JOURNAL OF ALGEBRA 38, 309-314 (1976)

Localization at Semiprime Ideals

JOHN A. BEACHY* AND WILLIAM D. BLAIR

Department of Mathematical Sciences, Northern Illinois University, DeKalb, Illinois 60115

Communicated by A. W. Goldie

Received July 22, 1974

Lambek and Michler [7] and Jategaonkar [4, 5] have studied a notion of localization at a semiprime ideal I of a left Noetherian ring R. The purpose of this paper is to extend certain of their results to rings R satisfying only the condition that R/I is a left Goldie ring, which includes all rings with Krull dimension on the left. Throughout the paper, R will be an associative ring with identity and I will denote a (two-sided) ideal of R. If σ is the largest torsion radical such that R/I is σ -torsionfree, determining the ring of quotients R_{σ} , then Theorem 3 gives necessary and sufficient conditions under which $R_{\sigma} \cdot I$ is the Jacobson radical $J(R_{\sigma})$ of R_{σ} and $R_{\sigma}/J(R_{\sigma})$ is semisimple Artinian. In this case, $R_{\sigma}/J(R_{\sigma})$ is isomorphic to the classical left ring of quotients of R/I. Theorem 6 gives conditions under which R_{σ} is an Artinian classical left ring of quotients of R.

Recall that a torsion radical σ of R-Mod assigns to each module $_RM$ a submodule $\sigma(M)$ such that $\sigma(M/\sigma(M)) = 0$ and $\sigma(M') = M' \cap \sigma(M)$ for all submodules $M' \subseteq M$ and moreover, such that $f(\sigma(M)) \subseteq \sigma(N)$ for any $f \in \operatorname{Hom}_R(M, N)$. The module M is called σ -torsion if $\sigma(M) = M$ and σ -torsionfree if $\sigma(M) = 0$ and the left ideal A of R is called σ -dense if R/A is σ -torsion and σ -closed if R/A is σ -torsionfree. The σ -closure \overline{A} of the left ideal $A \subseteq R$ is the intersection of all σ -closed left ideals that contain A; note that $\overline{A}/A = \sigma(R/A)$. The set of σ -dense left ideals of R characterize σ since $m \in \sigma(M)$ if and only if Dm = 0 for some σ -dense left ideal D, or equivalently, if and only if $\operatorname{Ann}(m) = \{r \in R \mid rm = 0\}$ is σ -dense.

A torsion radical σ is larger than a torsion radical τ , denoted $\sigma \ge \tau$, if $\sigma(M) \supseteq \tau(M)$ for all $M \in R$ -Mod. The largest torsion radical σ for which $_RX$ is σ -torsionfree is given by $\sigma(M) = \operatorname{rad}_{E(X)}(M) = \{m \in M \mid f(m) = 0 \text{ for all } f \in \operatorname{Hom}_R(M, E(X))\}$, where E(X) is the injective envelope of X. For the torsion radical $\sigma = \operatorname{rad}_{E(R)}$, σ -dense will be abbreviated to dense, σ -torsionfree to torsionfree, etc. If I is an ideal of R and the left ideal $A \supseteq I$ is

* Partially supported by NSF Grant No. GP20434.

 $\operatorname{rad}_{E(R/I)}$ -dense in R, then $\operatorname{Hom}_{R}(R/A, E(R/I)) = 0$ implies $\operatorname{Hom}_{R/I}(R/A, E(R/I)) = 0$, since the injective envelope E(R/I) of R/I in R/I-Mod is $\{x \in E(R/I) \mid Ix = 0\}$ and so A/I is dense in R/I.

For an ideal I of R, let $C(I) = \{c \in R \mid cr \in I \text{ or } rc \in I \text{ implies } r \in I\}$. Thus, C(I) denotes the set of elements of R whose images are regular in R/I. The module _RM is said to be C(I)-torsion if for each $m \in M$ there exists $c \in C(I)$ such that cm = 0, and then a torsion radical $rad_{C(I)}$ can be defined for any module M by letting $rad_{C(I)}(M)$ be the sum in M of all C(I)-torsion submodules. Thus, $\operatorname{rad}_{C(I)}(M) = \{m \in M \mid Rm \text{ is } C(I) \text{-torsion}\}$. To show that $\operatorname{rad}_{C(I)}$ is in fact a torsion radical, we note that if $\operatorname{rad}_{C(I)}(M/\operatorname{rad}_{C(I)}(M)) \neq 0$, then there exists $m \in M$ such that $m \notin \operatorname{rad}_{C(I)}(M)$, but given $r \in R$, there exists $c \in C(I)$ such that $crm \in rad_{C(I)}(M)$. But then there exists $c' \in C(I)$ such that c'crm = 0 and since $c'c \in C(I)$, this implies that $m \in \operatorname{rad}_{C(I)}(M)$, a contradiction. The remaining conditions follow easily from the definition since a submodule of a C(I)-torsion module is again C(I)-torsion. Observe that _RM is rad_{C(I)}-torsionfree (or simply C(I)-torsionfree), if for each $0 \neq m \in M$ there exists $r \in R$ such that $Ann(rm) \cap C(I) = \emptyset$ and so, in particular R/I is C(I)-torsionfree and, therefore, $\operatorname{rad}_{E(R/I)} \geqslant \operatorname{rad}_{C(I)}$. If R satisfies the left Ore condition with respect to C(I), that is, if for each $c \in C(I)$ and $r \in R$ there exists $c' \in C(I)$ and $r' \in R$ such that r'c = c'r, then for all $M \in R$ -Mod, $\operatorname{rad}_{C(I)}(M) = \{m \in M \mid cm = 0 \text{ for some } c \in C(I)\}$. Note that this condition holds if and only if R/Rc is C(I)-torsion for all $c \in C(I)$, or equivalently, if and only if the elements of C(I) are not zero-divisors on E(R/I).

PROPOSITION 1. If every dense left ideal of R/I contains a regular element, then $\operatorname{rad}_{E(R/I)} = \operatorname{rad}_{C(I)}$.

Proof. Since $\operatorname{rad}_{C(I)} \leq \operatorname{rad}_{E(R/I)}$, assume that they are not equal. Then there exists a nonzero module ${}_{R}M$ that is C(I)-torsionfree, but $\operatorname{rad}_{E(R/I)}$ torsion. By definition of $\operatorname{rad}_{C(I)}$, there exisst $m \in M$ such that $A \cap C(I) = \emptyset$ for $A = \operatorname{Ann}(m)$ and then, A + I/I does not contain a regular element of R/I, since $(A + I) \cap C(I) = \emptyset$. Since M is $\operatorname{rad}_{E(R/I)}$ -torsion, A and hence A + I, are $\operatorname{rad}_{E(R/I)}$ -dense in R, and therefore, A + I/I is dense in R/I, contradicting the hypothesis.

The condition of Proposition 1 holds if R/I has zero singular ideal and every essential left ideal contains a regular element. This includes the important case when R/I is a semiprime left Goldie ring.

Recall that the quotient functor Q_{σ} determined by σ is defined for $M \in R$ -Mod as $\{x \in E(M/\sigma(M)) \mid Dx \in M/\sigma(M) \text{ for some } \sigma\text{-dense left ideal } D\}$. $Q_{\sigma}(M)$ will be denoted by M_{σ} . The torsion radical σ is called perfect (see Stenström [8]) if one of the following equivalent conditions hold: (i) σ is hereditary (i.e., Q_{σ} : *R*-Mod \rightarrow *R*-Mod is exact) and every σ -dense left ideal contains a finitely generated σ -dense left ideal; (ii) Q_{σ} is naturally isomorphic to $R_{\sigma} \otimes_{R} -$; (iii) every R_{σ} -module is σ -torsionfree; (iv) $R_{\sigma} \cdot D = R_{\sigma}$ for all σ -dense left ideals $D \subseteq R$.

If σ is perfect, then for any left ideal $A \subseteq R$, A_{σ} is naturally isomorphic to $R_{\sigma} \otimes_{\mathbb{R}} A$, which may be identified with $R_{\sigma} \cdot A \subseteq R_{\sigma}$. Furthermore, in this case there is a one-to-one correspondence between σ -closed left ideals of R and left ideals of R_{σ} .

LEMMA 2. Assume that R/I satisfies the left Ore condition and that $\operatorname{rad}_{C(I)} = \operatorname{rad}_{E(R/I)} = \sigma$.

(a) If σ is hereditary and I_{σ} is an ideal of R_{σ} , then $R_{\sigma}/I_{\sigma} \simeq Q_{Cl}(R/I)$, where Q_{Cl} denotes the classical left ring of quotients.

(b) $I_{\sigma} = J(R_{\sigma})$ and $R_{\sigma}/J(R_{\sigma})$ is semisimple Artinian if and only if R/I is a semiprime left Goldie ring, σ is perfect, and I_{σ} is an ideal of R_{σ} .

Proof. (a) Applying σ to the exact sequence $0 \to I \to R \to R/I \to 0$ yields the exact sequence $0 \to I_{\sigma} \to R_{\sigma} \to (R/I)_{\sigma}$, so $R_{\sigma}/I_{\sigma} \subseteq (R/I)_{\sigma}$, with equality if Q_{σ} is exact. The proof of Lemma 2.3 of Lambek and Michler [7] then shows that $R_{\sigma}/I_{\sigma} \subseteq Q_{\rm Cl}(R/I) \subseteq (R/I)_{\sigma}$ since $\sigma = \operatorname{rad}_{C(I)}$.

(b) As in the proof of part (a), $R_{\sigma}|I_{\sigma} \subseteq (R|I)_{\sigma} \subseteq E(R|I)$ and if $I_{\sigma} = J(R_{\sigma})$ with $R_{\sigma}/J(R_{\sigma})$ semisimple Artinian, then E(R|I) contains an isomorphic copy of each simple R_{σ} -module, so that E(R|I) is a cogenerator for R_{σ} -Mod. Hence, every R_{σ} -module is σ -torsionfree, and σ is perfect. By part (a), $Q_{\rm Cl}(R|I) \simeq R_{\sigma}/I_{\sigma}$ is semisimple Artinian and so R/I must be a semiprime left Goldie ring.

Conversely, by part (a), $R_{\sigma}/I_{\sigma} \simeq Q_{\rm Cl}(R/I)$ is semisimple Artinian since R/I is a semiprime left Goldie ring, and thus $I_{\sigma} \supseteq J(R_{\sigma})$. On the other hand, since σ is perfect, $E(R/I) = E(R_{\sigma}/I_{\sigma})$ must contain an isomorphic copy of each simple R_{σ} -module since every R_{σ} -module is σ -torsionfree. Therefore, $I_{\sigma} \subseteq J(R_{\sigma})$, since I_{σ} annihilates each simple R_{σ} -module.

THEOREM 3. Let I be a semiprime ideal such that R/I is a left Goldie ring. Then, the following conditions are equivalent for $\sigma = \operatorname{rad}_{E(R/I)}$.

- (1) $I_{\sigma} = J(R_{\sigma})$ and $R_{\sigma}/J(R_{\sigma})$ is semisimple Artinian.
- (2) I_{σ} is an ideal of R and σ is perfect.

(3) R satisfies the left Ore condition with respect to C(I) and for each $c \in C(I)$, there exists $r \in R$ such that $rc \in C(I)$ and such that for each $a \in R$ with arc = 0 there exists $c' \in C(I)$ such that c'ar = 0.

Proof. (1) if and only if (2) is Lemma 2(b). (2) implies (3): since R/I is a semiprime left Goldie ring, $\sigma = \operatorname{rad}_{C(I)}$ and Rc + I/I is σ -dense in R/I for all $c \in C(I)$, and so Rc + I is σ -dense for all $c \in C(I)$. Therefore, $R_{\sigma} \cdot c + I_{\sigma} = R_{\sigma}(Rc + I) = R_{\sigma}$ since σ is perfect, and since $I_{\sigma} = J(R_{\sigma})$ by condition (1), $R_{\sigma} = R_{\sigma} \cdot c = R_{\sigma} \cdot Rc$, which shows that Rc is σ -dense. Thus, R satisfies the left Ore condition with respect to C(I). The second part of condition (3) holds by Proposition 15.3 of Stenström [8] since σ is perfect. (3) implies (2): by [8, Proposition 15.3], σ is perfect. An easy computation using [8, Proposition 15.2] to describe R_{σ} shows that $I_{\sigma} = R_{\sigma} \cdot I$ is an ideal.

If R is left Noetherian, then σ is perfect if and only if it is hereditary and condition (3) holds if and only if R satisfies the Ore condition with respect to C(I). Thus, Theorem 3 reduces to Theorem 2.7 of Lambek and Michler [7]. Lambek and Michler [6] give an example of a left Noetherian ring and a prime ideal I, where condition (3) fails to hold; on the other hand an easy argument, using the fact that a matrix is regular if and only if its determinant is also, shows that condition (3) holds for any ideal in a matrix ring over a commutative ring.

COROLLARY 4. $Q_{Cl}(R)$ exists and $Q_{Cl}(R)/J(Q_{Cl}(R))$ is semisimple Artinian if and only if there exists a semiprime ideal I of R such that R/I is a left Goldie ring, C(I) = C(0) and R satisfies the left Ore condition with respect to C(I).

Proof. Since C(I) = C(0), the conditions are sufficient by Theorem (3). Conversely, if $Q = Q_{Cl}(R)$, J = J(Q) and Q/J is semisimple Artinian, then $R/J \cap R$ is a left order in Q/J(Q) and so $R/J \cap R$ is a semiprime left Goldie ring. The remainder of the proof follows as in [7, Corollary 2.8].

The following proposition gives conditions under which the rings of Theorem 3 satisfy an Artin–Rees type of property.

PROPOSITION 5. Let I be a semiprime ideal of R that satisfies the conditions of Theorem 3. Then for each left ideal A of R_{σ} , there exists a positive integer n such that $A \cap (J(R_{\sigma}))^n \subseteq J(R_{\sigma})A$ if and only if for each left ideal A of R there exists a positive integer n such that $A \cap \overline{I^n} \subseteq \overline{IA}$.

Proof. Since I_{σ} is an ideal of R_{σ} and σ is perfect, $I_{\sigma}^2 = I_{\sigma}R_{\sigma}I = I_{\sigma}I = R_{\sigma}II = (I^2)_{\sigma}$ and this extends to any finite product of I. If A is a left ideal of R, then by assumption, $A_{\sigma} \cap (I^n)_{\sigma} = A_{\sigma} \cap (I_{\sigma})^n \subseteq I_{\sigma}A_{\sigma} = I_{\sigma}R_{\sigma}A = R_{\sigma}IA = (IA)_{\sigma}$ for some positive integer n. Using the one-to-one correspondence between closed left ideals of R and ideals of R_{σ} , which preserves finite intersections and inclusions, $A \cap \overline{I^n} \subseteq \overline{A} \cap \overline{I^n} \subseteq \overline{IA}$.

Conversely, if A is a left ideal of R_{σ} , then the inverse image $\pi^{-1}(A)$ of A under the induced ring homomorphism $\pi: R \to R_{\sigma}$ is a σ -closed left ideal of R.

Then there exists a positive integer n such that $\pi^{-1}(A) \cap \overline{I^n} \subseteq \overline{I \cdot \pi^{-1}(A)}$. But since $Q_{\sigma}(\pi^{-1}(A)) = A$, this implies that $A \cap (I^n)_{\sigma} = A \cap (I_{\sigma})^n \subseteq R_{\sigma}I \cdot \pi^{-1}(A) = I_{\sigma}R_{\sigma}\pi^{-1}(A) = I_{\sigma}A$.

THEOREM 6. Let I be a semiprime ideal and let $\sigma = \operatorname{rad}_{E(R/I)}$, with $K = \sigma(R) = \operatorname{Ann}(E(R/I))$. Then R_{σ} is a left Artinian classical ring of fractions of R with respect to C(I) if and only if

- (i) $I^k \subseteq K$ for some positive integer k (assume $I^{k-1} \not\subseteq K$),
- (ii) R/I and R/K are left Goldie rings,

(iii) $R/\{r \in R \mid I^m r \subseteq K\}$ has finite uniform dimension for all integers $1 \leq m \leq k$, and

(iv) for each $r \in R$ and $c \in C(I)$, rc = 0 implies there exists $c' \in C(I)$ such that c'r = 0.

Proof. Assume that R_{σ} is a left Artinian classical ring of left fractions with respect to C(I). Since R_{σ} is a partial classical ring of left quotients of R/K, it follows that $R_{\sigma} = Q_{Cl}(R/K)$, since R_{σ} is left Artinian. Hence, (ii) and (iii) follow from Small's theorem. (See Hajarnavis [2].) By Proposition 15.7 of Stenström [8], condition (iv) holds, and thus the conditions of Theorem 3 are satisfied, since R must satisfy the left Ore condition with respect to C(I). But then $R_{\sigma}I = I_{\sigma} = J(R_{\sigma})$ is nilpotent and so $I^{k} \subseteq \sigma(R) = K$ for some positive integer k. This shows that (i) holds and moreover, that I/K is the prime radical of R/K.

Conversely, $\operatorname{rad}_{E(R/I)} = \operatorname{rad}_{C(I)}$ since R/I is a left Goldie ring, and so each element of C(I) is left regular modulo $K = \operatorname{rad}_{C(I)}(R)$. To show this, let $r \in R$ and $c \in C(I)$ and assume that $rc \in K$. Then for each $s \in R$, there exists $c' \in C(I)$ such that c'src = 0, so by condition (iv) there exists $c'' \in C(I)$ such that c''csr = 0, so that $r \in K$.

To show that R satisfies the left Ore condition with respect to C(I) it suffices to show that R/Rc is C(I)-torsion for all $c \in C(I)$. Let $I_0 = K$ and $I_m = \{r \in R \mid I^m r \subseteq K\}$, so that $I_k = R$. If $rc \in I_m$ for $r \in R$ and $c \in C(I)$, then $I^m rc \subseteq K$, and since c is left regular modulo K, $I^m r \subseteq K$ and hence, $r \in I_m$. Thus, each element of C(I) is left regular modulo I_m and so, $I_m \cap I_{m+1}c = I_mc$ for $0 \leq m \leq k$.

Now for $0 \leq m \leq k$, $I_{m+1} \supseteq I_m + I_{m+1}c \supseteq I_{m+1}c$ and $I_m + I_{m+1}c/I_{m+1}c \simeq I_m/I_m \cap I_{m+1}c = I_m/I_mc$. Thus, to show that $I_{m+1}/I_{m+1}c$ is σ -torsion, it suffices to show that both $I_{m+1}/I_m + I_{m+1}c$ and I_m/I_mc are σ -torsion, so that R/Rc is σ -torsion if $I_{m+1}/I_m + I_{m+1}c$ is σ -torsion for $0 \leq m < k$ ($I_0/I_0c = K/Kc$ is a factor of $K = \sigma(R)$ and so it must be σ -torsion).

Let $x \in I_{m+1}$, and let $A = \{r \mid rx \in I_m + I_{m+1}c\}$. If A/I is essential in R/I, then since R/I is a semiprime Goldie ring, there exists $c' \in C(I)$ such that

 $c' \in A$ and $I_{m+1}/I_m + I_{m+1}c$ will be σ -torsion. Accordingly, to show that A/I is essential in R/I, let $r \in R$ and $r \notin A$. Then $rx \notin I_m$, since $rx \in I_m$ implies that $r \in A$ and so $0 \neq rx + I_m$ and $I_{m+1}c + I_m/I_m$ is essential in I_{m+1}/I_m since c is left regular modulo I_m and R/I_m is, by assumption, finite-dimensional. Thus, there exists $s \in R$ such that $srx \in I_{m+1}c + I_m$, but $srx \notin I_m$. Now $sr \in I$ implies that $I^m srx \subseteq I^{m+1}x \subseteq K$, a contradiction. Thus, $sr \notin I$ and A/I is essential in R/I.

Since it has now been established that R satisfies the left Ore condition with respect to C(I), if $cr \in K$ for $r \in R$, $c \in C(I)$, then there exists $c' \in C(I)$ such that c'cr = 0, so $r \in K$. Thus, $C(I) \subseteq C(K)$ and since $I^k \subseteq K$, I/K is the prime radical of R/K, and thus R/K satisfies the hypothesis of Small's theorem as presented in [2]. It follows that C(I) = C(K) and thus, $R_{\sigma} = Q_{CI}(R/K)$ is left Artinian.

References

- 1. J. A. BEACHY, Perfect quotient functors, Comm. Algebra, 2 (1975), 403-428.
- 2. C. R. HAJARNAVIS, On Small's theorem, J. London Math. Soc. 5 (1972), 596-600.
- 3. A. G. HEINICKE, On the ring of quotients at a prime ideal of a right Noetherian ring, *Canad. J. Math.* 24 (1972), 703-712.
- A. V. JATEGAONKAR, Injective modules and localization in noncommutative Noetherian rings, Trans. Amer. Math. Soc., 190 (1974), 109-123.
- 5. A. V. JATEGAONKAR, The torsion theory at a semiprime ideal, preprint.
- J. LAMBEK AND G. MICHLER, The torsion theory at a prime ideal of a right Noetherian ring, J. Algebra 25 (1973), 364-389.
- J. LAMBEK AND G. MICHLER, Localization of right Noetherian rings at semiprime ideals, Canad. J. Math. 26 (1974), 1069–1085.
- B. STENSTRÖM, "Rings and modules of quotients," Lecture Notes in Mathematics, Vol. 237, Springer-Verlag, Berlin/New York, 1971.