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We consider monotone decreasing rearrangement with respect to the finite 
measure dp(x) = q(x) dx on R, where cp is a strictly positive, symmetric decreasing, 
log-concave function. ND 1990 Academic Press, Inc 

1. INTRODUCTION 

The study of monotone equimeasurable rearrangements was initiated by 
Hardy and Littlewood [9] in the course of their work on fractional 
integrals. For a good introduction to the general subject of rearrangements, 
see the monograph of B. Kawohl [lo]. 

Monotone decreasing rearrangements with respect to a Gaussian 
measure were studied by A. Ehrhard [5,6]. In reference [l l] M. Ledoux 
found an interesting application to the logarithmic Sobolev inequality of 
L. Gross. The purpose of this paper is to extend known rearrangement 
inequalities to a broad class of finite measures containing the Gaussian 
measure. 

2. PRELIMINARIES 

Let p be a finite Bore1 measure on R. The distribution function pf of a 
real-valued Bore1 measurable function f is defined for x E R by 

It is immediate that ,uf is a decreasing right-continuous function with 
left-hand limits everywhere. We assume throughout that functions are finite 
p-a.e. Hence ~Jx) 7 p(R) as x L -co, and ~Jx) L 0, as x /* co. 
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PROPOSITION 1. Let f, g, f,, (n = 1,2, . ..) be a real-valued Bore1 
measurable functions. The distribution function has the properties: 

1. f <g u-a.e. implies pf< j+; 

2. f, 7 f p-a.e. implies ufz 7 ur 

Proof Property 1 follows directly from the definition (1). Property 2 is 
an easy consequence of the monotone convergence theorem. 

Now suppose that p has no pure point support. The monotone decreasing 
rearrangement f * of a Bore1 measurable function f with respect to the 
measure p is defined for x E R by 

f*(x) = inf( y E R : pJf(y) < pL( - co, x)}. 

We summarize some of the properties off * now. 

(21 

PROPOSITION 2. Let f, g, f,, (n = 1,2, . ..) be real-valued Bore1 measurable 
functions. The monotone decreasing rearrangement f * is a decreasing, 
right-continuous function on R. Furthermore, 

1. f dg u-a.e. implies f * <g*; 
2. f, 7 f u-a.e. implies f ,* /Tf*; 
3. if f, (n = 1, 2, . ..) denotes the sequence of lower-cutoff functions 

f v (-n), then fz L f*; 
4. f and f * are p-equimeasurable. 

Proof Clearly f * is decreasing. Since XH~( - co, x) is a continuous 
increasing function, f*(x) is right-continuous in case the decreasing 
function 

F*(x) = inf( y E R : am ,< x} 

is right-continuous on the interval [0, p(R)). Note that pJF*(x)) d x, 
owing to the right-continuity of Pi. Now let z = lim,,.; F*(x), and 
suppose that z< F*(x& then ,+(z)>xo, by the definition of F*. On the 
other hand, using the fact that pf is decreasing, 

&r(z) < lim ur(F*(x)) < lim x=x0, 
x * x; x -t x0’ 

which is a contradiction. Therefore lim,,,; F*(x) = F*(xo), establishing 
the right-continuity off *. 

If f < g p-a.e., then Pi< ,ug. It follows from definition (2) that ~~<p~ 
implies f * <g*. This establishes statement 1. Similarly, if f,, /* f p-as., then 
pfA /* /+, which implies that f f /1 f *. This establishes statement 2. 
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Next we show that f and f * have the same distribution function. Since 
.f * is a decreasing right-continuous function, we know that for each .V E R, 
there exists some Z,ER such that {,-~R:f*(=)>?‘j=(-~,;o). We have 
f*(zo) 6 ,I’ automatically. Hence 

in which the second inequality follows from the definition off* and the 
right-continuity of .L+. Suppose now that p,-(y) < p( - co, zO). Then there 
exists some w,, < z0 such that pr(y) = p( - co, 1~~). Consequently, 

which is a contradiction, since f*(z) > y for all z E (-co, zO). Therefore 
Pf/(Y) = A - co, ZCJ =&*(Y). 

Finally, statement 3 is clear in case f is lower-bounded. Otherwise, we 
note that fz =f* on the interval (-co, x,), where x, is defined by 
fl( - co, x,) = pr( -n). Since f is finite Cc-a.e., x, + cc as n --f co. 

3. SOME PROPERTIES OF THE REARRANGEMENT 

Next we follow G. Chiti [2] in showing that the *-operation is non- 
expansive in certain Orlicz spaces. For a good reference on Orlicz spaces, 
rearrangements, and related topics, see [ 11. Let F be an increasing convex 
function on [0, co), with F(0) = 0. The Orlicz space L,(R, &) consists of 
the real-valued functions on R such that 

with the norm 

Sincefand f * share the same distribution function, llflj p = Ilf* I/ F. Of par- 
ticular concern is the case of LP(R, &) spaces, corresponding to F(x) = xP. 

First we recall a lemma used by Chiti. 

LEMMA 1. Let F(x), x 2 0, be convex, increasing. If x, > x2, y, 2 y,, 
then 



MONOTONE DECREASING REARRANGEMENTS 227 

Proof: The function c(x) = F()x() is convex on R. Consequently, for 
a, b>,O, XER, 

c(x) - c(x - b) < c(x + a) - c(x + a - 6). 

The lemma follows by choosing x=x2-y2, a=x,-xx,, b=y,-y,. 

THEOREM 1. Let F(x), x> 0, be convex, increasing, with F(0) = 0, and 
let f, g be real-valued Bore1 measurable functions. Then 

jF(lf*(x)-g*(x)l)d~(x)+‘(lf(x)-g(x)l)dp(x). (3) 

Proof. Without loss of generality we may assume that p(R) = 1. If f and 
g are simple functions of the form 

in which p(Ek) is rational for each k, then (3) follows immediately from the 
lemma. For f and g bounded Bore1 functions, there exist sequences fn /” f, 
g, 7 g (n = 1, 2, . ..) of the form 

fn= f an,kxEn,eT Et,= 2 bn,&,,k> 
k=l k=l 

such that p(E,,&) is rational for each n, k, and such that f, > inf ft 
g, 2 inf g for all n. Note that the uniform lower bounds on f,, g, imply the 
uniform bound 

If,(x)-g,(x)1 Gmax{ bupf-infgl, lw g-inff I). 

Now using Proposition 2, Fatou’s lemma, and Lebesgue’s dominated 
convergence theorem, we have 

~F(lf*-g*1)d~<liminf~F(lf~-g~l)d~ 
n-m 

< lim inf F( 1 fn - g,l ) dp 
n-m f 

= Qlf-gl)&. f (4) 

For f and g lower-bounded functions we use upper-cutoff approximations 
f,, = f A n, g, = g A n in argument (4). Finally, for f and g arbitrary Bore1 
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measurable functions, we use lower-cutoff approximations f,, =f v ( -n), 
g, =g v ( -n) and Proposition 2.3 in argument (4). 

Now let C&(X) = q(x) d.x be a finite measure on R given by a continuous, 
strictly positive density cp. Then all previous results extend to Lebesgue 
measurable functions. Since the function E(x) = p( - 03, X) is strictly 
increasing, its inverse E--’ is well-defined on the interval (0, p(R)). If 
AcR, r>O, then we define A,cR to be the set 

A,= {A+~:.YEA, )yI <r)-. 

We say that monotone decreasing rearrangement (with respect to p) is 
regularizing in case 

E~‘o~(A,)bE-‘o&4)+r 

for all closed Bore1 sets A c R and all r 3 0. 

THEOREM 2. Let d,u(x) = q(x) dx be a j?nite Bore1 measure on R, where 
cp is a strictly positive, symmetric decreasing, log-concave function. Then 
monotone decreasing rearrangement with respect to p is regularizing. 

A. Ehrhard [S] first proved this assertion in the important special case 
where p is a Gaussian measure. 

Proofi We follow Ehrhard’s method of proof here; see Ref. [S, 
Prop. 1.31 for full detail. First, ,u inherits from Lebesgue measure the 
property of being regular, so it suflices to prove (5) for A a finite disjoint 
union of closed intervals. Our task is to prove (5) for A a single closed 
interval [a, b]; we omit Ehrhard’s inductive proof on the number of closed 
intervals. 

Equality holds in (5) in the cases a = -co, b = cc, and r =O. The 
inequality is also trivial when a = b, for then the right side is identically 
--cc. Therefore we assume that -cc <a< b < cc and r>O. 

Since cp is positive, log-concave, it is continuous; it follows that E and 
h(r) = ,u(a - r, b + r) are continuously differentiable functions. We must 
show that 

i E-‘o,a(a-r, b+r)> 1 

for all r > 0. The derivative is easily calculated: 

$rEp’op(a-rr, b+r) 

= [cp(E-‘op(a-r, b+r))]-’ [q(a-r)+q(b+r)], 
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so we must show, equivalently, that for all - 00 < a <b < 00, 

v(f) G da) + v(b)> where t := E-’ 0 p(u, 6). (6) 

Suppose that 0 <a < b < co. In this case ~(a, b) < ~(a, co), so that by 
symmetry t < --a, and thus q(t) < q(a). The case -cc <a< b ~0 is 
similar. Now suppose that a < 0 < b. We define the function 

@(aI = cp(t,(a)) - da), UE(-al,O). 

Here lb(u) := E-’ o ~(a, b). As a I - co, @(a) + q(b); we want to show that 
@(a) d q(b) for all a ~0. Since cp is strictly positive, log-concave, it is 
differentiable almost everywhere, with left and right derivatives uniformly 
bounded on compact sets. It follows that 0 is absolutely continuous on 
finite intervals, so we can write for c < a < 0 

@(a) = Q(c) + j- G’(x) dx. 
c 

(7) 

Now we have CL-a.e. 

W(X) = (pr(tb(X)) z- q’(x) 

= -#(fb(x)) --$q- cp’(x). 
b 

Since q is symmetric, log-concave, the condition 

is equivalent to the condition tb(x) + x 60. Suppose first that 
~(x, b) < $p(R). Then lb(x) < 0, so that lb(x) + x < 0. Suppose next that it 
is possible to decrease x until fb(X) = -x. Then 

P( - 00, b(X)) = P(X, b), Or 

/d-m> x) + d-? tb(X)) = d-% tb(X)) + dfbtXh b) 

=t. PL( - a, X) = dtb(Xh b) 

* 14 - ~0, xl + Ax, 0) = I, b) + Ax, 0) 

* Pu( - co, x) + P(x, 0) = dfb(X), b) + A’& tb(X)) (by symmetry of cp) 

a A - m,O) = ~(0, b) 

which is impossible since cp is strictly positive. 
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We have shown that Q’(x) d 0 for all .Y < 0. From (7) we conclude that 
@(a) < G(c) for all c < u. Letting c ---f - m completes the proof. 

In Ref. [6] Ehrhard deduced several consequences of the regularizing 
property of a rearrangement, one of which we state below as a corollary. 
First we need some notation. Let A c R be a Bore1 set, and let x 4 be the 
characteristic function of A. We define P’(A) to be the open interval 
(xA*>O)=(-CU,E-‘GC~(A)). Clearly, if AcB are Bore1 sets, then 
Y(A) c Y(B). Now let f be a measurable function. Since f and f * are 
p-equimeasurable, Y(f>t) =Yjf*>tJ={f*>ti. In terms of the 
Y-operation, inequality (5) is equivalent to the inequality p(A,) >, 
PL((YA Jr). 

COROLLARY 1. Let p be as in Theorem 2. Then monotone decreasing 
rearrangement with respect to p reduces the Lipschitz constant of a Lipschitz 
function. 

Proof: Suppose the corollary is false for some Lipschitz continuous 
function f having Lipschitz constant L; that is 

L = sup If(x) -f (Y)l < co 
r+y IX-Y1 ’ 

while there exist x,, x2 E R such that 

f *(x2) + L lx1 - .%I <f *(x1). 

Then there exist tl, t2 E R such that 

f*(xz)+ L 1x1 -xJ <t,+ L 1x1 -x*) <t, <f*(x,). (8) 

Let r = (xi -x2(. We note that 

Cf>td={f>G. (9) 

(Otherwise, there exist x, z, (zl < r, such that f(x) > t,, while f(x + z) d tZ. 
Then If(x) -f(x+z)l > Lr, which contradicts the hypothesis on J) 
Applying Y to both sides of inclusion (9) 

~{f>t2)~~4P((f>t,}r)~{f*>t2)={f*’tl}r, 

since Y( {f> t, 1,) 1 (Y{f> t,}), according to inequality (5). This 
inclusion says that if f*(x) > t, and Izl <r, then f *(x +z) > tZ. In 
particular, f *(x1) > t, implies f *(x2) > tS, which contradicts (8). 

COROLLARY 2. Let A be a closed Bore1 set such that p(aA) = 0. Then we 
have for all r 2 0 the boundary inequality 

(10) 
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Proof: We express (aA), as the disjoint union 
-- 

(dA),=(A,\A)u((-A),\-A)udA. 

Here the sign - means complement. Taking measures, 

~ttaA),)=~L(A.)--tA)+~(t~A),)-~L(~A). 

According to the remark preceding Corollary 1, p(A,) > p((Y4PA),) and 
p(( -A),) > ,n((Y( -A)),), so we are finished if we show that 

~L((~t~A))T)=~ttrV~A),) (11) 

p(-A)=p(-YA). (12) 

By symmetry of cp, (11) is true if and only if p(Y( -A)) = p( -YA). Note 
that N YA = - YA, since YA is open. Now 

Y(-A)=Y(-Au~(-A))=9’(~Au~A)=~(~A), 
so that 

~(~t,A))=~L(~t~A))=~L(~A), 

while 

.D(-~A)=/~-~‘A)=~(R)-~(YA)=~(R)-~(A)=/J(-A). 

This establishes (11). In the course of the proof we saw that 

~(~‘A)=+~‘A)=~(-A)=~(-Au~A)=~(~)), 

establishing (12). 

4. REARRANGEMENT INEQUALITIES FOR THE DERIVATIVE 

The inequalities established in this section are similar to those found in 
[3,4] concerning monotone rearrangement with respect to Lebesgue 
measure on an interval. The method of proof of the following theorem is 
implicit in a paper by M. Ledoux [ 111. Using a version of Theorem 3 in 
the case where p is a Gaussian measure, Ledoux derives the logarithmic 
Sobolev inequality of L. Gross [8]. 

THEOREM 3. Let f be a Lipschitz continuous function, and let p be as in 
Theorem 2. Then for every Bore1 set A E R, 

5 /-‘(A) 
IDfl d/e!- Pf*l 4. (13) 

f*-‘(A) 
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Note that according to Rademacher’s theorem (see [7, Sect. 3.1]), the 
derivative of a Lipschitz function is an essentially bounded Bore1 
measurable function. Hence, by Corollary 1 both sides of (13) are finite. 

ProoJ It suffices to prove the theorem for the case in which A is an 
interval [a, b]. Since f is Lipschitz, so is the function fa,, := (f v a) A h. 
Clearly 

and 

s f*-‘Cu.bl 
iof*/ &= j 

R 
lo(f*),bi dp= jR @f,*bl da 

Hence, without loss of generality we may take the domain of integration in 
(13) to be R. 

According to the simple one-dimensional version of the Hausdorff area 
formula (see [7, Theorem 3.2.31 

j WI&= j( 1 
re/-'(.v) 

w(+k 

Let fn denote the approximation 

1 

f(n), if xan, 

fn(x)= f(x), if -ndxdn, 

f(-n), if x< --n. 

This approximation scheme has the property that if y #f ( kn), then 
f c’(y) c ( -12, n); furthermore, if 

then the sum is over a finite set {x,}r= I c (--n, n). We have in this case 
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Since f is continuous, the set {f, > y} is closed, so that according to 
Corollary 2 

Now C?{f,*>Y}=E~‘~p{fn>y}, so that 

in which the last step uses the fact that {f, = y} is a p-null set. Inserting 
this result into the Hausdorff area formula, we obtain 

By the monotone convergence theorem, 

> liminfcpoE-‘op{(f,>y}dy 
5 n-m 

= cp”E-‘v{f>y} 4, s 
in which we have applied Fatou’s lemma in the second inequality. Now we 
apply the Hausdorff area formula (14) to the Lipschitz continuous function 
f*. If 

c cp(X)<Q 
XEj-‘(y) 

then the sum is over a single term 

Thus 

~=E-~op(f*>Y)=E-~op Cf>Y 1. 

which completes the proof. 
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The following theorem is stated in [6] for the special case of ,u being a 
Gaussian measure. 

THEOREM 4. Let F be UFZ increasing convex jirrzction on [0, z), icith 
F(0) = 0, and let p he as in Theorem 2. Then jbr ever?’ Lipschit: continuous 
function f and ever?’ Bore1 set A G R, 

I J'IOfWGj W?f*l 4. (15) 
/-‘IA, /*-‘(Al 

Proof It s&ices to prove the theorem for A an interval [a, 61. Let 

t,,=a+b(h-a), i = 0, . . . . n - 1 

denote the points partitioning [a, 61 into n intervals of length (b - a)/n, 
and let I,.[ denote the associated intervals 

z if i#n- 1, 
n. I if i=n-1. 

By Jensen’s inequality, 

(16) 

Since p(f -‘(In,,)) = p(f * -‘(In.,)) and F is increasing 
Theorem 3 that 

we conclude from 

>F ( 1 

P(f*-v"J s /*+'(I",J 'Of*/ dp > . (17) 

Let F,,(y) denote the simple function on f * -‘[a, b] whose value is equal 
to that of the right side of inequality (17) when y ES* -‘(I,,,). Combining 
(16) and (17) we see that 

s 
F(;(DfI)dp2liminf 

f-‘[u.hl n-r rn f*-‘Lo,*, FJy)ddy) I 

B s lim inf Fn( y) dp( y) 
/*-‘[o,b] n-E 

by an application of Fatou’s lemma. 

(18) 
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Now suppose that y E J=f * -l(x), where J is an interval. Let 
K n,xr n= 1,2, . . . denote the sequence of intervals I,,, containing x. Then 

since f * is flat on J. Therefore, since F is continuous and F(0) =O, 
lim inf, _ 1. F,(y) = 0 in this case. 

Suppose on the other hand that 4’ =f*-‘(x) identically; that is, that 
f* -l(x) consists of the single point y. Again, let K,,, denote the sequence 
of intervals I,,, containing x. Since cp is uniformly continuous on compact 
sets and lDf*l is essentially bounded, 

lim inf Fn( y) = F lim inf 
1 

s lDf*l& n-r, n--r'r~ /4f*-'W,,.x)) /-VK,,,) 

= F(lDf*(~)l) 

for p-almost all such y, according to Lebesgue’s differentiation theorem. 
This concludes the proof of the theorem. 

COROLLARY 3. Let p and F be as in Theorem 4. Then for every 
nonnegative Bore1 measurable function G and every Lipschitz continuous 
function f, 

j(G~.fMl~flbG~ j(Gof*)F(IDf*)&. (19) 

Note that because G is Bore1 measurable, G of and G of * are both 
measurable functions. 

Proof. If G is a simple function, then the corollary follows immediately 
from Theorem 4. In the general case we approximate G by a sequence of 
nonnegative Bore1 functions G, /1 G, and apply the monotone convergence 
theorem. 
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