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Lambek and Michler [7] and Jategaonkar 14, 5] have studied a notion of 
localization at a semiprime ideal I of a left Noetherian ring R. The purpose 
of this paper is to extend certain of their results to rings R satisfying only the 
condition that R/I is a left Goldie ring, which includes all rings with Krull 
dimension on the left. Throughout the paper, R will be an associative ring 
with identity and I will denote a (two-sided) ideal of R. If c is the largest 
torsion radical such that R/I is a-torsionfree, determining the ring of 
quotients R, , then Theorem 3 gives necessary and sufficient conditions under 
which R, s I is the Jacobson radical JR,) of R, and R,JJ(R,) is semisimple 
Artinian. In this case, R,/J(R,) is isomorphic to the classical left ring of 
quotients of R/I. Theorem 6 gives conditions under which R, is an Artinian 
classical left ring of quotients of R. 

Recall that a torsion radical u of R-Mod assigns to each module ,M a 
submodule u(M) such that g(M/o(M)) = 0 and o(M’) = NI’ n o(M) for ali 
submodules M’ C M and moreover, such that f (o(M)) _C u(N) for any 
f E Hom,(M, Iv). The module &i’ is called n-torsion if u(M) = M and 
cr-torsionfree if o(M) = 0 and the left ideal A of R is called o-dense if R/A 
is o-torsion and o-closed if R/A is o-torsionfree. The u-closure 2 of the left 
ideal A C R is the intersection of all cT-closed left ideals that contain A; 
note that &A = o(R/A). The set of o-dense left ideals of R characterize CT 
since m E o(M) if and only if am = 0 for some a-dense’ left ideal D, or 
equivalently, if and only if Ann(m) = (r E R 1 rrn = 0) is u-dense. 

A torsion radical o is larger than a torsion radical 7, denoted (T 2 7, if 
o(M) 2 7(M) for all lV E R-Mod. The largest torsion radical LS for which AX 
is o-torsionfree is given by o(M), = rad,(,)(M) = (m E M ) f(m) = 0 for all 
f E HomdM, -fV))h w h ere E(X) is the injective envelope of X. For the 
torsion radical p = radEtR. , a-dense will be abbreviated to dense, 
o-torsionfree to torsionfree, etc. If I is an ideal of R and the left ideal A 2 I is 
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rad,(,,,)-dense in R, then Hom,(R/A, E(R/I)) = 0 implies Horn&R/A, 
E(BllR/I)) = 0, since the injective envelope E(&R/I) of R/I in R/I-Mod is 
{x E E(R/I) [ Ix = 0) and so A/I is dense in R/I. 

For an ideal I of R, let C(I) = (c E R j cr E I or rc E I implies r E I}. Thus, 
C(I) denotes the set of elements of R whose images are regular in R/I. The 
module RM is said to be C(I)-torsion if for each m E &I there exists c E C(I) 
such that cm = 0, and then a torsion radical rad,W can be defined for any 
module M by letting rad,c,)(M) be the sum in &I of all C(I)-torsion sub- 
modules. Thus, radc(r,(M) = (m E &I j Rm is C(I)-torsion). To show that 
rad,(,l is in fact a torsion radical, we note that if rad,(~)(M/rad,(,)(M)) f 0, 
then there exists m E N such that m $ rad&M), but given r E R, there exists 
c E C(I) such that crm E rad&M). But then there exists c’ E C(I) such that 
c’crm = 0 and since c’c E C(I), this implies that m E rad,0)(M), a contra- 
diction. The remaining conditions follow easily from the definition since a 
submodule of a C(I)-torsion module is again C(I)-torsion. Observe that &I 
is rad,(,)-torsionfree (or simply C(I)-torsionfree), if for each 0 # m E M 
there exists r E R such that Ann(rm) n C(I) = o and so, in particular R/I is 
C(I)-torsionfree and, therefore, ra$(,,,) 3 rad,(,) . If R satisfies the left 
Ore condition with respect to C(I), that is, if for each c E C(I) and Y E R 
there exists c’ E C(I) and Y’ E R such that r’c = C’Y, then for all 
n/ir E R-Mod, rad&M) = ( m EM 1 cm = 0 for some c E C(I)). Note that 
this condition holds if and only if R/Rc is C(I)-torsion for all c E C(I), or 
equivalently, if and only if the elements of C(I) are not zero-divisors on 

-wo 

PROPOSITION 1. If every dense left ideal of R/I contains a regular element, 
then radEcR,I) = rad,-cl) . 

Proof. Since ‘ad,(r) < rad,u,,, , assume that they are not equal. Then 
there exists a nonzero module RM that is C(I)-torsionfree, but radE(9,1)- 
torsion. By definition of radco) , there exisst m EM such that A n C(I) = ,G 
for A = Ann(m) and then, A + I/I does not contain a regular element of 
R/I, since (A + I) n C(I) = a. Since M is rad,(,,,)-torsion, A and hence 
A + I, are rad,(,,,)-dense in R, and therefore, A + I/I is dense in R/I, 
contradicting the hypothesis. 1 

The condition of Proposition 1 holds if R/I has zero singular ideal and 
every essential left ideal contains a regular element. This includes the 
important case when R/I is a semiprime left Goldie ring. 

Recall that the quotient functor Q0 determined by e is defined for 
M E R-Mod as (X E E(M/a(M)) 1 Dx E M/o(M) for some u-dense left ideal D>. 
Q!,(M) will be denoted by MO. The torsion radical u is called perfect (see 
Stenstrom [SJ) if one of the following equivalent conditions hold: (i) u is 
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hereditary (i.e., QO: R-Mod -+ R-Mod is exact) and every a-dense left ideal 
contains a finitely generated u-dense left ideal; (ii) QC is naturally isomorphic 
to R, OR-- ; (iii) every RR,-module is u-torsionfree; (iv) R, . D = R, for all 
u-dense left ideals D C R. 

If 0 is perfect, then for any left ideal A C R, A, is naturally isomorphic to 
R, OR A, which may be identified with R, . A CR, . Furthermore, in this 
case there is a one-to-one correspondence between u-closed left ideals of R 
and left ideals of R, . 

LEMMA 2. Assume that R/I satisjies the left Ore condition and that 

rad,([) = radEfR,b = u. 

(a) I f  o is hereditary and I, is an ideal of R, , thea R,lI, N Q&R/I), 
where Qcl denotes the classical left ring of quotients. 

(b) I, = JR) and %IJ(RJ is semisimple Artiniun if and only ~3 R/I is 
a semiprime left Goldie ring, (T is perfect, and I, is an ideal of R0 . 

Proof. (a) Applying o to the exact sequence 0 -+ I + R -+ R/I ---t 0 
yields the exact sequence 0 -+ I, -+ RR, -+ (R/I), , so R,jIU C (R/I&, with 
equality if Q0 is exact. The proof of Lemma 2.3 of Lambek and Michler (71 
then shows that R,,/& C Q&R/I) C (R/I),, since u = rad,(,) . 

(b) As in the proof of part (a), R,/I* C (R/I), C E(R/I) and if I, = JR,) 
with R,/J(R,) semisimple Artinian, then E(R,M) contains an &morphic copy 
of each simple R,-module, so that E(R/I) is a cogenerator for &-Mod. Wence, 
every R,-module is o-torsionfree, and (r is perfect. By part (a), 
Q&R/I) N RJI, is semisimple Artinian and SO R/I must be a semiprime left 
Goldie ring. 

Contrersely, by part (a), R,/I, N Q&R/I) is semisimple Art&an since R/I 

is a semiprime left Goldie ring, and thus I, I J(R,). On the other hand, since 
o, is perfect, .E(R/I) = E(R,/I,) must .contain an isomorphic copy of each 
simple R,-module since every R,-module is o-torsionfree. Therefore, 
1, C JR,), since I, annihilates each simple R,module. # 

THEOREM 3. Let I be a semiprime ideal such that R/I is a left @oldie h... 
Then, the following conditions are equivalent fQr v = rad,(,,,, . 

(1) IV = JR,) and R,/J(R,) is semisimple Artinian. 

(2) IT is an ideal of R and LT is perfect. 

(3) R sati@es the left Ore condition with respect to C(I) and for each 
CE C(I), there exists r E R suck that rc E C(I) and such that for each a E R 
with arc = 0 there exists c’ E C(I) such that c’m = 0. 
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Proof. (1) if and only if (2) is Lemma 2(b). (2) implies (3): since R/I 
is a semiprime left Goldie ring, g = radco) and Rc + I/I is o-dense in R/I 
for all c E C(I), and so Rc + 1 is u-dense for all c E C(1). Therefore, 
R, . c + I, = R,(Rc + 1) = R, since u is perfect, and since I, = J(R,) by 
condition (I), R0 = R, . c = R, . Rc, which shows that Rc is o-dense. Thus, 
R satisfies the left Ore condition with respect to C(l). The second part of 
condition (3) holds by Proposition 15.3 of Stenstrom [S] since o is perfect, 
(3) implies (2): by [S, Proposition 15.31, 0 is perfect. An easy computation 
using [S, Proposition 15.21 to describe R, shows that 1, = R, . lis an ideal. v 

If R is left Noetherian, then 0 is perfect if and only if it is hereditary and 
condition (3) holds if and only if R satisfies the Ore condition with respect to 
C(1). Thus, Theorem 3 reduces to Theorem 2.7 of Lambek and Michler [7]. 
Lambek and Michler [6] g ive an example of a left Noetherian ring and a 
prime ideal I, where condition (3) fails to hold; on the other hand an easy 
argument, using the fact that a matrix is regular if and only if its determinant 
is also, shows that condition (3) holds for any ideal in a matrix ring over a 
commutative ring. 

COROLLARY 4. Qcl(R) exists and Q&R)/J(Q&R)) is sem&imple Artinian 

if and only if there exists a semiprime ideal I of R such that R/I is a left Goldie 
ring, C(I) = C(0) and R satisfies the left Ore condition with respect to C(I). 

Proof. Since C(I) = C(O), th e conditions are sufficient by Theorem (3). 
Conversely, if Q = Q&R), J = J(Q) and Q/J is semisimple Artinian, then 
RI J n R is a left order in Q/J(Q) and so RI J n R is a semiprime left Goldie 
ring. The remainder of the proof follows as in [7, Corollary 2.81. 1 

The following proposition gives conditions under which the rings of 
Theorem 3 satisfy an Artin-Rees type of property. 

PROPOSITION 5. Let I be a semiprime ideal of R that satisjes the conditions 
of Theorem 3. Then for each left ideal A of R, , there exists a positive integer n 
such that A n (J(R,))” _C J(R,)A if and only if for each left ideal A of R there 
exists a positive integm n such that A n F _C IA. 

Proof. Since 1, is an ideal of R, and (J is perfect, .&a = &RJ = &I = 
R,II = (F), and this extends to any finite product of I. If A is a left ideal of R, 
then by assumption, A, n (I%),, = A, n (I,)n _CI,A, = I,ROA = R,IA = (IA), 
for some positive integer n. Using the one-to-one correspondence between 
closed left ideals of R and ideals of_R, , which preserves finite intersections 
and inclusions, A n fiz C A n F _C IA. 

Conversely, if A is a left ideal of R, , then the inverse image +(A) of A 
under the induced ring homomorphism rr: R --j R, is a c-closed left ideal of R. 
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-- 
Then there exists a positive integer n such that n-r(A) n p C I . V--~(A). But 
since Qo(~-r(A)) = A, this implies that B n (I%), = A n (IO)” C 
RJ . r-‘(A) = IuRo?7-1(A) = I&l. 1 

THEOREM 6. Let I be a semiprime ideal and let v  = radE(R,I) , with 
K = o(R) = Ann(E(R/I)). Then R, is a 1eft‘Artinian classical ring of fractions 
of R with respect to C(I) if and only if 

(i) Is C K for some positive integer k (assume I”-l$ K), 

(ii) R/I and R/K are left Goldie rings, 

(iii) R/(T E R j Ilnr !L K) has finite uniform dimension for all integers 
1 < m < k, and 

(iv) for each r E R and c E C(I), YC = 0 implies there exists c’ E C(I) 

such that c/r = 0. 

Proof. Assume that R, is a left Artinian classical ring of left fractions with 
respect to C(I). Since R, is a partial classical ring of left quotients of R/K, 
it follows that R, = Q&R/K), since R, is left Artinian. Hence, (ii) and (iii) 
follow from Small’s theorem. (See Hajarnavis [2].) By Proposition 15.7 of 
Stenstrom 181, condition (iv) holds, and thus the conditions of Theorem 3 are 
satisfied, since R must satisfy the Ieft Ore condition with respect to C(I), 
But then Rd = I,, = J(R,) is nilpotent and so I” C o(R) = K for some 
positive integer k. This shows that (i) holds and moreover, that I/K is the 
prime radical of R/K. 

Conversely, rad,(,,,) = rad,(,) since R/I is a left Goldie ring, and so each 
element of C(I) is left regular module K = rad,Q(R). To show this, let r E R 
and c E C(I) and assume that rc E K. Then for each s E R, there exists c’ E C(I) 

such that C’SYC = 0, so by condition (iv} there exists c” E C(I) such that 
c”csr = 0, so that r E K. 

To show that R satisfies the left Ore condition with respect to C(I) it 
suffices to show that R/Rc is C(I)-torsion for all c E C(I). Let IO = K and 
Im =(r~RjI”rCKZ,sothatI, = R.IfrcE:I,forrERandcEC(I),then 
Imlr”rc C K, and since c is left regular modulo K, Imr L K and hence, Y E I, . 
Thus, each element of C(I) is left regular module I, and so, I, n .&c = &c 
for 0 < m < k. 

Now for 0 < m < k, I,+1 Z I, + I,+lc > Im+&c and I, + Im+l~/Im+l~ N 
IJIm n I,,lc = I,/I,c. Thus, to show that Im+l/Im+lc is u-torsion, it suffices 
to show that both Im+Jl;n + I,,c and &,JInzc are u-torsion, so that RIRc is 
u-torsion if Im+,/Ina + I m+l~ is u-torsion for 0 < m < k (I,/& = K/Kc is a 
factor of K = a(R) and so it must be u-torsion). 

Let x E I,,, , and let A = (r / YX E& + Im+E+lc). If A/I is essential in R/I, 
then since R/I is a semiprime Goldie ring, there exists c’ E C(I) such that 
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c’ E A and &.,/I, + I,,,c will be u-torsion. Accordingly, to show that A/I 
is essential in R/I, let Y E R and Y $ A. Then TX I$ I, , since rx E .l, implies 
that T E A and so 0 # TX + I* and I,+,c + IJIm is essential in Im+JIm 
since c is left regular modulo ir, and R/I,,, is, by assumption, finite-dimensional. 
Thus, there exists s E R such that SYX ~I,+rc + I, , but SYX 4 I, . Now 
SY E I implies that PSYX _C Im+lx*_C K, a contradiction. Thus, SY 6 I and A/I 
is essential in R/I. 

Since it has now been established that R satisfies the left Ore condition 
with respect to C(I), if CY E K for T E R, c E C(I), then there exists c’ E C(I) 
such that c’cr = 0, so Y E K. Thus, C(l) C C(K) and since I” C K, I/K is the 
prime radical of R/K, and thus R/K satisfies the hypothesis of Small’s 
theorem as presented in [2]. It follows that C(I) = C(K) and thus, 
R, = Q&R/K) is left Artinian. i 
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