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We consider monotone decreasing rearrangement with respect to the finite
measure du(x) = ¢(x) dx on R, where ¢ is a strictly positive, symmetric decreasing,
log-concave function. © 1990 Academic Press, Inc

1. INTRODUCTION

The study of monotone equimeasurable rearrangements was initiated by
Hardy and Littlewood [9] in the course of their work on fractional
integrals. For a good introduction to the general subject of rearrangements,
see the monograph of B. Kawohl [10].

Monotone decreasing rearrangements with respect to a Gaussian
measure were studied by A. Ehrhard [5, 6]. In reference [11] M. Ledoux
found an interesting application to the logarithmic Sobolev inequality of
L. Gross. The purpose of this paper is to extend known rearrangement
inequalities to a broad class of finite measures containing the Gaussian

measure.

2. PRELIMINARIES

Let u be a finite Borel measure on R. The distribution function p, of a
real-valued Borel measurable function f is defined for xeR by

pr(x)=p{yeR:f(y)>x}. (1)

It is immediate that u, is a decreasing right-continuous function with
left-hand limits everywhere. We assume throughout that functions are finite
p-a.e. Hence p(x) 7~ u(R) as x N —oo, and pr(x) ~ 0, as x » oo.
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ProposiTION 1. Let f, g, f, (n=1,2,..) be a real-valued Borel
measurable functions. The distribution function has the properties:

1. f<g p-ae. implies ;< pi,;
2. f. 7 fu-ae implies p, 7 ;.

Proof. Property 1 follows directly from the definition (1). Property 2 is
an easy consequence of the monotone convergence theorem.

Now suppose that u has no pure point support. The monotone decreasing
rearrangement f* of a Borel measurable function f with respect to the
measure u is defined for xeR by

S*(x)=inf{yeR: p(y)<p(—o0, x)}. (2)

We summarize some of the properties of /* now.

PropoSITION 2. Let f, g, f, (n=1,2,..) be real-valued Borel measurable

functions. The monotone decreasing rearrangement f* is a decreasing,
right-continuous function on R. Furthermore,

1. f<g u-ae. implies [* <g*;

2. f, 7 f u-ae. implies f¥ ~f*,

3. if f, (n=1,2,..) denotes the sequence of lower-cutoff functions
fv(—=n), then f¥ N f*;

4. fand f* are p-equimeasurable.

Proof. Clearly f* is decreasing. Since x> u(~—o0, x) is a continuous
increasing function, f*(x) is right-continuous in case the decreasing
function

F*(x)=inf{yeR: pu(y) < x}

is right-continuous on the interval [0, u(R)). Note that u (F*(x))<x,
owing to the right-continuity of u,. Now let z=lim, .+ F*(x), and
suppose that z < F*(x,); then us(z) > x,, by the definition of F*. On the
other hand, using the fact that u,is decreasing,

H(z) < lim p(F*(x)) < lim x=x,,

which is a contradiction. Therefore lim, _, .+ F*(x)= F*(x,), establishing
the right-continuity of f*.

If f<g p-ae, then u,< p,. It follows from definition (2) that p, < p,
implies f* < g*. This establishes statement 1. Similarly, if f, » f u-ae., then
Uy, 7 pe, which implies that £* ~ f*. This establishes statement 2.
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Next we show that fand f* have the same distribution function. Since
f* is a decreasing right-continuous function, we know that for each yeR,
there exists some z,€ R such that {zeR:/*(z)>y}=(—o0, zy). We have
[*(z4) <y automatically. Hence

llf(}') < p(f*(z0)) S p(— 00, zg),

in which the second inequality follows from the definition of f* and the
right-continuity of p, Suppose now that pu.(y)<u(—o0,z,). Then there
exists some wq <z, such that u,(y)=u(— o0, wy). Consequently,

S*(wo) =inf{zeR : py(z) < p(— 00, wo)}
=inf{ze R : u(z) <pr(p)}
<,
which is a contradiction, since f*(z)>y for all ze(— o0, zy). Therefore
He(¥) = pl— 00, 20) = ppe(y).
Finally, statement 3 is clear in case f is lower-bounded. Otherwise, we
note that f*=f* on the interval (—o0, x,), where x, is defined by
u(— o0, x,) = us(—n). Since fis finite p-ae., x, - 00 as n - .

3. SOME PROPERTIES OF THE REARRANGEMENT

Next we follow G. Chiti [2] in showing that the *-operation is non-
expansive in certain Orlicz spaces. For a good reference on Orlicz spaces,
rearrangements, and related topics, see [1]. Let F be an increasing convex
function on [0, o), with F(0)=0. The Orlicz space L(R, du) consists of
the real-valued functions on R such that

Eir,r>0:f <lf(x)l)d( )< o0

i1t {r>0: [ £ (L) iy <.

Since f'and f* share the same distribution function, || f|| = || f*| s. Of par-
ticular concern is the case of L”(R, du) spaces, corresponding to F(x) = x*.
First we recall a lemma used by Chiti.

with the norm

LeMMa 1. Let F(x), x>0, be convex, increasing. If x,=2x,, y,=,,
then

Fllx, = yi) + F1x2 = y2) S F(Ix; = yol ) + Fllx, — v ).
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Proof. The function c(x)= F(|x|) is convex on R. Consequently, for
a,b20, xeR,
cx)—c(x—b)<c(x+a)—c(x+a—b).
The lemma follows by choosing x=x,—y,, a=x,—x,, b=y, —

THEOREM 1. Let F(x), x>0, be convex, increasing, with F(0)=0, and
let f, g be real-valued Borel measurable functions. Then

[ FUr*—g* D duo < [ FUF) gl dux). (3)

Proof. Without loss of generality we may assume that u(R)=1. If fand
g are simple functions of the form

p P
f= Z A X E» g= Z kaEp
k=1 k=1

in which u(E,) is rational for each k, then (3) follows immediately from the
lemma. For f and g bounded Borel functions, there exist sequences f,, » f,
g, 7 g (n=1,2,..) of the form

Pn Pn
= Z an,kXE,,.k’ gn= Z bn,kXE,Lk)

k=1 k=1

such that u(E,,) is rational for each n,k, and such that f, >inf f
g, =>1nf g for all #n. Note that the uniform lower bounds on f,, g, imply the
uniform bound

| fa(x) — gn(x)] < max{|sup f—inf g|, |sup g —inf f|}.

Now using Proposition 2, Fatou’s lemma, and Lebesgue’s dominated
convergence theorem, we have

[ Fr*—g*1) du<tim int [ F(L£2 - g1) d

<lim inf | F(|f,~ g,|) du

= [ FUf~gl) du (4)

For f and g lower-bounded functions we use upper-cutoff approximations
fo=fAn, g,=g A nin argument (4). Finally, for f and g arbitrary Borel
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measurable functions, we use lower-cutoff approximations f,=fv (—n),
g.=g v (—n) and Proposition 2.3 in argument (4).

Now let du(x) = @(x) dx be a finite measure on R given by a continuous,
strictly positive density ¢. Then all previous results extend to Lebesgue
measurable functions. Since the function E(x)=u(— o0, x) is strictly
increasing, its inverse E ' is well-defined on the interval (0, u(R)). If
AcR, r>0, then we define 4, =R to be the set

A,={x+y:xed, |y|<r}

We say that monotone decreasing rearrangement (with respect to p) is
regularizing in case

E lou(A,)Z2E opu(d)+r (3)
for all closed Borel sets A <R and all r > 0.

THEOREM 2. Let du(x)= @(x) dx be a finite Borel measure on R, where
@ is a strictly positive, symmetric decreasing, log-concave function. Then
monotone decreasing rearrangement with respect to u is regularizing.

A. Ehrhard [5] first proved this assertion in the important special case
where p is a Gaussian measure.

Proof. We follow Ehrhard’s method of proof here; see Ref. [5,
Prop. 1.3] for full detail. First, x4 inherits from Lebesgue measure the
property of being regular, so it suffices to prove (5) for 4 a finite disjoint
union of closed intervals. Our task is to prove (5) for 4 a single closed
interval [a, b]; we omit Ehrhard’s inductive proof on the number of closed
intervals.

Equality holds in (5) in the cases a= —o0, b=00, and r=0. The
inequality is also trivial when a=»5, for then the right side is identically
— 0. Therefore we assume that — o0 <a<b < o0 and r>0.

Since ¢ is positive, log-concave, it is continuous; it follows that E and
h(r)=u(a—r, b+r) are continuously differentiable functions. We must
show that

d
EE*lou(a—r,b+r)>1

for all r> 0. The derivative is easily calculated:

d
EE”o,u(a~—r,b+r)

=Lo(E 'opta—r,b+r)]"" [pla—r)+olb+1)],
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so we must show, equivalently, that for all —c0 <a<b< o0,
e()<ola)+o(b), where t:=E 'ou(a,b). (6)

Suppose that 0<a<b< . In this case pu(a, b)<p(a, ), so that by
symmetry < —a, and thus ¢(t)<@(a). The case —c0<a<b<0 is
similar. Now suppose that a <0 < b. We define the function

®(a)=o¢(1p(a)) —@la), ae(—0,0)

Here t,(a) := E"'ou(a, b). Asa \ — o0, ®(a) - ¢(b); we want to show that
P(a)< @(b) for all a<0. Since ¢ is strictly positive, log-concave, it is
differentiable almost everywhere, with left and right derivatives uniformly
bounded on compact sets. It follows that @ is absolutely continuous on
finite intervals, so we can write for c<a <0

®(a) = B(c) +j (x) dx. 7)

Now we have p-a.ec.
d
&)= ¢'(1,() T2 9'(x)
o(x)
o(ty(x))

Since ¢ is symmetric, log-concave, the condition

P (x))  @'(x)
o) o)

is equivalent to the condition ¢,(x)+x<0. Suppose first that
u(x, b) < 3u(R). Then #,(x) <0, so that t,(x)+ x <0. Suppose next that it
is possible to decrease x until 7,(x)= —x. Then

= —¢'(t,(x)) ———=—0'(x).

H(— 0, t(x)) = p(x, b),  or
#(— 00, x) + p(x, 1,(x)) = p(x, t,(x)) + p(t4(x), b)
m(— o0, x)= p(t,(x), b)
p(— o0, x) + plx, 0) = p(t,(x), b) + p(x, 0)
u(—00, x) + p(x, 0) = p(ty(x), b) + u(0, 1,(x))  (by symmetry of @)
p(— o0, 0)=p(0, b)

which is impossible since ¢ is strictly positive.

bl
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We have shown that @'(x) <0 for all x<0. From (7) we conclude that
@D(a) < D(c) for all ¢ <a. Letting ¢ - — o completes the proof.

In Ref. [6] Ehrhard deduced several consequences of the regularizing
property of a rearrangement, one of which we state below as a corollary.
First we need some notation. Let 4 <R be a Borel set, and let y, be the
characteristic function of 4. We define &(A4) to be the open interval
{x%5>0} =(—o0, E 'cu(A)). Clearly, if AcB are Borel sets, then
F(A)y= F(B). Now let f be a measurable function. Since f and f* are
p-equimeasurable, F{f>t]=F{f*>¢t}={f*>t}. In terms of the
S-operation, inequality (S) is equivalent to the inequality u(A,)>=
u((£A4),).

COROLLARY 1. Let u be as in Theorem 2. Then monotone decreasing
rearrangement with respect to |t reduces the Lipschitz constant of a Lipschitz
Sfunction.

Proof. Suppose the corollary is false for some Lipschitz continuous
function f having Lipschitz constant L; that is

L= sup L=/
xEY 'X'_VI

while there exist x,, x, &R such that
SEx) + L lxy — xof <f*(xy).
Then there exist 7,, £, € R such that

F¥x)+ Lx = x,0 <t + Lx; —x,) <t <f*(x,). (8)
Let r=|x, — x,|. We note that
{f>6)>{f>1},. 9

(Otherwise, there exist x, z, |z{ <r, such that f(x)>¢,, while f(x +z)<t,.
Then |f(x)—f(x+2z)|>Lr, which contradicts the hypothesis on f)
Applying & to both sides of inclusion (9),

F{f>ti>2L({ >0l )= {/*>n>{/*>1},.

since L({f>1,},)2(F{f>1,}), according to inequality (5). This
inclusion says that if f*(x)>¢, and |z|<r, then f*(x+2z)>t,. In
particular, f*(x,)> t, implies f*(x,) > t,, which contradicts (8).

COROLLARY 2. Let A be a closed Borel set such that u(6A4)=0. Then we
have for all r 20 the boundary inequality

u((04),) = p((0F 4),). (10)
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Proof. We express (0A4), as the disjoint union
(04), =(4\A) U ((~A)\~A) v oA.
Here the sign ~ means complement. Taking measures,
u((04),) = u(A,) — u(4) + p((~ 4),) — p(~ 4).

According to the remark preceding Corollary 1, u(4,)>u({(¥A4),) and
u((~4),) = u((F(~A4)),), so we are finished if we show that

(L (~A)),)=u(~F4),) (11)
u~A)=p(~ZLA). (12)

By symmetry of ¢, (11) is true if and only if u(F(~A4)) = u(~LA). Note
that ~¥ A=~ %4, since ¥4 is open. Now

F(~A)=F(~AVI~A)=F(~AUVIA)=F(~A),
so that s
WL (~A)) = p(F(~A))=p(~4),
while
W~FAy=p(~FA4)=p(R)~ (L A)y=u(R) — u(A) = u( ~ A).
This establishes (11). In the course of the proof we saw that

W~FA) = p(~FA) = p(~ A) = p(~ 4 U d4) = p(~ A),
establishing (12).

4. REARRANGEMENT INEQUALITIES FOR THE DERIVATIVE

The inequalities established in this section are similar to those found in
{3,4] concerning monotone rearrangement with respect to Lebesgue
measure on an interval. The method of proof of the following theorem is
implicit in a paper by M. Ledoux [11]. Using a version of Theorem 3 in
the case where p is a Gaussian measure, Ledoux derives the logarithmic
Sobolev inequality of L. Gross [8].

THEOREM 3. Let f be a Lipschitz continuous function, and let u be as in
Theorem 2. Then for every Borel set A<R,

[ ipftdu>|  1pf*du (13)
f-1l4) -4
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Note that according to Rademacher’s theorem (see [7, Sect. 3.1]), the
derivative of a Lipschitz function is an essentially bounded Borel
measurable function. Hence, by Corollary 1| both sides of (13) are finite.

Proof. 1t suffices to prove the theorem for the case in which A4 is an
interval [a, b]. Since f is Lipschitz, so is the function f,, :=(fVv a) A b.
Clearly

| Dfidu=] Dl d
tab] R

and

[ pride={ ID(/*) 0l du=[ |DfH) du
[*~a,b] R R

Hence, without loss of generality we may take the domain of integration in
(13) to be R.

According to the simple one-dimensional version of the Hausdorff area
formula (see [7, Theorem 3.2.3]

[ina=[( % ot)ar (14)

xef " y)

Let f, denote the approximation

f(n), if x>n,
Sulx) =1 f(x), if —n<x<n,
f(-n)’ if X< —n.

This approximation scheme has the property that if ysf(+tn), then
/7 (y) = (—n, n); furthermore, if

Y olx)<w,
xefy o
then the sum is over a finite set {x,}”, = (—n, n). We have in this case

=z 1
Z (p(xl): Z lln’z) 5;#({xl}f)
-1

1=1

1
=}er55;u({f;‘(y)},)

1
= 1 —_ l
,hf% % w((B{fu=y 1))
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Since f is continuous, the set {f,>y} is closed, so that according to
Corollary 2

.1 .1 .1
lim == w(2{/, > ¥}),) > lim = p(@5 £, > y}),) = lim = (312> 7},

Now a{f¥zy}=E 'ou{f,>y}, so that

!
rhg});u((@{f: ZyD =@ E ' op{fyzyl=@-E 'op{f,>y}

in which the last step uses the fact that {f, =y} is a p-null set. Inserting

this result into the Hausdorff area formula, we obtain

[ 1Dfl duz[ 0o E~topif, >y} dy.

By the monotone convergence theorem,

tim [ Df,|du=1Df| du,
so that
[ 1Df1 duztimint [ g E-'op{f, >y} dy

;jlim inf o E~'op{f,>y}dy

n— 0

=[oo B oulf>y) ay,

in which we have applied Fatou’s lemma in the second inequality. Now we
apply the Hausdorff area formula (14) to the Lipschitz continuous function
SfrIf

Y elx)<oo,

xef*Y»)

then the sum is over a single term

x=E~lop{f*>y}=E"'op{f>y}.
Thus

[1Dr*1au=[ B touis>y} dy,

which completes the proof.
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The following theorem is stated in [6] for the special case of 4 being a
Gaussian measure.

THEOREM 4. Let F be an increasing convex function on [0, 20), with
F(0)=0, and let u be as in Theorem 2. Then for every Lipschitz continuous
function [ and every Borel set AR,

[ Fupfyaw=|  FuDf*1du (15)
1744 A}

P
Proof. 1t suffices to prove the theorem for 4 an interval [a, 5]. Let
i

denote the points partitioning [a, b] into #n intervals of length (b—a)/n,
and let I, , denote the associated intervals

_{[tn.n tn.l+l] lf l?én— 15
(tyn 6] if i=n—L

n.

By Jensen’s inequality,

1
_— F(IDf|) d
Ty, FIPID
1
>F<ll(f‘l(1n.,)) ff*‘un‘,; 1271 du). (16)

Since p(f~'(1,.))=u(f*"'(1,,)) and F is increasing we conclude from
Theorem 3 that

1
Fl ———— Df| d
<}1(fAI(In,,)) L“l(ln.,) = ”>

1
=2F (——_———— Df*| d ) 17

KT ey 4
Let F,(y) denote the simple function on f*~'[a, b] whose value is equal
to that of the right side of inequality (17) when y e f* ~!(1,,). Combining
(16) and (17) we see that

[ F(DS1) du>lim inf | Fo(y) du(y)
£ La.b] n—0 Jex-lig b]

;j lim inf F,( ) du()) (18)
.

*“ab) n—o

by an application of Fatou’s lemma.
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Now suppose that yeJ=f*"'(x), where J is an interval. Let
K, ..n=1,2, .. denote the sequence of intervals 7, , containing x. Then

1 1
liminf, |,  ————— Df*ldu=——| |Df*| du=0,
" u(f* I(Kn,x)) * WKny) l f | # ﬂ(']) J~J| f | K

since f* is flat on J. Therefore, since F is continuous and F(0)=0,
liminf, _, , F,(y)=0 in this case.

Suppose on the other hand that y=f*"'(x) identically; that is, that
f*~1(x) consists of the single point y. Again, let K, . denote the sequence
of intervals I, , containing x. Since ¢ is uniformly continuous on compact
sets and |Df*| is essentially bounded,

1
fim inf F, () = F(lim e
m inf £, (y)=F{ i il ik, ) wa

= F(IDf*(»N)

1071 du)

for p-almost all such y, according to Lebesgue’s differentiation theorem.
This concludes the proof of the theorem.

COROLLARY 3. Let u and F be as in Theorem 4. Then for every
nonnegative Borel measurable function G and every Lipschitz continuous
Sfunction f,

[ (Gef)FUDSI) du> [ (Gof*) FUDS*) du. (19)

Note that because G is Borel measurable, Gof and G-f* are both
measurable functions.

Proof. 1f G is a simple function, then the corollary follows immediately
from Theorem 4. In the general case we approximate G by a sequence of
nonnegative Borel functions G, » G, and apply the monotone convergence
theorem.
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