and were subcutaneously
injected bilaterally in six mice for each group (2.5 x 10°
total cells per injection). The cells were allowed to establish
tumors and then were collected after 20 days and weighed.
A portion of the tissue was fixed for histology, and a portion
was frozen for molecular analysis.

Quantitative Assessment of SA-B gal Activity

Tissue lysates were used for quantitative senescence-
associated [-galactosidase (SA-B-gal) assay as described
previously.” In brief, lysates were prepared and 50 g of total
protein in 50 pL lysis buffer was placed in duplicate microtiter
wells and 100 pL of SA-B-gal stain solution (pH 6.0) was
added to each well. The plate was then incubated at 37°C for
20 hours and the optical density read at 590 nm. One unit of
SA-B-gal activity was defined as the activity leading to 1
optical density unit at 590 nm in a 20 hour incubation.

ELISA

Tissue and cell extracts of protein prepared as described
above were used for quantitative determination of pl6
(E01A0001; BlueGene, Shanghai, China), cathepsin D
(CTSD) (ab119586; Abcam, Cambridge, MA), or IL-la
(MLAOO; R&D Systems) by ELISA based on a quantitative

ajp.amjpathol.org m The American Journal of Pathology


http://ajp.amjpathol.org

Senescence Secretory Phenotype and BPH

sandwich immunoassay technique according to the manu-
facturer’s instructions. Absorbance was measured at 450 nm
using a VERSAmax tunable microplate reader (Molecular
Devices, Sunnyvale, CA). All determinations were per-
formed in triplicate.

Luminex xMAP Cytokine Analysis

The quantitative analyze of 41 human chemokine and cyto-
kine analytes was performed using a MILLIPLEX map human
cytokine/chemokine premixed 26-plex panel (Millipore,
Billerica, MA). In brief, 40 different primary cell cultures
were trypsinized and washed four times in PBS. Cells were
spun down, snap-frozen in liquid nitrogen, and stored at
—80°C until analysis. Primary cells and normal TZ (n = 20)
or BPH (n = 50) prostate tissues were lysed using radio-
immunoprecipitation assay buffer (Sigma-Aldrich, St. Louis,
MO) with protease inhibitors. Lysates were cleared by centri-
fugation and then stored at —80°C. Protein lysates (10 pg) were
analyzed for the presence of 40 different cytokines and che-
mokines. The analytes were as follows: EGF, eotaxin, FGF-2,
Flt-3 ligand, fractalkine, G-CSF, GM-CSF, GRO, IFNa2,
IFN-y, IL-1ra, IL-1a, IL-1B, IL-2, sIL-2Ra, IL-3, IL-4, IL-5,
IL-6, IL-7, IL-8, IL-9, IL-10, IL-12 (p40 and p70), IL-13,
IL-15, IL-17A, IP-10, MCP-1, MCP-3, MDC, MIP-1a, MIP-
1B, PDGF-AA, PDGF-AB/BB, RANTES, sCD40L, TGF-a,
TNF-B, and VEGF. The plate was analyzed using a Bio-Plex
200 system, and data were analyzed using Bio-Plex manager
software version 6.0 (Luminex, Austin, TX).

Western Blotting

Western blot analyses were performed as described previ-
ously,'® using the primary antibody anti-CTSD (sc-53927;
Santa Cruz Biotechnology, Santa Cruz, CA), with mono-
clonal anti—f-actin antibody (Sigma-Aldrich) as the protein
loading control. Western blot signals were visualized using
enhanced chemiluminescence (Thermo Fisher Scientific,
Rockford, IL) and were exposed and developed with films
or with a Bio-Rad imaging system and quantified using
densitometer with Quantity One software version 4.5.2
(Bio-Rad Laboratories, Hercules, CA).

Tissue Microarrays

Samples of the prostate from the TZ were collected from
paraffin-embedded blocks from men undergoing radical pros-
tatectomy for localized prostate cancer. Patients were between
the ages of 50 and 65 and received no adjuvant therapy such as
radiation or hormonal therapy. All sample tissues were free of
carcinoma. Formalin-fixed, paraffin-embedded tissues were
used to constructa TMA using a manual tissue arrayer (Beecher
Instruments, Silver Spring, MD; Estigen, Tartu, Estonia). The
final TMA consisted of 7 cores of normal TZ tissues, 19 of BPH
tissues, and 2 of control tissues. Each core was 2 mm in
diameter; cores were arranged 0.2 mm apart vertically and
horizontally. Array sections were cut at 5-pum thickness.
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Immunohistochemistry

IHC analyses of the human prostate TMA, mouse prostate
tissues, and xenograft tissue were conducted using formalin-
fixed, paraffin-embedded sections. After deparaffinizing and
rehydrating of the tissue section, antigen retrieval was per-
formed for 20 minutes in a rice steamer in Tris—EDTA
buffer, pH 8.0 (Sigma-Aldrich). For single IHC, primary
antibodies anti-SV40 large T antigen (1:500; sc20800; Santa
Cruz Biotechnology, Santa Cruz, CA), anti—IL-1a (1:200;
SC-7929; Santa Cruz Biotechnology), anti-CD31 (1:40;
CM303; Biocare Medical, Concord, CA), anti—Ki-67
(1:400; RM-9106; Thermo Fisher Scientific, Waltham,
MA), or anti-CTSD (1:50; 2510-1; Abcam) were diluted in
Renaissance antibody diluent (Biocare Medical). Sections
were incubated with the primary antibody for 2 hours at
room temperature and developed using the avidin—biotin
peroxidase complex procedure (Vector Laboratories, Bur-
lingame, CA). The detection of the antibody was performed
for horseradish peroxidase visualization using 3,3'-dia-
minobenzidine (Stable DAB Plus; Diagnostic BioSystems,
Pleasanton, CA) for 2 minutes at room temperature. For
double IHC of the TMA, the same antibodies were used for
IL-1a and CTSD at the same dilutions. The TMA section
was first incubated with the IL-1a primary antibody over-
night at 4°C. Detection was performed as described above.
The anti-CTSD antibody was then incubated for 2 hours at
room temperature; Red AP visualization was then per-
formed using an alkaline phosphatase substrate kit no. 1
(Vector Laboratories) for 10 minutes at room temperature.
Finally, the tissue section was counterstained in Mayer’s
hematoxylin, dehydrated, and stabilized with mounting
medium.

Image Analysis

Images were captured using a Vectra automated multispectral
imaging system (PerkinElmer, Waltham, MA). For the analysis
of Ki-67, we used InForm image analysis software version 1.2
(PerkinElmer) to separately analyze epithelium and stroma to
quantify the number of positive nuclei in these two cell types.
For CD31, we quantified the number of positive cells. For SV40
T antigen, we used Image] software version 1.45s (NIH,
Bethesda, MD) to enumerate positive staining nuclei and total
nuclei. Colocalization analysis of CTSD and IL-1o was per-
formed using Nuance software version 3.0 (PerkinElmer). This
software is capable of separating out individual chromogens and
generates images for each antigen; the images can then be
overlapped to generate the colocalization image. For each
analysis, we established the threshold conditions before the
batch analysis was conducted.

Transgenic Construct Cloning

The mouse IL-laa cDNA was PCR amplified from
I.M.A.G.E. Consortium clone 3599550 (GenBank accession
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no. BC003727; http://www.ncbi.nlm.nih.gov/genbank) (Open
BioSystems; Thermo Scientific, Pittsburgh, PA) and subcloned
into pCR2.1-TOPO (Life Technologies). Forward and reverse
primers were tagged with EcoRI consensus sequences. The
forward primers were modified to improve the Kozak
consensus sequence for transcription initiation (5'-GAAT-
TCGCCACCATGGCCAAAGTTCCT-3' and 5'-GAATT-
CATAGACTCCCGAAATAAG-3'). The plasmid insert
was sequenced in both directions using T7 and M 13 reverse
primers to ensure that no mutations occurred during
amplification. The IL-1a cDNA was excised with EcoRI
and ligated into the multiple cloning site on the ARR,PB-
KBPA vector containing the ARR,PB promoter, CKR
intron, and bGHpA'® (courtesy of Dr. David Spencer,
Baylor College of Medicine). Colonies were screened by
PCR amplification and sequenced to identify clones in the
appropriate orientation and to verify sequence. EcoRI-
digested, gel-purified plasmid DNA was used at the Bay-
lor College of Medicine Mouse Genetically Engineered
Mouse core facility for microinjection into FVB mouse egg
pronuclei. All experiments and animal work involving
transgenic mice and wild-type littermates were conducted
according to the animal protocol approved by the Baylor
College of Medicine Institutional Animal Care and Use
Committee.

After microinjection, 25 pups were born from five lit-
ters. DNA was prepared from tail cuttings and screened for
the presence of the transgene using primers forward
(ARR,PB): 5-CTGGTCATCATCCTGCCTTT-3' and
reverse (IL-1a): 5-TCAGAATCTTCCCGTTGCTT-3'.
Twelve-week-old transgenic and WT littermates were
sacrificed to detect levels of IL-1a gene expression in the
prostates of F1 progeny by quantitative RT-PCR using
SYBR Green quantitative PCR on an iQ thermal cycler
(Bio-Rad Laboratories).”’ IL-1a. was amplified using the
primer pair forward 5'-CATCAGCTGCTTATCCAGAGC-
3" and reverse 5'-ACTCCCGAAATAAGGCTGCT-3' from
cDNA pools of 12-week-old transgenic mouse prostate
tissues. A single transgenic line was developed from a
founder that had high levels of IL-1o gene expression in
prostate tissue.

After germline transmission of IL-la was determined,
prostates were harvested from transgenic mice and wild-
type littermate controls between 3 and 18 months of age.
All lobes of the prostate (ventral, dorsal, lateral, and
anterior) were harvested en bloc and seminal vesicles and
bladder were harvested separately. Prostates were weighed
and portions were snap-frozen and/or fixed in neutral
buffered formalin and paraffin-embedded for histology and
IHC. In older mice, urine was collected from the bladder
by inserting a needle directly into the bladder with a sy-
ringe and urine volume was measured before harvest of the
prostate and seminal vesicles. Protein extracts were
measured by IL-1a ELISA to confirm increased protein
production in a subset of transgenic mouse prostates,
relative to WT.
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Results

CTSD Is a Marker of Cellular Senescence and Is
Increased in BPH

We have previously shown that SA-B-gal, a marker of
cellular senescence, is increased with increasing passage
number of primary prostatic epithelial cells and is also
significantly increased in epithelial cells in BPH tissues.’
SA-B-gal is a histochemical marker that requires fresh tis-
sue for enzymatic activity, limiting its usefulness for
paraffin-embedded tissues. To validate new senescence
markers, we performed primary cultures of prostatic epithe-
lial cells from TZ tissues. Cells were collected at early pas-
sages, while actively proliferating, or were carried for
multiple passages until senescent. The late-passage cells
exhibited a senescent morphology; quantitative assay of SA-
B-gal on protein extracts, using an assay developed previ-
ously by our research group,” indicated a significant increase
in SA-B-gal activity in later passage cultures (Figure 1A).
The classic senescence marker pl6 was also significantly
increased (Figure 1B).

CTSD has been identified as a marker of cellular senes-
cence.”’ We therefore evaluated the expression of CTSD by
Western blotting of early- and late-passage prostate epithelial
cells. CTSD was increased in late-passage cells (Figure 1C). To
quantitatively evaluate CTSD expression, we performed a
CTSD ELISA using protein extracts from early- and late-
passage prostate epithelial cells. There was a significant in-
crease in CTSD in the senescent epithelial cultures (Figure 1D).
Thus, CTSD is arobust marker of prostate epithelial senescence.

We then evaluated the expression of CTSD in normal
prostatic TZ tissue and in BPH tissue. CTSD was significantly
increased in BPH tissue, compared with normal TZ tissue,
according to ELISA (Figure 2A). Of note, p16, as measured by
ELISA, was also significantly increased (P = 0.013, #-test; data
not shown). There was a highly significant correlation of CTSD
levels and prostate weight (¥ = 0.539, P < 0.001, Pearson
product moment) (Figure 2B). We then performed IHC using a
TMA containing cores of normal TZ and BPH tissue. There
was a marked increase in CTSD expression in the epithelium of
BPH tissues, compared with normal TZ tissues (Figure 2, C and
D). We note that, similar to our SA-B-gal findings,” there was
very significant variability in staining, which tended to be focal
within epithelial acini and variable between tissue cores. Some
staining of cells within the stroma was also noted (Figure 2D).
Some of these cells appear to be macrophages, whereas others
had spindled morphology and may represent senescent fibro-
blasts. However, the number of CTSD-expressing stromal cells
was much smaller than the number of senescent epithelial cells.

Cytokines Up-Regulated in BPH Are Increased in
Senescent Epithelial Cells and Correlate with CTSD in BPH

To identify cytokines that play a role in the pathogenesis of
BPH, we performed quantitative analysis of 40 cytokines in 20
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Figure 1  CTSD is a marker of prostatic epithelial senescence. A: SA-B-
gal activity in extracts from proliferating and senescent epithelial cells,
expressed in units, where 1 unit equals 1 0D at 590 nm in 20 hours. B: p16
protein levels in extracts from proliferating and senescent epithelial cells.
C: Western blot of CTSD with protein lysates from primary prostatic
epithelial cells at passages PO to P9. Lane L, LAPC4 prostate cancer cell
lysate. B-Actin is a loading control. D: CTSD protein levels as determined by
ELISA in proliferating and senescent prostatic epithelial cells. Data are
expressed as means + SEM. *P < 0.05, t-test.

normal TZ tissues and 50 BPH tissues, using Luminex bead
arrays. Numerous cytokines were increased in BPH tissue;
however, because of significant variation in tissue levels,
the increase was significant in only a subset of cytokines
(Figure 3A). Both IL-1a and IL-8 were significantly increased
in BPH, consistent with our previous observations.'>'* We
then analyzed the expression of the cytokines increased in
BPH in protein extracts from early- and late-passage prostatic
epithelial cells, using the same the Luminex technology. In all
cases, the cytokines increased in BPH were also increased in
the senescent epithelial cells (Figure 3B). Of note, IL-1o could
not be quantitated, because in the senescent epithelial cells
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IL-10. was markedly increased and was higher than the linear
range in this multiplex assay. We then evaluated the correlation
between the levels of CTSD and cytokines in the normal TZ
and BPH tissues. IL-1a, IL-4, GM-CSF and IL-10 were all
highly correlated with CTSD levels (Table 1). Several other
cytokines, including IL-8, IL-15 and IL-17, trended to corre-
lation with CTSD but did not reach statistical significance.
Taken together, the data indicated that the senescence-
associated secretory phenotype contributes significantly to
the expression of multiple cytokines within BPH tissue and
that the extent of cellular senescence is correlated with total
prostate weight.

To directly show that the senescent epithelial cells ex-
press IL-1a, we performed double immunostaining with
antibodies to both CTSD and IL-1o using our TMA. The
double-stained slides were scanned with spectral imaging,
and Nuance software was used to unmix the chromogens
and produce composite images of overlapping CTSD and
IL-1a. Staining was predominantly epithelial, and almost all
cells stained yellow, indicating coexpression of CTSD and
IL-1a (Figure 3C). These were variably distributed within
epithelial acini, with focal and sometimes multifocal stain-
ing. This pattern was seen in both normal TZ and BPH,
although the pattern was far more extensive in BPH tissues
(Figure 3C). Occasional cells with only CTSD or IL-la
staining were seen, but these were rare. In focal areas, we
saw staining of stromal cells as well (Figure 3C), but this
was far less common than in epithelial cells.

IL-1a Promotes Tissue Growth in a Tissue
Recombination Model System

Multiple cytokines were increased in cellular senescence and
in BPH tissues. Among the most up-regulated was IL-1a. We
have previously shown that IL-la is significantly up-
regulated in BPH'”; the present data confirm this up-
regulation, and also indicate the correlation of IL-1a with
epithelial senescence. We therefore sought to determine the
functional significance of increased IL-1¢. in benign prostatic
tissue growth. Rowley and colleagues'’ established the dif-
ferential reactive stroma model, a model system for under-
standing the role of stroma in prostate cancer progression. In
this model, LNCaP cancer cells are subcutaneously inocu-
lated with human prostate stromal cell lines with or without
Matrigel in nude mice. To use this model to study the role
of paracrine interactions between nonneoplastic prostatic
epithelial and stromal cells in BPH, we used PNT1a cells (a
SV40 T antigen immortalized but nontumorigenic prostatic
epithelial cell line established from normal epithelium??). We
expressed IL-la in PNTla cells to mimic the epithelial
expression of IL-1a in BPH epithelial cells. These cells (or
vector controls) were then mixed with the human prostate
stromal cell line 191 and growth factor—reduced Matrigel and
inoculated subcutaneously in nude mice. After 20 days, tu-
mors were collected and size was measured. Tumor size was
significantly higher in IL-1o expressing tissues than in vector
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Figure 2  CTSDis increased in BPH and correlates with prostate weight. A:
CTSD protein levels as determined by ELISA in protein extracts from BPH and
normal TZ tissues. B: Correlation of CTSD levels and prostate weight (©* =
0.539, P < 0.001, Pearson product moment). C: IHC for CTSD. Medium-power
view of CTSD in normal TZ and BPH tissue. D: High-power view of BPH tissue,
showing epithelial expression of CTSD (arrow) and expression in occasional
spindle-shaped cells (double arrow). Data are expressed as means + SEM.
**P < 0.01, t-test. Original magnification: x100 (C); x400 (D).

controls (Figure 4A). No tumors were seen with either stroma
or epithelium inoculated separately (data not shown).

The tumors consisted of stromal cells with islands of
epithelial cells with admixed Matrigel (Figure 4B). To confirm
that the epithelial-appearing cells were indeed PNT1a cells, we
performed IHC with anti-SV40 T antigen antibody. Approxi-
mately 40% of cells expressed SV40 T antigen (Figure 4B).
Surrounding the SV40 T antigen—positive PNT1a cells were
unstained cells with a predominantly spindle morphology,
presumably representing 191 human stromal cells and/or mouse
stromal cells, including endothelial cells. I[HC with anti—IL-1o
antibody confirmed expression of IL-1a in the PNT1a—IL-1c
tumors (Figure 4B). Quantitative analysis of the number of
SV40 T antigen—stained cells revealed an increase in total
PNT1a cells per tumor in the tumors using PNT1a—IL-1a. cells,
compared with vector controls (Figure 4C). The number of non-
SV40—expressing cells was also increased in the tumors of
PNT1a—IL-1a cells: 466 = 19 (means + SEM), compared with
382 + 22 for the vector control (P = 0.01, t-test). Thus, the
increased size of the PNTla—IL-1o tumors was due to both
increased PNT1a cells and increased 191-derived and/or mouse-
derived stromal cells, indicative of paracrine crosstalk pro-
moting growth and/or recruitment of such cells. Finally,
because IL-lo. can enhance angiogenesis,” we examined
angiogenesis using anti-CD31 IHC and image analysis. The
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percentage of the tumor represented by endothelial cells was
significantly higher in tumors from PNT1a IL-1a-expressing
cells, compared with controls (Figure 4D). These findings show
that, when expressed as an epithelial cytokine, IL-1o can pro-
mote tissue growth of both benign stroma and epithelium.
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Figure 3  Increased expression of cytokines in BPH tissues and senescent
prostatic epithelial cells. A: Expression levels of indicated cytokines as deter-
mined by Luminex assays in normal TZ and BPH tissues, relative to normal TZ
(100%) for each cytokine. B: Expression level of the same cytokines (except IL-
1o, which was out of the linear range in the assay in senescent cells) in extracts
from proliferating and senescent epithelial cells, relative to proliferating cells
(100%) for each cytokine. C: Double immunostaining with antibodies to CTSD
(red) and IL-1a (green) of BPH and normal TZ tissues; yellow indicates coex-
pression (arrows). Staining was predominantly epithelial (arrow; BPH, top left
panel). Infocal areas, there was also some staining of stromal cells (arrow; BPH,
top right panel). Data are expressed as means + SEM. *P < 0.05, t-test or U-test.
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Table 1  Correlation of CTSD and Cytokine Levels in TZ Tissue
Extracts

Cytokine Correlation P value
GM-CSF 0.44 <0.01
IL-1a 0.55 <0.001
IL-4 0.47 <0.01
IL-8 0.29 0.09
IL-10 0.46 <0.01
IL-15 0.252 0.142
IL-17 0.31 0.07

Prostate Epithelial Expression of IL-1a Results in
Increased Prostate Size and Bladder Obstruction in a
Transgenic Mouse Model

To evaluate the potential role of IL-1a in promoting pros-
tatic growth, we constructed transgenic mice in which IL-1a.
is expressed under the control of the ARR,PB prostate-
specific promoter. This promoter directs prostate epithelial-
specific expression of the transgene at the onset of sexual
maturity in the transgenic male mice. Transgenic mice were
analyzed for expression of IL-la, and a mouse line with
marked overexpression of IL-1a protein in the prostate after
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the onset of sexual maturity was established (ELISA; data not
shown). These mice were monitored and analyzed for gross
and microscopic prostatic pathology at intervals over the
course of more than 18 months. A significant increase in total
prostate weight was noted in mice over the age of 12 months
(Figure 5A). This was accompanied by a marked increase in
urine volume in these mice at the time of euthanasia,
consistent with bladder outlet obstruction (Figure 5, B and
C). IHC and image analysis for Ki-67, a proliferation marker,
indicated a significant increase in proliferating epithelial and
stromal cells in the prostate of the transgenic mice, compared
with littermate controls (Figure 5D). Histological analysis
indicated variable histology, with focally increased numbers
of epithelial cells in the ventral and/or dorsolateral prostate
(Figure 5E), accompanied in some cases by stromal thick-
ening and fibrosis of the normally very thin fibromuscular
stroma surrounding epithelial acini (Figure 5E).

Discussion

A major question confronting BPH research is the under-
lying pathogenesis of the disease. Multiple factors have
been implicated in BPH, including cellular senescence,

Figure 4 IL-1o enhances growth in a tissue
recombination xenograft model. Immortalized but
nontumorigenic prostatic epithelial cells (PNT1a)
expressing IL-1o. or vector controls were mixed
with the prostate stromal cell line 191 and injected
subcutaneously in nude mice. A: Tumor size at 20
days. B: PNT1a differential reactive stroma tumors
stained with H&E show single cells and clusters of
— cells within a pale eosinophilic Matrigel (left
panel). IHC for SV40 T antigen shows that
approximately 40% of cells are PNT1la prostatic
epithelial cells (middle panel). High-power view
of PNT1a cells from PNT1a—IL-1a tumors showing
cytoplasmic staining for IL-1a. No staining was
seen in PNT1a tumors or in negative control sec-
tions (ie, without primary antibody) (right panel).
C: Number of SV40 T angtigen positive nuclei per
tumor section in control PNT1a and PNT1la—IL-1a
% tumors. D: Mean endothelial percentage assessed
by anti-CD31 IHC and image analysis. Data are
expressed as means + SEM. **P < 0.01, ***P <
0.001, t-test. Original magnification, x100 (B,

left and middle panel); x400 (B, right panel).
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alterations in hormones, and inflammation.”*”>> These fac-
tors may interact, and are not necessarily mutually exclusive
players in the etiology of BPH.

Our present findings demonstrate, based on multiple
markers, that senescent epithelial cells are significantly
increased in BPH tissues, as are cytokines that are up-
regulated as part of the senescence-associated secretory
phenotype. Furthermore, the levels of multiple cytokines in
BPH are strongly correlated with the degree of senescence
in the tissue. Finally, functional studies indicated that,
in vivo, at least one of the cytokines (IL-1a) can result in
increased benign tissue growth in both xenograft and
transgenic model systems. The growth-promoting activities
of IL-loe may be due, in part, to induction of paracrine
FGF-7 expression in adjacent stromal cells that can act on
nonsenescent epithelial cells.'” Jerde and Bushman® re-
ported that IL-1a can also induce IGF-1 in prostatic stromal
fibroblasts, further enhancing the epithelial growth response.
Similarly, we reported that IL-8 can induce FGF-2 as a
paracrine factor, which can stimulate both epithelial and
stromal growth, and IL-8 can directly enhance growth of
neighboring nonsenescent prosthetic epithelial cells.'” Both
FGF-2 and FGF-7 are significantly increased in BPH
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tissue.”” Taken together, our findings strongly support the
concept that cellular senescence of prostatic epithelial cells
contributes significantly to the pathogenesis of BPH.

The presence of significant numbers of senescent epithelial
cells in the prostate is in contrast to the findings in other
organs, such as skin, where senescent stromal cells are more
prominent.” This may reflect the low turnover rate
of prostatic epithelium, as assessed by the relatively low
number of proliferating cells,” in contrast to other epithelia
(such as skin), which have a much higher turnover rate. This
low mitotic activity in prostate tissue may make it less likely
that there is significant erosion of telomeres within the
prostatic epithelium because of replication. Thus, we believe
that other mechanisms, such as oxidative stress and/or DNA
damage, are inducing the senescence response in the prostatic
epithelial cells. Olinski et al*’ reported that BPH tissues have
higher levels of DNA base lesions typical of oxidative DNA
damage in DNAs from BPH tissue (relative to matched
normal tissue) and that in the majority of these patients there
is a decreased activity of superoxide dismutase and/or cata-
lase in the BPH tissues. Consistent with this finding, Malins
et al,’” using infrared spectroscopy, found higher levels of
structural alterations in DNA from BPH tissue, consistent

Wild type Figure 5  Phenotype of prostate-specific IL-1o.

transgenic mice. A: Mean prostate weight for
ARR,PB IL-1o transgenic mice and littermate con-
trols. B: Example of enlarged bladder in ARR,PB
IL-1e transgenic mouse at time of euthanasia.
Arrowhead indicates the bladder. C: Mean urine
volume at time of euthanasia for ARR,PB IL-1a
transgenic mice and littermate controls. D: Mean
percentage of Ki-67" nuclei in epithelium and
stroma for ARR,PB IL-la. transgenic mice and
littermate controls. E: Histological appearance of
dorsolateral and ventral prostates in ARR,PB IL-1a
transgenic mice and littermate controls. Thickening
of the epithelium was seen, with areas of piling up.
Stroma was focally thickened (arrowhead),
compared with the fibromuscular stroma normally
present in mouse prostate. Data are expressed as
means == SEM. *P < 0.05, **P < 0.01, and ***P <
0.001, t-test. Original magnification, x100. DLP,
dorsolateral prostate; TG, transgenic; VP, ventral
prostate.
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with oxidative damage, compared with normal tissue.
Expression microarray studies of aging rat prostate have
revealed up-regulation of multiple genes that are increased
during oxidative stress.”’ Superoxide dismutase gene
expression was decreased in the prostate of older rats, a
finding similar to protein expression data in human BPH.”'!

Barron and Rowley’ reported induction of a reactive
stroma phenotype in prostate cancer, and this reactive
stroma was similar to the stroma seen in wound repair in a
variety of sites. Schauer and Rowley recently extended
this concept to BPH. Cytokines from senescent epithelial
cells can induce changes in prostatic stromal cells that are
similar to the effects induced by the same cytokines (ie, IL-
1o and IL-8) at wound sites, and senescence may act like a
chronic wound biologically. A major feature of the reactive
stroma is an increase in myofibroblasts. These cells, which
are intermediate in phenotype between in fibroblasts and
smooth muscle cells, are characteristic of reactive stroma.
IL-8 can induce a myofibroblastic phenotype in prostatic
fibroblastic in vitro, characterized by expression of smooth
muscle a-actin (SMA) and tenascin, which are established
markers of myofibroblasts.'® Furthermore, THC studies of IL-
8 expression in BPH epithelium relative to normal TZ
confirm the increased expression of IL-8 that we have
observed in both the present and previous studies.'® Impor-
tantly, quantitative studies have established that there is
a significant increase in expression of the myofibroblast
marker SMA in stromal cells adjacent to epithelial cells in
BPH nodules, relative to normal TZ. These studies indicate
that, in addition to inducing expression of growth factors and
cytokines in stromal cells in a paracrine manner, there are
changes in cellular differentiation into cells characteristic of
reactive stroma that can be induced by cytokines secreted
from senescent epithelial cells.

An important question is whether senescence of stromal
cells also plays a role in the pathogenesis of BPH. We” and

others® have not observed significant numbers of SA-pB-
gal—expressing prostatic stromal cells. This is in contrast to
in vitro studies, in which prostatic stromal cells express SA-
B-gal during senescence induced by a variety of condi-
tions.”* In other tissues, expression of SA-B-gal in stromal
fibroblasts is a prominent feature in aging tissues. Recently,
Bavik et al’* reported that in vitro prostatic stromal fibro-
blasts express a variety of growth factors and cytokines
when they undergo cellular senescence, including factors
that we and others have found to be increased in BPH
(including FGF-7, IL-8, and HGF).'*"® Tt is possible that
in vivo fibroblastic cells in the prostate do not accumulate
SA-B-gal, although why this should be the case is unknown.
We have, however, observed IL-8 in stromal cells in the
prostate, although epithelial expression is more abundant.'”
Similarly, in the present study, we observed some stromal
cells expressing CTSD. This is in agreement with the ob-
servations of Pruitt et al,35 who observed small numbers of
CTSD™ stromal cells in benign prostate stroma (and focal
staining in epithelial acini as well, based on their published
IHC data). Interestingly, Pruitt et al®® found increased
CTSD in stromal cells in prostate cancer and showed that
CTSD can promote cancer progression in tissue recombi-
nation models. Cherry et al’® found that CTSD is present as
an active form in prostate cancer, but in BPH it is present
only in the inactive form. In BPH, CTSD is a marker of
senescence and does not appear to play an active role in
growth promotion. Thus, there appear to be significant dif-
ferences in the biology of CTSD in stromal cells in cancer
and in BPH. Overall, the data suggest that senescent stromal
cells are present in vivo in BPH tissue, but are less abundant
than senescent epithelial cells.

A major theory of BPH pathogenesis is that inflammation
may promote the development of BPH. Quantitative studies
have indicated that the vast majority of BPH tissues contain
chronic inflammatory infiltrates, including both T and B
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Figure 6 Model of BPH pathogenesis. Oxida-
tive DNA damage results in epithelial senescence
and initiation of the senescence-associated
secretory response. Cytokines and growth factors
released from senescent cells can directly promote
growth of nonsenescent prostatic epithelium and
stroma and can initiate paracrine loops, promoting
growth of both cellular compartments. Secreted
cytokines can also enhance influx of inflammatory
cells into the prostate, which can lead to pleio-
tropic effects on prostate growth from factors
secreted by these inflammatory cells. A reactive
stroma phenotype is induced, which can promote
fibrosis. Senescent stromal cells may also play a
role, but are less common than senescent epithe-
lial cells.
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lymphocytes and macrophages. Kramer et al’’ reported that
BPH tissues contain increased IL-4, and Steiner et al®® re-
ported increased IL-17 mRNA content in BPH tissues; both
reports are consistent with our present results. IL-17 was
expressed by infiltrating T lymphocytes, but also was noted
focally in epithelial cell in vivo. IL-17 mRNA was detected
in two of three BPH epithelial cell lines and in T cells
isolated from BPH. IL-15, which can stimulate T lympho-
cyte recruitment, is expressed by prostatic stromal cells, and
in BPH epithelial expression is also seen.”” Our present data
confirm that IL-4, IL-15, and IL-17 are all increased in BPH
tissues. Furthermore, all of these cytokines are increased in
senescent epithelial cells, and in BPH tissue there is a sig-
nificant correlation between the content of IL-4 and the
senescence marker CTSD. There is also a trend for corre-
lation between tissue levels of CTSD and IL-15 and IL-17 in
BPH tissue. Our present hypothesis is that senescence in-
duces the expression of inflammatory cytokines that can act
directly on adjacent tissues and also promote the influx of
inflammatory cells into the prostate, which can then have
extensive pleiotropic secondary effects leading to increased
tissue growth, fibrosis, angiogenesis, and other pathological
effects (Figure 6). Our hypothesis thus does not contradict
the role of inflammation in BPH, but rather provides a po-
tential explanation for the ubiquitous presence of inflam-
mation within the aging prostate.

Our model for the pathogenesis of BPH is presented in
Figure 6. We have placed cellular senescence at the center
of this model, because expression of the senescence
phenotype is correlated with expression of growth factors
and cytokines that are, in turn, correlated with increasing net
cellular proliferation in both the epithelial and stromal
compartments, as well as with the severity of BPH in vivo.
A major underlying cause of cellular senescence in the
prostatic epithelial cells is oxidative DNA damage, although
other causes of senescence may also contribute to this
phenotype. Such oxidative DNA damage could be due, in
part, to increased intraprostatic estrogens and decreased
androgens, as well as to dietary and other environmental
factors.

Our present findings support the concept that the TZ is
more vulnerable to oxidative damage than the peripheral
zone, because of lower levels of enzymes involved in pro-
tecting tissues from oxidative DNA damage. The senescent
epithelial cells express proinflammatory cytokines (IL-8 and
IL-1o, among others) that can have both direct and indirect
effects leading to proliferation of adjacent nonsenescent
epithelial and stromal cells. Our previous work demon-
strated the importance of FGF-7 induction by IL-1a in the
pathogenesis of BPH'**” and demonstrated that IGF-1 is
also induced by IL-10.”° Similar studies have demonstrated
both direct actions of IL-8 on epithelial proliferation and
paracrine effects on stromal cells, leading to FGF-2
expression. Other paracrine and/or autocrine interactions
are also a possibility. For example, expression of Kit ligand
and HGF can be induced by IL-la in nonprostatic
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fibroblasts.””*' The senescence-associated epithelial cyto-
kines also alter the cellular phenotype of stromal cells in
BPH tissue from a fibroblastic phenotype to a myofibro-
blastic phenotype characteristic of a reactive stroma. Such
reactive stroma formation may result in collagen deposition
and fibrosis. Recent studies have indicated that fibrosis of
TZ tissues may play an important role in the symptom
complex associated with benign BPH.**~** In addition, a
number of cytokines released by senescent epithelial cells
can attract inflammatory cells into the prostatic tissue, with
further pathological effects contributing to the BPH
phenotype. Growth factors and cytokines such as FGF-2,
IL-1a, and IL-8 are also well known angiogenic factors
and may promote angiogenesis, which is required to support
the increased tissue present in the hyperplastic TZ. Senes-
cent stromal cells may also contribute to the expression of
growth factors and cytokines. Thus, our theory is that
multiple factors that are directly or indirectly induced by
epithelial senescence lead to the increased growth of
epithelial and stromal tissues and fibrosis in BPH.

A central challenge in aging research is to determine
whether senescent cells can lead to age-related pathologies
and to define the pathophysiological mechanisms by which
accumulation of senescent cells can lead to tissue dysfunc-
tion. The present work provides the beginning of a detailed
mechanistic understanding of how cellular senescence can
result in tissue alterations in the TZ of the prostate that lead
to BPH, the most common age-related pathology in aging
men.
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