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Abstract

The Bieri-Neumann-Strebel invaria®t”™ (G) of a groupG is a certain subset of a sphere that
contains information about finiteness properties of subgrougs &f case of a metabelian grodp
the setz1(G) completely characterizes finite presentability and it is conjectured that it also contains
complete information about the higher finiteness proper&&s,fconjecture). Thex™-conjecture
states how the higher invariants are obtained f&MG). In this paper we prove thE2-conjecture.
0 2004 Elsevier Inc. All rights reserved.

Introduction

Let G be a group and be aK (G, 1)-complex with finite m-skeleton. A character
x :G — R gives rise to a height functioh: X — R on the universal covering of, i.e.,
h is continuous withz(gx) = h(x) + x (g) for all g € G, x € X. The geometric invariant
2™ (G) consists of the set of equivalence classes of characters for which the positive half
h~1[0, o) is essentiallym — 1)-connected, in other words there exigts: 0 such that the
inclusion2~1[0, co) — h~1[d, co) induces the trivial map between thth dimensional
homotopy groups far < m — 1. These invariants originated in the work of Bieri and Strebel
(1980) on finitely generated metabelian groGpehere it was shown that }(G) contains
the information as to whethe¥ is finitely presented. In general ti¥-invariants contain
complete information about the finiteness-type of normal subgroups above the commutator
subgroup [8]. For the definitions of the homological and homotopical finitenessEges
andF,, of groups we refer to [10].
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Although the X-invariants have undergone quite an evolution since 1980 and have
been investigated for many different classes of groups, some fundamental open questions
remain in the metabelian setting. TRE,,-conjecture states thatdf is a finitely generated
metabelian group the&@(G) contains the information as to wheth@ris of typeFP,,.

The X -conjecture says that for such groupg'(G) can be obtained fronE1(G) by
a simple process. In this paper we prove thé-conjecture. Let us first give precise
definitions and statements of the conjectures and our results.

The homological invariante™ (G, M) for a finitely generated grou and aZG-
moduleM were first introduced in [7,8]. By definition

"G, M)={[x]€ S(G) | M is of typeFP,, overZG, }
whereG, ={g € G| x(g) >0} and
S(G) ={[x]1=R-ox | x € Homz(G,R) \ {0}}

is the character sphere of the groGp The homotopical versio” (G) of X" (G, Z)
defined for groupsG of homotopical typeF,, was already given at the beginning of
this section. It was first considered by Renz [23] and was later investigated for different
classes of groups in [19,21]. In general the homotopical invadai{G) is a subset of

the homological invarianE” (G, Z), ¥1(G) = £1(G, Z) and there is a Hurewitz type
formula

T"G)=X"(G,Z)NX*G) form>2.

We identifyR. o X1(G)¢ with {x € Hom(G,R)\ {0} | [x] € Z1(G)¢} via the identification
of £1(G)¢ with the unit sphere ilR” ~ Hom(G, R).

The FP,,-conjecture [3]. A finitely generated metabelian grodpis of type FE, if and
only if

0 ¢ convg,, (R>021(G)C)

where the upper indexdenotes the complement§iG) andconvg,, T denotes the convex
hull of not more thamn elements fronT'.

By the main result of [9] a metabelian group is finitely presented if and only if it
is of type FP; (this is not so in general [2]). This implies that for metabelian groups
the propertied=P,, and F,, are the same. In particular tHeP,,-conjecture suggests a
description of the metabelian groups of typg. For such group&™(G) is conjectured
to be determined only by (G).

The X™-conjecture. If G is a metabelian group of typg,, then

R-0Z"(G)° =R-0X"(G, Z)° = conVg, (R=0Z*(G)°).
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Both conjectures are still open though there is strong evidence that they should hold.
The FP,,-conjecture is more explored and many cases of it have been proved in the last
two decadesn = 2 [9], m = 3 andG a split extension of abelian groups [%], of finite
Priifer rank [1], the torsion analogue of Aberg’s result [11,16]. In all these cases the proofs
have geometric flavour and rely on builditg — 1)-connected CW-complexes on which
G acts cocompactly with polycyclic stabilizers. The ‘only if’ part of thE,,-conjecture
seems to be easier than the ‘if’ part, it is established in the case @heran extension
of abelian groupa/ by Q and either the extension is split 8f is of finite exponent as
abelian group [16,22].

Recently more work was done on tB#’-conjecture. In [19,20] H. Meinert generalises
Aberg’s approach to show that thE”-conjecture holds for groups of finite Prifer
rank. An interesting new approach for groups with sufficient commutativity is suggested
in [13]. It implies that con¢2(R-0Z1(G)¢) C R-0X2(G, Z)¢ € R-X2(G)¢ for finitely
presented abelian-by-nilpotent grougs Recently the inclusion CO@Q(R>021(G)C) C
R-0X2(G)* for finitely presented groups that do not contain free subgroups of rank two
was proved in [18]. In [14] theZ™-conjecture is proved for the class of groups considered
in [16]. Until now the casen = 2 has been known only fa& a split extension of abelian
groups [15]. In this paper we establish thé-conjecture. It will follow as a corollary from
the next result.

Theorem A. SupposeM — G — Q is a short exact sequence of groups with Q
abelian andG finitely presented. Ify is a real non-trivial character ofG such that
X ¢ Conva(R-oZ1(G)¢) then[x] € Z2(G).

As already mentioned the inclusion caR.oX1(G)) € R.oZ?(G) is proved
in [13]. This together with Theorem A implies our main result.

Corollary B. The ¥?-conjecture for metabelian groups holds.

A standardQ, — K (M, 1)-complex is aK (M, 1)-complexX with single 0-cell that
comes with aQ, -action that is free on cells except the O-cell and makgsy) into a
Q,-module isomorphic td/.

Theorem C. Supposé! — G — Q is a short exact sequence of groups with Q abelian
andG finitely presented ang is a real character of5 with x (M) = 0. Then the following
are equivalent

(1) x ¢ conv2(R-0ZH(G)).
(2) There exists a standar@, — K (M, 1)-complex withQ , -finite 2-skeleton.

Theorem C together with the fact that tB&-conjecture holds implies the following
corollary.
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Corollary D. SupposeG is a finitely presented group, an extensionifby Q where
M and Q are both abelian. Therix] € £2(G) if and only if there exists a standard
0, — K(M, 1)-complex withQ , -finite 2-skeleton.

1. Preliminarieson some geometric propertiesof X

Throughout this sectiom is free abelian group of rank. We view Q as the lattice
Z" in the euclidean spad®”, (, ) denotes the scalar productitf and| | is the standard
norm. Hony,(Q, R) is identified withR", wherev € R” corresponds to the homomorphism
sending; € Q = 7" to (¢, v). Under this identificatiols (Q) corresponds to the unit sphere
s lin R".

In this section we review some geometric propertiesofThe first result we quote
shows a link betwee& for modules and their annihilators. A weaker version of Lemma 1
was one of the core arguments in the proof of the fact that 2-tameness implies finite
presentability for metabelian groups [9]. We wrifi, (Q) for £°(Q, M) to be consistent
with the notations from [9,12] and note that f6r a finitely generated group that is an
extension ofM by Q the projectionG — @ induces a bijection betweeB(G)¢ and
25(Q)=5(0)\ Ty (Q), whereM is viewed as a lefZ.Q-module via conjugation.

Lemma 1 [6]. SupposeV is a finitely generated.Q-module. Then there exists a finite
subsetA of the centralizer off in ZQ and some > 0 such that for everyu] € Xy (Q)
there is an elemernt in A with

min{u(q) | g € suppr} > v.

By considering powers of the elementsinwe see that for every > 0 there always
exists a finite setA, with the above properties. We continue with a generalization of
another geometric lemma from [9].

Lemma 2. For everyv > 0 there is a positive integep; (v) such that forx € R" with
x| = p1(v), x/|x| € — Xy (Q) there isk € A, such thatx 4+ supph is a subset of the open
ball with centre the origin and radiulc| — v/2.

Proof. By Lemma 1 there is. € A, with the propertyy (suppt) > v for x = —x/|x|.
Let ¢ be the upper bound of the norms of the elementUpeAU suppu. Then for

Ix| > max{v/2, (c2 — v2/4)/v} andg € supp. we have

Ix 4+ q12 = x12+1g1> = 2Ix|(x, q) < |x|? + c¢® — 2v|x|

2 2
<P+ = -2) .
4 2

This completes the proof.O0
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The next result is a refined version of the obvious observation that if a finite number
of points lie in an open half subspace then they can be translated closer to the origin. We
restrict to the case when the points are in a cone as we want the translation vector to have
integral coordinates.

Lemma 3 [12, Lemma 3.8].Supposes > 0 and v > 0. There exist positive integers
p2(g,v) < p3(e,v) with the following property. Supposk is a finite set inR" and

u € R” such that for every € X of length bigger thams(e, v) we have(u, x) > e|u| |x|.
Then there exists € Z" with length smaller thamz(e, v) and such that fox € X with
x| = p3(e, v)

[x] = |v+x|>v/2

The geometric structure af1(G) for general finitely generated groups could be
really complicated, for exampl&1(G)¢ could have an isolated non-discrete point [7,
Section 8]. This cannot happen for metabelian groups whié(& ) is a rationally defined
spherical polyhedron [4] and hence the discrete poingsinG)© form a dense subset. By
definition a rationally defined polyhedron is a finite uniépu - - - U C; where everyC;
is a finite intersection of affine closed subspaceR’afwheren is the torsion free rank of
the abelianizatiorti /[G, G] and all closed subspaces are given by equations with rational
coefficients. The projection of a rationally defined polyhedron to the unit spffereis
a rationally defined spherical polyhedron, i.e., finite union of finite intersections of closed
half subspheres, where every subsphere is defined by a rational psintlin

Theorem 4 [4]. If G is a finitely generated metabelian groi&;ozl(G)C is a rationally
defined polyhedron, in particulat!(G)® is a rationally defined spherical polyhedron.

We finish this section with Corollary 5 that is an immediate consequence of the
polyhedral structure o&£1(G)¢ and the Bieri-Strebel criterion that a finitely generated
metabelian groups is finitely presented if and only i£1(G)¢ does not contain antipodal
points [9].

Corollary 5. Suppos@f — G — Q is a short exact sequence of groups with O abelian
andG finitely presented ang is a real character of5 such thaty ¢ conv<2(R>o>31(G)“)
and x (M) = 0. Then there exists a positive real numbedepending ory such that for
every two elementsy, x» € X1(G)° there isu € R” (depending omx1, x2, x) with

(u, v)
Jua] ]

>¢ forallve{xy,x2, —x}

Proof. Since con\gz(R>021(G)C) N {0, x} = ¥ we have that every triples, x2, —x lies

in an open hemisphere of H@di, R). Then there exists (depending ornx1, x2, x) such
that (u, v)/(lu| |v]) > O for everyv € {x1, x2, —x}. Furthermore we can choosen such

a way that mifi(u, v)/(Ju| |v]) | v € x1, x2, —x } is as big as possible. Finally the existence
of ¢ comes from the polyhedral structure B (G)¢ and the fact thay is fixed. O
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2. A special subset B(m, zp) of R”
2.1. A generating set fa&

From now on to the end of Section 5 we work on the proof of Theorem A. Assume
x is a real non-trivial character off satisfying the assumptions of Theorem A, i.e.,
X ¢ conv<2(R>021(G)°‘). Furthermore without loss of generality we can assume that
has length 1. By the main result of [17] wheneygM) # 0 we have[x] € X°(G) =
ey 2™ (G). As our aim is to show thdty | € >2(G) we can assumg (M) = 0.

By [19, Introduction] for a general finitely presented graGghe invariant$?(G) is
invariant under taking subgroups of finite index, i.e Hifis a subgroup of; of finite index
then[x] € £2(G) if and only if [x|z] € £%(H). Thus we can assume th@t= G/M is
free abelian and s6 has a generating set

X={a1,...,as,81,...,8n}

whereas, ..., a; generateV as a normal subgroup @f, g1, ..., g, moduloM is a basis
of the free abelian group = G/M. Furthermore we assume that

ggfigjjgi—si gjfejgfl =da(i,jee;g) €A1, ..., as}
for 1< j#i<n, e e; €{£l)andg aword ongi?, ..., g+t of length at most/, where
d is a natural number to be defined in Section 3, just before Proposition 6.

2.2. The construction a8 (m, zg)

As before we identifyQ with the integral latticeZ” in R” and assume; = g1 M, ...,
e, = gxM is an orthonormal basis @®”. Definel (m) to be the halfball ifR” that is the
intersection with the closed ball with centre the origin and raditend the half subspace
R;’@o ={r e R" | x(r) > 0}. By definition B(m, zo) is the union of all closed balls with
radiuszo and centre inl (m). For every two pointw, w in Um}OB(m’ZO) we define
the “distance’d (v, w) to be the smallest non-negative real numiesuch that for some
g€ Qy=1{qe Q| x(g) >0} bothvandw are ing + B(m, zo). Loosely speaking the
functiond will be used as inductive parameter in the main part of the proof of Theorem A,
though we will not strictly refer to it.

From now on we fixe to be the positive real number given by Corollary 5 and set

v=max2yi+4.202(6. 0+ 1}, z0=max{pa(v). pa(e.v). 5 +24. p3(e. 0)

where p1, p2 and p3 are defined in Lemmas 2 and 3 and wriBém) for B(m, zo).
Furthermore we fix a finite set, of the centralizer oM in ZQ given by Lemma 1 for the
already fixed value of. It will become clear from the proof of Theorem A why we define
zo andv in this way.
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Fig. 1. B(m, zg).

Though the choice of the s#t(m) might look strange it is motivated by the following
two properties. The se{B(m)},, >0 exhaust the affine spadi?é;@ﬂo ={reR" | x(r)>
—zo}, i.e., Um>oB(m) = R?(?_ZO. And locally B(m) looks like a ball, so locally it is

possible to do contractions in all possible directions not only in directio@ iy

We say that a non-negative real numleeris “special”if there is an integral point
on the boundary ofB(m). It is easy to see that the sdfy of all special numbers is
discrete inR because every s&(m) contains only finitely many integral points. Thus
for everym > ag = min{fa | @ € Ag} there exist elements(m), f(m) € Ag such that
a(m) <m < B(m) and there is no other element 4§ betweenx(m) andg(m). Then

B(m)N Q = B(a(m)) N Q.

3. Freegroupsand some commutator calculations
Let F be the free group ofba, ..., bs, h1, ..., h,} and
u:F—G

be the surjective homomorphism sendingo a; andh; to g;. Let H be the subgroup of
F generated by, ..., h, and

0:H—>Q=G/M, 6:H—G
be the homomorphisms sendingto g; M andh; to g;. By definition

H={hi.. .hi|z e}
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is the set of ordered words and

{hf‘rl(l) S

a1 T € Sn.zj €7}

the set of semiordered words.

Every element of H can be written in a unique way as an irreducible Wh)jlﬂ. .. hf]f
where 1< iy, ..., i; <nande; € {—1,1}, i.e., if iy = ix41 thene, # —er 1. Every such
word corresponds to a path(h) in the 1-skeleton Joc; <, 1 Z* x R x Z"*~1 of R”

that starts from the origin and ﬁnisheséla(lhfl1 .. hfj’) More preciselyy (k) is the path
y(ht.. .hfjf'j) followed by the edge with end&(/;? ... hf]_j:ll) andé (h).

Now for every choice of a positive real numberand every poing € Q N B(m) we
fix an elementw(m, g) € H such that (w(m, q)) =g andy (w(m, ¢)) is a simple path
in B(m), i.e., a path that does not intersect itself. Note that when< m, the element
w(mi, g) is not necessary the samewadny, g).

Now we impose some strong restrictions on the elemeriis + /n, ¢) of H that
are not necessarily in the proof of Proposition 6 but are really important for the proof of
Theorem A. We want to construat(m + +/n, ¢) so that there exists a natural numkler
such that for everyn > 0 andq € B(m + +/n) N Q the beginning ofy (w(m + /n, q))
that excludes the last vertices ofy (w(m + 4/n, q)) is a simple path inside the unidn
of all closed balls with centre if(m) and radiugo — v/2. In particular ag > 2 all these
beginnings are insidB(m — 1). This is easy to arrange as for everg B(m + /n) there
exists an element € I (m + 4/n) such that the closed bal with centrey and radiugg is
inside B(m + /n) and this ball containg. Then we can find an elemegit from Q that is
as close as possible iq soq; is in the unionU as 2/n < zg — v/2 impliesq; € U. Now
we can linkg1 with ¢ by a simple patly inside the ballB and link the origin withg; by
a simple path insidé& \ y. Now d is the upper bound of the length of a simple path (i.e.,
without intersections) inside any bal in R" with radiuszg. Such an upper bound exists
because for any such there exists an elemegtfrom Q with the property tha§ + B is
inside the closed baB; in R”" with centre the origin and radiug + /» andd is not bigger
than the upper bound of the lengths of simple paths inBide the 1-skeleton oR”.

From now on we fix the numbet used in Section 2.1 as the numlakeconstructed in
the above paragraph.

Proposition 6. Let 2 be an element of the derived subgroupibsuch thaty (k) is inside
B(@m). Then

h= (glcl) ... (g’”cm)

where y ((¥1c1) ... ($7c,)) is inside RYs __, cx € (hi'h h;h; " | 1<i# j <n,
ei,ej € {X1}} andg; € {(w(im +/n,q) | g € B(m + /n) N Q}.
Proof. Instead of working with elements &f we will work with the corresponding paths

in R" and will prove the assertion of the proposition in terms of closed paths attached
at 1;.
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Let V be the union of all standard cubedR# (i.e., Q-translates of0, 1]") that intersect
B(m). ThenV is simply connected ang(h) is contractible inv'.

Note thatV is obtained from its 1-skeleton by gluing standard cub&gth boundaries
someQ-translates of (c¢;) for somek. These cubes give a contraction of their boundaries
to a point. The same could be achieved if we glue to the 1-skelet@retells attached at
the origin with boundary (w(m + /n, ¢))d(J)y (w(m + /n,q))~1, whereg is a point
of the boundary of/ that is insideB(m + +/n) andd(J) is the boundary of a 2-cell of
J considered as a path attached at the vegtelote this is exactly the assertion of the
proposition stated in terms of paths and so the proof is completed.

4. Building spaces equipped with free and cocompact G, -action and with “small”
fundamental groups

4.1. The definition of the space®,,},, >0

In this section we define the spac®B4, andV,, and formulate Theorem 7 that will
be the main block in the proof of Theorem A. The spa®%,},>0 could be viewed
as approximations to the space we want to build: a 1-connected CW-complex acted on
cocompactly and freely bg , .
By definition V,, is a 2-dimensional combinatorial complex with vertiag@s edges
G x {byt, .. bFL REY L hEh hEY) and 2-cellsG x (RyU Rz U Rs,) for a finite
subsetR1 U Ry U Rz, Of the free groupF defined in Section 3. The group acts onV,,
via left multiplication.
The description of the boundary mapsWp is as in the Cayley complex associated to
a presentation of;. The edgdg, f) has labelf and verticeg andgu(f) and the label
of a path is the product i of the consecutive labels of the edges in the path. The edges
(g, f) and(gu(f), f~1) are identified. If(g, r) is a 2-cell its boundary is the path at
with labelr. By definition

& 1€ji1,—1;-1 s .
R = {g[hl- , hj’]g ba(i,j,Si,é‘j,g(g)) 1< j#i<n, &,¢j e{£l}and

g is an element off such that the length gf(g) is at mostd}
wherea(i, j, &, €}, 0(g)) was defined in Section 2.1 and by definitian y] = xyx~y~1,

The description of the 2-cell&6 x R is a bit more complicated. Suppose A, and
g1, .-, 8m,). are semiordered words i such that

{0(81.0), -, 0(gm,2)} = supp,

Z 2i,20(8i3) = A.
i

By definition R is the set of all expressions

(gi,xbl.)zl»k o (gm,xbi)zm,l (b,')_l
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-1 g1
Fig. 2. Relations of the second type.

for all possibler € A, and all possible semiordered worgls, in H with the properties
described above and alK s. The setR; is finite asA,, is finite and for a fixed € Q there
are only finitely many semiordered elemeht® H with 6(h) =gq.

Finally we define cells that are responsible for some of the commutator relatidfs in

Ram={["b;," b;] 10, k" € H, y(i), y(h") are simple paths iB(m), 1<i, j <s).

Now we definei,,, : V,, — R to be a regular height function associated to the chargcter
of G, i.e.,h,, is a continuous function such tha}, (gv) = x (g) + i, (v) and the restriction
of h,, to every cell attains its extremes on the boundary of the cell. In addition we assume
that the restriction of,, on the vertex seG of V,, is the charactey. The subcomplex
W, is defined as the maximal subcomplex}ﬂ);;l[—z(), o0). Remember that fom > ag
we haveB(m) N Q = B(a(m)) N Q and hencdV,, is the same a¥, ).

Note that formy < mo the complex¥,,, is obtained fromW,,, by gluing on additional
2-dimensional cells and there is a natural mgp, — W,,.

The following theorem is the core of the proof of Theorem A and will be discussed in
details in Section 4.3.

Theorem 7. For m > v there exists a real positive numbé&¢m) such that the homo-
morphism

T1(Win—s(m)) = 71 (W)

induced by the natural maw,,_s.) — W is an isomorphism.
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Note Theorem 7 is equivalent to the following result: 6t 2" € H, y (W), y (h")
simple paths inB(m) and 1< i, j < s every path attached at the vertey With label
[h/b,», h”bj] is contractible inW,,,_s»). SinceAq (the set of special numbers defined at the
end of Section 2) is a discrete set Theorem 7 implies that for averyi; < mp the map
71 (Win,) = w1(Wy,,) is an isomorphism.

4.2. Some contractible paths Wi,

Lemma8. (a)Lethi, ho € H,60(h1) =0 (h2) andy (h1) andy (h2) be pathsinB(m). Then
the path inW,, attached aflg and with label("15;)("2b;)~1 is contractible inW,, .

(b) Supposer is a closed path ir¥,, at 1 with label f € F, y is contractible inW,,
andg is an element of with u(g) € G, andy (a(g)) C R" > wherea : F — H is the
homomorphism that is identity map on all's and sends alb s to 1y. Then the path at

15 with labelg fg~1 is contractible inW,,.

Proof. (a) Note it is sufficient to prove the lemma wheidhy) is a simple path. Indeed
suppose we have proved the case whél) is a simple path. If in general(ky) is not
simple consider some elementn H such that) (k) = 0 (k1) andy (k) is a simple path in
B(m). Then the paths atglwith labels("15;)("b;)~1 and ("2b;)("b;)~1 are contractible

in B(m) and hence the path agWwith label ("16;)("2b;)~1 = ("1b;) ("b;) =1 ("b;) ("2b;) 1

is contractible inB(m) as required. Thus without loss of generality we can restrict to the
case whery (h) is a simple path irB(m). By Proposition 6 in the free group

h1= (glcl) ... (gkck)hz

and hence

(hibi)*l(glcl) . (gkck)(hzbi) (gkck)*l. 3 (glcl)*l _1

where y ((%1c1) ... (%kcy)) is insideRj{> o 8 = gig!, v(g!) has length at mosd,

y(g}) is a simple path inB(m — 1) andci,...,cx € (A h7“h, " | 1<i# j<n
g;, €j € {£1}}. Then the patly at 15 with label

(") " (%1er) . () (2Bi) () T ($rer)

is contractible in everyV;. Using the 2-cells of first typ& x R; we can substitute the
g}/Cj 's with someby's. Using the 2-cells of third typ& x R3,, we see that the paths a1
and hence at every vertex that is an elemer& inwith labels[$i¢;, h2p;1 are homotopic
in W,,. This implies that the patfy is contractible inW,, to the path at 4 with label
("b) 1 ("2by).

(b) The path at & with labelgfg~1 is the concatenation of the patps 1(g).y and
yl‘l, whereu(g) € G, u(g).y is the image ofy under the action ofi(g) andy; is the
path in W, with label g that starts at &. Finally, asy is contractible inW,, and W,,, is
G, -invariant, the path(g).y is contractible inW,, too. O
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Proposition 9. Suppose: > v andh’, h” are elements off, such that/ (k") andy (k") are
simple paths irB(m) and B(m1), respectively, for some1 < m. Furthermored (h”) isin a
closed ballB with centrey” in I (m) and radius;g — v/2. Then there existas € [m — 1, m)
such that the path &t with label["b;,""b ;] is contractible inW,,,,.

Proof. I. First we consider the case when there exists an elegner@®, such thatg| < zo
andd(h’), 8(h") € g + B(mo) for somemg < m. As every element in a closed ball could
be linked with the centre via a semiordered path there is a semiordered eleeéhtvith
6(v) = ¢q andy (v™1) C B(mo). As6(v) = g we have that botA(v=14"), 6 (v~1h") are in
B(myo).

Let #',h” be elements inH such thatd (k') = 6(h’), 6(h") = 6(h”) and both paths
y(=1R) andy (v h") are in B(mo). We consider elements—14’ and v—14" in H
(not necessarily ordered) such that fore {#’, 1"’} the pathy (v—1h) is a simple path
in B(mo) with end 8(v=11). Then by Lemma 8(a) the paths'”b; (" "'b;)~1 and
v (7" ) =1 are contractible iW,,, and by the definition of the cells of third type

the path at & with label [l’_—l’N‘/bi, ”_1’7”bj] is contractible inW,,,. In particular the path at
1 with label["™""'b;, v """ b ] is contractible inW,,, and sinc# (v) € 0, by Lemma 8(b)
the path at & with label

["b:, 75,

is contractible inW,,,,.
Note that by assumptioéi(x”) € B(m1) and y(h") is a simple path inB(m1). By
Lemma 8(a)""b;(""b;)~ is contractible inW,,, and so the path atglwith label

["b:."b;] 1)

is contractible inW,,,, wheremo, = max{mo, m1, m — 1}. Finally by Proposition 6 we have
in the free groupF’

n = (glcl) ... (gkck)h,

where y ((81c1) ... (8kcy)) is insideR&,zo, gi = &g, v(g/) has length at most,

y(g}) is a simple path inB(n — 1) andci, ..., cx € {h'h A7 h ;7 |1<i % j <n,
&i, £ € {£1}}. Thus the path atd with label ' '

Whi(%er) " (Bter) T bi) TN (#er) L (S r) )

is contractible in every¥;. Using the cells of type 1 we can substitute in the above path
the labels® ¢; with 8:b,) for somek(r). Using the 2-cells of third type we see that every
path at a vertex ir;, with label [gfbk(t), h”b.,'] is contractible inW,,, and so every path at
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Fig. 3.

1s and hence at an elementdh, with label[8 ¢y, h”bj] is contractible inW,,,. Then(1)
and(2) imply that the path atd with label

[h/bl , h//bj]

is contractible inW,,,, as required.

II. Now we assume that an elemept Q with the properties stated in the first case
does not exist. We choosé in I (m) so thatd (h') lies on the boundary of the closed ball
of radiuszp and center’. We remind the reader thag > p3(e, v) (the latter number is
defined in Lemma 3). We will first show that in this cagé — 6(h"))/|y’ — 6(h")| is in
Xu(Q). Suppose that this is not so. Thep= (y' —6(h")) /|y’ — 6 (k)| € X,(Q) and by
Corollary 5 there existas such that(u, v)/(|u| |v|) > & for v € {1, —x}. Now we apply
Lemma 3 for the seX = {y’ — 6(h') = zox1, —p3(¢, 0) x} to obtain the existence of an
elementg € Q such thatlg| < p2(¢,0) < zo, g + ¥ — 0(h)| < |y’ — 6(h')| < zo and
lg — p3(e, 0) x| < |p3(e, 0)x|. The latter implies thag € Q, . Furthermoré—q +6(h") —

Y < gl + 10" — y"| < p2(8,0) + z0 — v/2 < zo and so—q + 0 (k') and—q + 0 (k")
are elements oB(m’) for somem’ < m. Theng € Q, has all the properties required in
case |, a contradiction.

Since(y' —0(h")) /|y —0(h")|isin X (Q) there is (by Lemma 2) a centralizein A,
such that for every in the support ot we haved (i) + ¢ is in the open ball with centre
y" and radiugo — v/2. For everyy in the support ok choose a semiordered wogd € H
suchthat (g,) = ¢ andy (h'g,) is the concatenation of(h") with a path inside the closed
ball with centrey’ and radius. This is possible because every two integral points in a
closed ball could be linked with a path inside the ball whose label is a semiordered word.

Using the 2-cells of second type corresponding @nd the semiordered worgg we
see that fom, < m the path at & with label[" b;,”"b ;] is contractible irW,,, if the paths

at 1; with labels['1b;,"" b ;] are contractible iW,,,.
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We fix ¢ € suppr and writeg for g,. Let h'g be an element fronH (not necessarily
ordered) such that(h'g) is a simple path irB(m — 1). By Proposition 6

Wg=(%c1)...(S%ck)'g (3)

wherey ((¥1c1) ... (%tcy)) isinsideR} S . gi = g;g/ are elements off, y (g;’) has length

at mostd, y (g}) is a simple path ilB(m — 1) andcz, ..., ckx € {hf’hjfhje"hff 11<i#
J <n, &, ¢; € {£1}}. Using the relations of first type every path at an elemer pfwith
label

[#c;. "8 bi]

is homotopic inW,,,_1 to a path with Iabe[g/@bt(j,k), ﬁbi] which is contractible irW,,,_1
via the 2-cells of third type. This combined with (3) shows that the patlyatith label

h’gbi (ngbi)_l

is contractible inW,,,_1. Finally we note that fom, = maxm1, m — 1} the path at & with
label

(461" )]

is contractible inW,,,, and hence the path aglwith label [h/gbi,h”bj] is contractible
inWy,. O

4.3. Proof of Theorem 7

We fix elementsi’, h” in H such thaty (%’), y (k") are simple paths iB(m) and
elements’, y” € I(m) C R" such thaty’ — 8(h")| = zo, |y’ — 8 (h")| = zo. Our aim is to
show that there exisis, < m such that the path ailwith label["'b;,"" b ;] is contractible
in Wy,.

There are three cases to consider:

Y —6()

1. =— ¥ .
v =6 < =M
y//_e(h//)

S —c ) .
iy —aam) <M

y/ _ 9(1’1,) y// _ 9(}1”)
Y =0y =6

¢ Xp(Q).

Case 1. The proof of this case is the same as the proof of case Il of Proposition 9. Let us
sketch it again. By Lemma 2 there isin A, such that for every in the support ofi
we haved (k') + ¢ is in the open ball with centrg’ and radiuso — v/2. For everyg in
the support of. choose a semiordered wogg € H such that (g,) = ¢ andy (h'g,) is



J. Harlander, D.H. Kochloukova / Journal of Algebra 273 (2004) 435-454 449

the concatenation gf (4") with a path in the closed ball with centyé and radiusy. Itis
sufficient to show that the paths ag With labels["'¢¢b;,""b ;] are contractible irW,,, for
somemo < m.

We fix ¢ € suppr and writeg for g,. Leth’g be an element fromif such thaty (h'g) is
a simple path ilB(m — 1). By Proposition 6

Wg=(%c1)...(%cx)'g

wherey ((¥ic1) ... (%kcy)) isinsideR} S . gi = g/g/ are elements off, y (g;’) has length
at mostd, y(g}) is a simple path in the unioti of all closed balls with centres ih(m)
and radiugo—v/2 andex, ..., cx € (A A h; R | 1<i # j <n, e, ¢; € {£1}}. Note
U C B(m — 1). As in the proof of Proposition 9 this shows that the pathatith label

Wep (o)t

is contractible inW,,_1. Using Proposition 9 fom1 = m — 1 we see that the path a1
with label

["4b:,"b;]

is contractible inW,,, for somem — 1 < m» < m and hence the path atwith label
["'¢b;,"" b;] is contractible inW,,,, as required.

Case 2. This is the same as Case 1.

Case 3. By Corollary 5 forxi =y’ — 6(h'), xo = y” — 6(h”) and Lemma 3 forX =
{—zox, x1, x2} there exists an ordered element H such that

V

|0(v)| < p2(e, v) < 20, o) +y —0(h"| <z0— >

V

0@) +y" =0h")| <z0—5

|—zox +0(v)| <|—zox| andso x(6(v))>0

Now we repeat a trick used in case | of the proof of Proposition 9. As
o(v*h)e Bm—1) and y(v!)cBm-1)

there is an element’ € H such thatd(#’) = 6(h’) and y (v=11") is a simple path in
B(m — 1). Similarly there is an elemert’ in H with the property that (h") = 6(h")
andy (v=1%") is a simple path iB(m — 1). . .

By the definition ofW,,_1 the path at & with label[*”"'b;,v""""b;] is contractible in
W, —1. This together with Lemma 8(b) implies that the path atvith label

[E/bi ’ E//bj]
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y -0(®h)
.
0(v) 0 ®
———4
I —ZOX
[ ]
y’-6h”)
Fig. 4.

is contractible inW,,_1. Again by Proposition 6

(Sel) . (S =T

whereg’, ¢/ are elements off suchthat;/((gic/l) (f"’kck))|3|n5|deIRA> Zo,y((g’l/c”)

& ¢/)) is insideR} 20" g =a;fj, g =u;v;, y(aj)andy(u;) are simple pathsin the
unionU of all closed balls with centre in(m) and radiugo — v/2, the simple pathg(5;)
andy (v;) have length at most andc;, ¢/ € {lh}’, hy'1 | 1< p # g <n; &), 6, = 1}
Then '

Using the relations of first type we can substitute in the above expres%kzi]nwith %i b,
for somer andgﬁ'/c;f with #i by for somes. By Proposition 9 there exists8 — 1 <mp <m
such that every path ii,,, at some element af , with label[*/b,," b;] or [ bs, " b;]

is contractible inW,,,,. Thus the paths atglwith labels” b; (' b;)~1 and"” b; (" b;) 2 are
contractible inW,,,. This completes the proof.
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5. Proof of Theorem A

We first show that we can attach, -finitely many 2-cells(G,, R4) to W, to obtain a
simply connected compleW. For this consider the covering, — M\ W,. Associated
with it comes a short exact sequence

m1(Wy, 1g) — m(M\W,, 1p) — M.

Because of the relation8; the groupri(M\W,, 1p) is generated by closed paths with
label of the formb;, whereh € H such thaty (k) is a path inR;’%zo. Since closed paths

with labels[" b;,""b;1, wherey (1), y (k") are paths (not necessarily simple)ifj
are contractible inW, (by Theorem 7 and Lemma 8(a)) we see thatM\W,, 1p) is

a finitely generated?, -module and the above sequence is an exact sequengg -of
modules. Furthermore as (M\W,, 1p) is abelian it is isomorphic to the homology group
Hy(M\W,). Using the description oM\ W, given by verticesV = M\V (W,), edges
E = M\E(W,) and 2-cellsC = M\C(W,) together with the sequence-8 Z[R] —
Z[E] — Z[V]— Z — 0 we deduce thalf1(M\W,) is finitely presented oveZ Q. Since
[x] € Xu(Q), the moduleM is a finitely generated and hence finitely presenfso
module (in fact of type=P., by [15, Lemma 5.1]). Then by dimension shifting argument
m1(W,, 1) is afinitely generate@, -module, i.e. G, -module (with trivial M -action) and
the result follows. So we can indeed atta@h-finitely many 2-cells(G ., R4) to obtain a
simply connected compleﬁ/.

We can now quickly finish the proof of Theorem A. AttachWp G -finitely many 2-
cells (G, R4) to obtain a simply connected compl@x The height functiork, : V, - R
extends in a unigue way to a regulgrequivariant height functiork of V and by
construction the maximal subcompl&’—20-°) in a7 1[—zo, 00) is W. Note thatV is
the Cayley complex of; with respect to the finite presentatiok | R1 U R2 U Rz, U Ra)
of G and the half subspacé!=0->) is 1-connected. Spx] € £2(G) and the proof of
Theorem A is completed.

6. Proof of Theorem C
6.1. The construction ¥

The rest of the paper is devoted to the proof of Theorem C. The proof we present follows
the main ideas of the proof of Theorem A, in fact it is much simpler as there will be no
need to work with simple and non-simple paths in free groups. In this section we assume
that the first condition of Theorem C holds and aim to build a sgécthat will be the
2-skeleton of a standard, — K (M, 1) complex andQ, /W will be compact.

Before constructing the complékX we construct some approximatiois, of W. By
definition W, is a 2-dimensional CW-complex acted on By, with 1-vertex and edges
the elements of the disjoint union of fré, > _.,-orbits{J; ¢, Qx>=20p,;. The 2-cells of

W,, are the disjoint union of fre@, -orbits ©x C1 U €xCs ,,,, whereCy andCa,,,, are finite
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sets of 2-cells. The definitions @f; andC2,,, resemble the definition ak2 and Rz, in
Section 4.1. The boundaries of the cell<ipare the paths

(Kqum b,’)z“ o (qoqm,x b,')z'"’k (qobl.)*l

whereir € Ay, A =), zi 5.¢i,» andqo is an element 0 depending on. with the property
that o » = min{x(qo), x(gogi,») | 1 <i < m} > —zo and Bo, is as close to—zg as
possible. Then for every € A,, A =3, zi »gi» and{q} U g(suppr) C Qy>—, the path
with label

(qql,x b,’)z“ o (qqm,x bi)z'nvk (qb,-)fl

is contractible via the 2-cell€xC1. The boundaries of the cells 0y ,, are paths with
labels

[75:,7b;], forq'.q" € Bim), 1<i, j <s.
Similarly to Theorem 7 we have the following result.
Theorem 12. For m > v there exist$ (m) > 0 such that the map

T1(Win—s(m)) — 71 (Wi)
is an isomorphism.

Once Theorem 12 is proved we constricfrom W, by gluing finitely many freeQ, -
orbits of 2-cells. Note Theorem 12 follows from the following lemma in the same way as
Theorem 7 follows from Proposition 9. In fact in this case the proof is slightly easier as our
exponents are i, not in H and we do not worry about commutators of exponents.

Lemma 13. Suppose: > v andq’, g” are elements of) such thay’ € B(m) andg” isin
a closed ballB with centre in/ (m) and radiuszo — v/2. Then there exista — 1 < mo2 <m
such that the path atg with label[? b;,9 b;] is contractible inW,,,.

6.2. A corollary of the existence df

SupposéWV is the 2-skeleton of a standa@, — K (M, 1)-complex such tha@, acts
cocompactly orW, i.e., the edges and 2-cells Bf form disjoint unions of finitely many
free 0, -orbits, in particular the set of edgesi$; ; Qxb;.

Assume Theorem C does not hold apd= x1 + x2 for some[x;] € TX(G)¢, in
particulary; (M) = 0. We splitW as a uniorW,, U W,, whereW,, is the subcomplex of
W containing all cells with edge supportin; <, QxNCxze p,. In addition we choose
c1, c2 in such a way that the intersectidv,, N W,, is sufficiently big so that every cell of
W is either inW,, orin W,, (note this is possible becaugs, acts cocompactly o).
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By van Kampen’'s theoren =~ 71(W) is the push-out of the maps: 71 (W,, N
Wy,) = w1 (W,,) andiz: w1 (Wy, N W,,) — w1(W,,) induced by the inclusions of the
relevant spaces. A¥ does not contain free subgroups of rank two either the imagg of
has index two inr1(Wy;) for both j =1 andj = 2 or one of the mapg andiz is an
epimorphism. The first case can be avoided by changisgIn the second case we can
assume that; is epimorphism. Then ag1(W) is the push-out of; andio we get that
the inclusion of space¥,, — W induces epimorphismsy(W,,) — 71(W) ~ M and
H1(W,,) > Hi(W)~ M. Asin[9, Lemma 4.7] we see thai; (W,,) is finitely generated
overZ(Q, N Q,) and henceV is finitely generated oveZQ,,, So[x2] is in o),

a contradiction.
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