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Abstract

The Bieri–Neumann–Strebel invariantΣm(G) of a groupG is a certain subset of a sphere th
contains information about finiteness properties of subgroups ofG. In case of a metabelian groupG
the setΣ1(G) completely characterizes finite presentability and it is conjectured that it also co
complete information about the higher finiteness properties (FPm-conjecture). TheΣm-conjecture
states how the higher invariants are obtained fromΣ1(G). In this paper we prove theΣ2-conjecture.
 2004 Elsevier Inc. All rights reserved.

Introduction

Let G be a group andX be aK(G,1)-complex with finite m-skeleton. A charact
χ :G → R gives rise to a height functionh : X̃ → R on the universal covering ofX, i.e.,
h is continuous withh(gx) = h(x)+ χ(g) for all g ∈ G, x ∈ X̃. The geometric invarian
Σm(G) consists of the set of equivalence classes of characters for which the positiv
h−1[0,∞) is essentially(m−1)-connected, in other words there existsd < 0 such that the
inclusionh−1[0,∞) → h−1[d,∞) induces the trivial map between theith dimensiona
homotopy groups fori �m−1. These invariants originated in the work of Bieri and Stre
(1980) on finitely generated metabelian groupsG where it was shown thatΣ1(G) contains
the information as to whetherG is finitely presented. In general theΣ-invariants contain
complete information about the finiteness-type of normal subgroups above the comm
subgroup [8]. For the definitions of the homological and homotopical finiteness typesFPm

andFm of groups we refer to [10].
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Although theΣ-invariants have undergone quite an evolution since 1980 and
been investigated for many different classes of groups, some fundamental open qu
remain in the metabelian setting. TheFPm-conjecture states that ifG is a finitely generated
metabelian group thenΣ1(G) contains the information as to whetherG is of typeFPm.
TheΣm-conjecture says that for such groupsΣm(G) can be obtained fromΣ1(G) by
a simple process. In this paper we prove theΣ2-conjecture. Let us first give precis
definitions and statements of the conjectures and our results.

The homological invariantsΣm(G,M) for a finitely generated groupG and aZG-
moduleM were first introduced in [7,8]. By definition

Σm(G,M)= {[χ] ∈ S(G) |M is of typeFPm overZGχ

}
whereGχ = {g ∈G | χ(g)� 0} and

S(G)= {[χ] = R>0χ | χ ∈ HomZ(G,R) \ {0}}
is the character sphere of the groupG. The homotopical versionΣm(G) of Σm(G,Z)

defined for groupsG of homotopical typeFm was already given at the beginning
this section. It was first considered by Renz [23] and was later investigated for dif
classes of groups in [19,21]. In general the homotopical invariantΣm(G) is a subset o
the homological invariantΣm(G,Z), Σ1(G) = Σ1(G,Z) and there is a Hurewitz typ
formula

Σm(G)=Σm(G,Z) ∩Σ2(G) for m� 2.

We identifyR>0Σ
1(G)c with {χ ∈ Hom(G,R)\{0} | [χ] ∈Σ1(G)c} via the identification

of Σ1(G)c with the unit sphere inRn � Hom(G,R).

The FPm-conjecture [3]. A finitely generated metabelian groupG is of type FPm if and
only if

0 /∈ conv�m

(
R>0Σ

1(G)c
)

where the upper indexc denotes the complement inS(G) andconv�m T denotes the conve
hull of not more thanm elements fromT .

By the main result of [9] a metabelian group is finitely presented if and only
is of type FP2 (this is not so in general [2]). This implies that for metabelian gro
the propertiesFPm andFm are the same. In particular theFPm-conjecture suggests
description of the metabelian groups of typeFm. For such groupsΣm(G) is conjectured
to be determined only byΣ1(G).

The Σm-conjecture. If G is a metabelian group of typeFm then

R>0Σ
m(G)c = R>0Σ

m(G,Z)c = conv�m

(
R>0Σ

1(G)c
)
.
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Both conjectures are still open though there is strong evidence that they should
The FPm-conjecture is more explored and many cases of it have been proved in th
two decades:m = 2 [9], m = 3 andG a split extension of abelian groups [5],G of finite
Prüfer rank [1], the torsion analogue of Åberg’s result [11,16]. In all these cases the
have geometric flavour and rely on building(m− 1)-connected CW-complexes on whic
G acts cocompactly with polycyclic stabilizers. The ‘only if’ part of theFPm-conjecture
seems to be easier than the ‘if’ part, it is established in the case whenG is an extension
of abelian groupsM by Q and either the extension is split orM is of finite exponent as
abelian group [16,22].

Recently more work was done on theΣm-conjecture. In [19,20] H. Meinert generalis
Åberg’s approach to show that theΣm-conjecture holds for groups of finite Prüf
rank. An interesting new approach for groups with sufficient commutativity is sugg
in [13]. It implies that conv�2(R>0Σ

1(G)c)⊆ R>0Σ
2(G,Z)c ⊆ R>0Σ

2(G)c for finitely
presented abelian-by-nilpotent groupsG. Recently the inclusion conv�2(R>0Σ

1(G)c) ⊆
R>0Σ

2(G)c for finitely presented groupsG that do not contain free subgroups of rank t
was proved in [18]. In [14] theΣm-conjecture is proved for the class of groups conside
in [16]. Until now the casem= 2 has been known only forG a split extension of abelia
groups [15]. In this paper we establish theΣ2-conjecture. It will follow as a corollary from
the next result.

Theorem A. SupposeM → G → Q is a short exact sequence of groups withM,Q

abelian andG finitely presented. Ifχ is a real non-trivial character ofG such that
χ /∈ conv�2(R>0Σ

1(G)c) then[χ] ∈Σ2(G).

As already mentioned the inclusion conv�2(R>0Σ
1(G)c) ⊆ R>0Σ

2(G)c is proved
in [13]. This together with Theorem A implies our main result.

Corollary B. TheΣ2-conjecture for metabelian groups holds.

A standardQχ − K(M,1)-complex is aK(M,1)-complexX with single 0-cell that
comes with aQχ -action that is free on cells except the 0-cell and makesπ1(X) into a
Qχ -module isomorphic toM.

Theorem C. SupposeM →G→Q is a short exact sequence of groups withM,Q abelian
andG finitely presented andχ is a real character ofG with χ(M)= 0. Then the following
are equivalent:

(1) χ /∈ conv�2(R>0Σ
1(G)c).

(2) There exists a standardQχ −K(M,1)-complex withQχ -finite2-skeleton.

Theorem C together with the fact that theΣ2-conjecture holds implies the followin
corollary.
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Corollary D. SupposeG is a finitely presented group, an extension ofM by Q where
M and Q are both abelian. Then[χ] ∈ Σ2(G) if and only if there exists a standar
Qχ −K(M,1)-complex withQχ -finite2-skeleton.

1. Preliminaries on some geometric properties of Σ

Throughout this sectionQ is free abelian group of rankn. We viewQ as the lattice
Z
n in the euclidean spaceRn, ( , ) denotes the scalar product inR

n and| | is the standard
norm. HomZ(Q,R) is identified withR

n, wherev ∈ R
n corresponds to the homomorphis

sendingq ∈Q= Z
n to (q, v). Under this identificationS(Q) corresponds to the unit sphe

Sn−1 in R
n.

In this section we review some geometric properties ofΣ . The first result we quot
shows a link betweenΣ for modules and their annihilators. A weaker version of Lemm
was one of the core arguments in the proof of the fact that 2-tameness implies
presentability for metabelian groups [9]. We writeΣM(Q) for Σ0(Q,M) to be consisten
with the notations from [9,12] and note that forG a finitely generated group that is a
extension ofM by Q the projectionG → Q induces a bijection betweenΣ1(G)c and
Σc
M(Q)= S(Q) \ΣM(Q), whereM is viewed as a leftZQ-module via conjugation.

Lemma 1 [6]. SupposeM is a finitely generatedZQ-module. Then there exists a fin
subsetΛ of the centralizer ofM in ZQ and someν > 0 such that for every[µ] ∈ΣM(Q)

there is an elementλ in Λ with

min{µ(q) | q ∈ suppλ}> ν.

By considering powers of the elements inΛ we see that for everyν > 0 there always
exists a finite setΛν with the above properties. We continue with a generalizatio
another geometric lemma from [9].

Lemma 2. For everyν > 0 there is a positive integerρ1(ν) such that forx ∈ R
n with

|x| � ρ1(ν), x/|x| ∈ −ΣM(Q) there isλ ∈Λν such thatx + suppλ is a subset of the ope
ball with centre the origin and radius|x| − ν/2.

Proof. By Lemma 1 there isλ ∈ Λν with the propertyχ(suppλ) > ν for χ = −x/|x|.
Let c be the upper bound of the norms of the elements in

⋃
µ∈Λν

suppµ. Then for

|x|> max{ν/2, (c2 − ν2/4)/ν} andq ∈ suppλ we have

|x + q|2 = |x|2 + |q|2 − 2|x|(χ, q) < |x|2 + c2 − 2ν|x|

< |x|2 − ν|x| + ν2

4
=

(
|x| − ν

2

)2

.

This completes the proof.✷
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The next result is a refined version of the obvious observation that if a finite nu
of points lie in an open half subspace then they can be translated closer to the orig
restrict to the case when the points are in a cone as we want the translation vector
integral coordinates.

Lemma 3 [12, Lemma 3.8].Supposeε > 0 and ν � 0. There exist positive intege
ρ2(ε, ν) < ρ3(ε, ν) with the following property. SupposeX is a finite set inR

n and
u ∈ R

n such that for everyx ∈ X of length bigger thanρ3(ε, ν) we have(u, x) > ε|u| |x|.
Then there existsv ∈ Z

n with length smaller thanρ2(ε, ν) and such that forx ∈ X with
|x| � ρ3(ε, ν)

|x| − |v + x|> ν/2.

The geometric structure ofΣ1(G) for general finitely generated groupsG could be
really complicated, for exampleΣ1(G)c could have an isolated non-discrete point
Section 8]. This cannot happen for metabelian groups whereΣ1(G)c is a rationally defined
spherical polyhedron [4] and hence the discrete points inΣ1(G)c form a dense subset. B
definition a rationally defined polyhedron is a finite unionC1 ∪ · · · ∪ Cj where everyCi

is a finite intersection of affine closed subspaces ofR
n, wheren is the torsion free rank o

the abelianizationG/[G,G] and all closed subspaces are given by equations with rat
coefficients. The projection of a rationally defined polyhedron to the unit sphereSn−1 is
a rationally defined spherical polyhedron, i.e., finite union of finite intersections of c
half subspheres, where every subsphere is defined by a rational point inSn−1.

Theorem 4 [4]. If G is a finitely generated metabelian groupR�0Σ
1(G)c is a rationally

defined polyhedron, in particularΣ1(G)c is a rationally defined spherical polyhedron.

We finish this section with Corollary 5 that is an immediate consequence o
polyhedral structure ofΣ1(G)c and the Bieri–Strebel criterion that a finitely genera
metabelian groupG is finitely presented if and only ifΣ1(G)c does not contain antipod
points [9].

Corollary 5. SupposeM →G→Q is a short exact sequence of groups withM,Q abelian
andG finitely presented andχ is a real character ofG such thatχ /∈ conv�2(R>0Σ

1(G)c)

andχ(M) = 0. Then there exists a positive real numberε depending onχ such that for
every two elementsx1, x2 ∈Σ1(G)c there isu ∈ R

n (depending onx1, x2, χ ) with

(u, v)

|u| |v| > ε for all v ∈ {x1, x2,−χ}.

Proof. Since conv�2(R>0Σ
1(G)c) ∩ {0, χ} = ∅ we have that every triplex1, x2,−χ lies

in an open hemisphere of Hom(G,R). Then there existsu (depending onx1, x2, χ ) such
that (u, v)/(|u| |v|) > 0 for everyv ∈ {x1, x2,−χ}. Furthermore we can chooseu in such
a way that min{(u, v)/(|u| |v|) | v ∈ x1, x2,−χ} is as big as possible. Finally the existen
of ε comes from the polyhedral structure ofΣ1(G)c and the fact thatχ is fixed. ✷
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2. A special subset B(m,z0) of R
n

2.1. A generating set forG

From now on to the end of Section 5 we work on the proof of Theorem A. Ass
χ is a real non-trivial character ofG satisfying the assumptions of Theorem A, i.
χ /∈ conv�2(R>0Σ

1(G)c). Furthermore without loss of generality we can assume thχ
has length 1. By the main result of [17] wheneverχ(M) �= 0 we have[χ] ∈ Σ∞(G) =⋂

m∈N
Σm(G). As our aim is to show that[χ] ∈Σ2(G) we can assumeχ(M)= 0.

By [19, Introduction] for a general finitely presented groupG the invariantΣ2(G) is
invariant under taking subgroups of finite index, i.e., ifH is a subgroup ofG of finite index
then[χ] ∈ Σ2(G) if and only if [χ |H ] ∈ Σ2(H). Thus we can assume thatQ = G/M is
free abelian and soG has a generating set

X = {a1, . . . , as, g1, . . . , gn}

wherea1, . . . , as generateM as a normal subgroup ofG, g1, . . . , gn moduloM is a basis
of the free abelian groupQ=G/M. Furthermore we assume that

gg
εi
i g

εj
j g

−εi
i g

−εj
j g−1 = aα(i,j,εi ,εj ,g) ∈ {a1, . . . , as}

for 1 � j �= i � n, εi, εj ∈ {±1} andg a word ong±1
1 , . . . , g±1

n of length at mostd , where
d is a natural number to be defined in Section 3, just before Proposition 6.

2.2. The construction ofB(m,z0)

As before we identifyQ with the integral latticeZn in R
n and assumee1 = g1M, . . . ,

en = gnM is an orthonormal basis ofRn. DefineI (m) to be the halfball inRn that is the
intersection with the closed ball with centre the origin and radiusm and the half subspac
R
n
χ�0 = {r ∈ R

n | χ(r) � 0}. By definitionB(m,z0) is the union of all closed balls wit
radiusz0 and centre inI (m). For every two pointsv,w in

⋃
m�0B(m,z0) we define

the “distance”d(v,w) to be the smallest non-negative real numberm such that for some
q ∈ Qχ = {q ∈ Q | χ(q) � 0} both v andw are inq + B(m,z0). Loosely speaking th
functiond will be used as inductive parameter in the main part of the proof of Theore
though we will not strictly refer to it.

From now on we fixε to be the positive real number given by Corollary 5 and set

ν = max
{
2
√
n+ 4,2ρ2(ε,0)+ 1

}
, z0 = max

{
ρ1(ν), ρ3(ε, ν),

ν

2
+ 2

√
n,ρ3(ε,0)

}

where ρ1, ρ2 and ρ3 are defined in Lemmas 2 and 3 and writeB(m) for B(m,z0).
Furthermore we fix a finite setΛν of the centralizer ofM in ZQ given by Lemma 1 for the
already fixed value ofν. It will become clear from the proof of Theorem A why we defi
z0 andν in this way.
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Fig. 1.B(m,z0).

Though the choice of the setB(m) might look strange it is motivated by the followin
two properties. The sets{B(m)}m�0 exhaust the affine spaceRn

χ�−z0
= {r ∈ R

n | χ(r) �
−z0}, i.e.,

⋃
m�0B(m) = R

n
χ�−z0

. And locally B(m) looks like a ball, so locally it is
possible to do contractions in all possible directions not only in directions inR

n
χ�0.

We say that a non-negative real numberm is “special”if there is an integral poin
on the boundary ofB(m). It is easy to see that the setA0 of all special numbers i
discrete inR because every setB(m) contains only finitely many integral points. Th
for everym � α0 = min{α | α ∈ A0} there exist elementsα(m),β(m) ∈ A0 such that
α(m)�m< β(m) and there is no other element ofA0 betweenα(m) andβ(m). Then

B(m) ∩Q= B
(
α(m)

) ∩Q.

3. Free groups and some commutator calculations

Let F be the free group on{b1, . . . , bs, h1, . . . , hn} and

µ :F →G

be the surjective homomorphism sendingbi to ai andhi to gi . LetH be the subgroup o
F generated byh1, . . . , hn and

θ :H →Q=G/M, θ̃ :H →G

be the homomorphisms sendinghi to giM andhi to gi . By definition

H = {
h
z1 . . .hznn | zi ∈ Z

}

1
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is the set of ordered words and{
h
z1
π(1) . . .h

zn
π(n) | π ∈ Sn, zj ∈ Z

}
the set of semiordered words.

Every elementh of H can be written in a unique way as an irreducible wordh
ε1
i1
. . .h

εj
ij

where 1� i1, . . . , ij � n andεi ∈ {−1,1}, i.e., if ik = ik+1 thenεk �= −εk+1. Every such
word corresponds to a pathγ (h) in the 1-skeleton

⋃
0�k�n−1 Z

k × R × Z
n−k−1 of R

n

that starts from the origin and finishes atθ(h
ε1
i1
. . .h

εj
ij
). More preciselyγ (h) is the path

γ (h
ε1
i1
. . .h

εj−1
ij−1

) followed by the edge with endsθ(hε1
i1
. . . h

εj−1
ij−1

) andθ(h).
Now for every choice of a positive real numberm and every pointq ∈ Q ∩ B(m) we

fix an elementw(m,q) ∈ H such thatθ(w(m,q)) = q andγ (w(m,q)) is a simple path
in B(m), i.e., a path that does not intersect itself. Note that whenm1 < m2 the element
w(m1, q) is not necessary the same asw(m2, q).

Now we impose some strong restrictions on the elementsw(m + √
n,q) of H that

are not necessarily in the proof of Proposition 6 but are really important for the pro
Theorem A. We want to constructw(m + √

n,q) so that there exists a natural numbed
such that for everym � 0 andq ∈ B(m + √

n) ∩ Q the beginning ofγ (w(m + √
n,q))

that excludes the lastd vertices ofγ (w(m + √
n,q)) is a simple path inside the unionU

of all closed balls with centre inI (m) and radiusz0 − ν/2. In particular asν � 2 all these
beginnings are insideB(m− 1). This is easy to arrange as for everyq ∈ B(m+ √

n) there
exists an elementy ∈ I (m+ √

n) such that the closed ballB with centrey and radiusz0 is
insideB(m+ √

n) and this ball containsq . Then we can find an elementq1 fromQ that is
as close as possible toy, soq1 is in the unionU as 2

√
n� z0 − ν/2 impliesq1 ∈U . Now

we can linkq1 with q by a simple pathγ inside the ballB and link the origin withq1 by
a simple path insideU \ γ . Now d is the upper bound of the length of a simple path (i
without intersections) inside any ballB in R

n with radiusz0. Such an upper bound exis
because for any suchB there exists an elementq̃ from Q with the property that̃q + B is
inside the closed ballB1 in R

n with centre the origin and radiusz0+√
n andd is not bigger

than the upper bound of the lengths of simple paths insideB1 ∩ the 1-skeleton ofRn.
From now on we fix the numberd used in Section 2.1 as the numberd constructed in

the above paragraph.

Proposition 6. Leth be an element of the derived subgroup ofH such thatγ (h) is inside
B(m). Then

h= (
g1c1

)
. . .

(
gmcm

)
where γ ((g1c1) . . . (

gmcm)) is inside R
n
λ�−z0

, ck ∈ {hεii h
εj
j h

−εi
i h

−εj
j | 1 � i �= j � n,

εi, εj ∈ {±1}} andgi ∈ {w(m+ √
n,q) | q ∈B(m+ √

n) ∩Q}.

Proof. Instead of working with elements ofH we will work with the corresponding path
in R

n and will prove the assertion of the proposition in terms of closed paths atta
at 1G.



J. Harlander, D.H. Kochloukova / Journal of Algebra 273 (2004) 435–454 443

ries
t

f
he

ll

ted on

to
l
dges
LetV be the union of all standard cubes inR
n (i.e.,Q-translates of[0,1]n) that intersect

B(m). ThenV is simply connected andγ (h) is contractible inV .
Note thatV is obtained from its 1-skeleton by gluing standard cubesJ with boundaries

someQ-translates ofγ (ck) for somek. These cubes give a contraction of their bounda
to a point. The same could be achieved if we glue to the 1-skeleton ofV 2-cells attached a
the origin with boundaryγ (w(m + √

n,q))∂(J )γ (w(m+ √
n,q))−1, whereq is a point

of the boundary ofJ that is insideB(m + √
n) and∂(J ) is the boundary of a 2-cell o

J considered as a path attached at the vertexq . Note this is exactly the assertion of t
proposition stated in terms of paths and so the proof is completed.✷

4. Building spaces equipped with free and cocompact Gχ -action and with “small”
fundamental groups

4.1. The definition of the spaces{Wm}m�0

In this section we define the spacesWm andVm and formulate Theorem 7 that wi
be the main block in the proof of Theorem A. The spaces{Wm}m�0 could be viewed
as approximations to the space we want to build: a 1-connected CW-complex ac
cocompactly and freely byGχ .

By definition Vm is a 2-dimensional combinatorial complex with verticesG, edges
G × {b±1

1 , . . . , b±1
s , h±1

1 , . . . , h±1
n−1, h

±1
n } and 2-cellsG × (R1 ∪ R2 ∪ R3,m) for a finite

subsetR1 ∪R2 ∪ R3,m of the free groupF defined in Section 3. The groupG acts onVm
via left multiplication.

The description of the boundary maps inVm is as in the Cayley complex associated
a presentation ofG. The edge(g, f ) has labelf and verticesg andgµ(f ) and the labe
of a path is the product inF of the consecutive labels of the edges in the path. The e
(g, f ) and(gµ(f ), f−1) are identified. If(g, r) is a 2-cell its boundary is the path atg
with labelr. By definition

R1 = {
g
[
h
εi
i , h

εj
j

]
g−1b−1

α(i,j,εi,εj ,θ̃ (g))
| 1 � j �= i � n, εi, εj ∈ {±1} and

g is an element ofH such that the length ofγ (g) is at mostd
}

whereα(i, j, εi, εj , θ̃ (g)) was defined in Section 2.1 and by definition[x, y] = xyx−1y−1.
The description of the 2-cellsG× R2 is a bit more complicated. Supposeλ ∈ Λν and

g1,λ, . . . , gm,λ are semiordered words inH such that

{
θ(g1,λ), . . . , θ(gm,λ)

} = suppλ,∑
i

zi,λθ(gi,λ)= λ.

By definitionR2 is the set of all expressions(
g1,λbi

)z1,λ . . .
(
gm,λbi

)zm,λ (bi)−1
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Fig. 2. Relations of the second type.

for all possibleλ ∈ Λν and all possible semiordered wordsgi,λ in H with the properties
described above and alli � s. The setR2 is finite asΛν is finite and for a fixedq ∈Q there
are only finitely many semiordered elementsh in H with θ(h)= q .

Finally we define cells that are responsible for some of the commutator relationsM.

R3,m = {[
h′
bi,

h′′
bj

] | h′, h′′ ∈H, γ (h′), γ (h′′) are simple paths inB(m), 1 � i, j � s
}
.

Now we definehm :Vm → R to be a regular height function associated to the characχ
of G, i.e.,hm is a continuous function such thathm(gv)= χ(g)+hm(v) and the restriction
of hm to every cell attains its extremes on the boundary of the cell. In addition we as
that the restriction ofhm on the vertex setG of Vm is the characterχ . The subcomplex
Wm is defined as the maximal subcomplex inh−1

m [−z0,∞). Remember that form � α0
we haveB(m) ∩Q= B(α(m)) ∩Q and henceWm is the same asWα(m).

Note that form1 <m2 the complexWm2 is obtained fromWm1 by gluing on additiona
2-dimensional cells and there is a natural mapWm1 →Wm2.

The following theorem is the core of the proof of Theorem A and will be discusse
details in Section 4.3.

Theorem 7. For m � ν there exists a real positive numberδ(m) such that the homo
morphism

π1(Wm−δ(m))→ π1(Wm)

induced by the natural mapWm−δ(m) →Wm is an isomorphism.
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Note Theorem 7 is equivalent to the following result: forh′, h′′ ∈ H,γ (h′), γ (h′′)
simple paths inB(m) and 1� i, j � s every path attached at the vertex 1G with label
[h′
bi,

h′′
bj ] is contractible inWm−δ(m). SinceA0 (the set of special numbers defined at

end of Section 2) is a discrete set Theorem 7 implies that for everyν � m1 <m2 the map
π1(Wm1)→ π1(Wm2) is an isomorphism.

4.2. Some contractible paths inWm

Lemma 8. (a)Leth1, h2 ∈H , θ(h1)= θ(h2) andγ (h1) andγ (h2) be paths inB(m). Then
the path inWm attached at1G and with label(h1bi)(

h2bi)
−1 is contractible inWm.

(b) Supposeγ is a closed path inWm at 1G with labelf ∈ F , γ is contractible inWm

andg is an element ofF withµ(g) ∈Gχ andγ (α(g)) ⊂ R
n
χ�−z0

whereα :F →H is the
homomorphism that is identity map on allhi ’s and sends allbi ’s to 1H . Then the path a
1G with labelgfg−1 is contractible inWm.

Proof. (a) Note it is sufficient to prove the lemma whenγ (h2) is a simple path. Indee
suppose we have proved the case whenγ (h2) is a simple path. If in generalγ (h2) is not
simple consider some elementh in H such thatθ(h)= θ(h1) andγ (h) is a simple path in
B(m). Then the paths at 1G with labels(h1bi)(

hbi)
−1 and(h2bi)(

hbi)
−1 are contractible

in B(m) and hence the path at 1G with label(h1bi)(
h2bi)

−1 = (h1bi)(
hbi)

−1(hbi)(
h2bi)

−1

is contractible inB(m) as required. Thus without loss of generality we can restrict to
case whenγ (h2) is a simple path inB(m). By Proposition 6 in the free groupF

h1 = (
g1c1

)
. . .

(
gk ck

)
h2

and hence

(
h1bi

)−1(g1c1
)
. . .

(
gk ck

)(
h2bi

)(
gk ck

)−1
. . .

(
g1c1

)−1 = 1

where γ ((g1c1) . . . (
gk ck)) is inside R

n
λ�−z0

, gi = g′
ig

′′
i , γ (g′′

i ) has length at mostd ,

γ (g′
i ) is a simple path inB(m − 1) and c1, . . . , ck ∈ {hεii h

εj
j h

−εi
i h

−εj
j | 1 � i �= j � n,

εi, εj ∈ {±1}}. Then the path̃γ at 1G with label

(
h1bi

)−1(g1c1
)
. . .

(
gk ck

)(
h2bi

)(
gk ck

)−1
. . .

(
g1c1

)−1

is contractible in everyWs . Using the 2-cells of first typeG × R1 we can substitute th
g′′
j cj ’s with somebk ’s. Using the 2-cells of third typeG×R3,m we see that the paths at 1G

and hence at every vertex that is an element inGχ with labels[gj cj , h2bi] are homotopic
in Wm. This implies that the path̃γ is contractible inWm to the path at 1G with label
(h1bi)

−1(h2bi).
(b) The path at 1G with labelgfg−1 is the concatenation of the pathsγ1,µ(g).γ and

γ−1
1 , whereµ(g) ∈ Gχ , µ(g).γ is the image ofγ under the action ofµ(g) andγ1 is the

path inWm with label g that starts at 1G. Finally, asγ is contractible inWm andWm is
Gχ -invariant, the pathµ(g).γ is contractible inWm too. ✷
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Proposition 9. Supposem� ν andh′, h′′ are elements ofH , such thatγ (h′) andγ (h′′) are
simple paths inB(m) andB(m1), respectively, for somem1 <m. Furthermoreθ(h′′) is in a
closed ballB with centrey ′′ in I (m) and radiusz0−ν/2. Then there existsm2 ∈ [m−1,m)
such that the path at1G with label[h′

bi,
h′′
bj ] is contractible inWm2.

Proof. I. First we consider the case when there exists an elementq ∈Qχ such that|q| � z0
andθ(h′), θ(h′′) ∈ q + B(m0) for somem0 <m. As every element in a closed ball cou
be linked with the centre via a semiordered path there is a semiordered elementv ∈H with
θ(v)= q andγ (v−1)⊂ B(m0). As θ(v)= q we have that bothθ(v−1h′), θ(v−1h′′) are in
B(m0).

Let h̃′, h̃′′ be elements inH such thatθ (̃h′) = θ(h′), θ (̃h′′) = θ(h′′) and both paths

γ (v−1h̃′) and γ (v−1h̃′′) are inB(m0). We consider elementsv−1h̃′ and v−1h̃′′ in H

(not necessarily ordered) such that forh ∈ {̃h′, h̃′′} the pathγ (v−1h) is a simple path

in B(m0) with end θ(v−1h). Then by Lemma 8(a) the pathsv
−1h̃′

bi(
v−1h̃′

bi)
−1 and

v−1h̃′′
bj (

v−1h̃′′
bj )

−1 are contractible inWm0 and by the definition of the cells of third typ

the path at 1G with label[v−1̃h′
bi,

v−1h̃′′
bj ] is contractible inWm0. In particular the path a

1G with label[v−1h̃′
bi,

v−1h̃′′
bj ] is contractible inWm0 and sinceθ(v) ∈Qχ by Lemma 8(b)

the path at 1G with label

[
h̃′
bi,

h̃′′
bj

]
is contractible inWm0.

Note that by assumptionθ(h′′) ∈ B(m1) and γ (h′′) is a simple path inB(m1). By
Lemma 8(a),̃h

′′
bj (

h′′
bj )

−1 is contractible inWm2 and so the path at 1G with label

[
h̃′
bi,

h′′
bj

]
(1)

is contractible inWm2, wherem2 = max{m0,m1,m−1}. Finally by Proposition 6 we hav
in the free groupF

h̃′ = (
g1c1

)
. . .

(
gk ck

)
h′

where γ ((g1c1) . . . (
gk ck)) is inside R

n
λ�−z0

, gi = g′
ig

′′
i , γ (g′′

i ) has length at mostd ,

γ (g′
i ) is a simple path inB(m − 1) and c1, . . . , ck ∈ {hεii h

εj
j h

−εi
i h

−εj
j | 1 � i �= j � n,

εi, εj ∈ {±1}}. Thus the path at 1G with label

h′
bi

(
gk ck

)−1
. . .

(
g1c1

)−1(h̃′
bi

)−1(g1c1
)
. . .

(
gk ck

)
(2)

is contractible in everyWs . Using the cells of type 1 we can substitute in the above
the labelsgt ct with g′

t bk(t) for somek(t). Using the 2-cells of third type we see that eve
path at a vertex inGχ with label[g′

t bk(t),
h′′
bj ] is contractible inWm2 and so every path a
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Fig. 3.

1G and hence at an element inGχ with label[gk ck, h′′
bj ] is contractible inWm2. Then(1)

and(2) imply that the path at 1G with label

[
h′
bi,

h′′
bj

]
is contractible inWm2, as required.

II. Now we assume that an elementq ∈ Q with the properties stated in the first ca
does not exist. We choosey ′ in I (m) so thatθ(h′) lies on the boundary of the closed b
of radiusz0 and centery ′. We remind the reader thatz0 � ρ3(ε, ν) (the latter number is
defined in Lemma 3). We will first show that in this case(y ′ − θ(h′))/|y ′ − θ(h′)| is in
ΣM(Q). Suppose that this is not so. Thenχ1 = (y ′ − θ(h′))/|y ′ − θ(h′)| ∈Σc

M(Q) and by
Corollary 5 there existsu such that(u, v)/(|u| |v|) > ε for v ∈ {χ1,−χ}. Now we apply
Lemma 3 for the setX = {y ′ − θ(h′) = z0χ1,−ρ3(ε,0)χ} to obtain the existence of a
elementq ∈ Q such that|q| � ρ2(ε,0) � z0, |q + y ′ − θ(h′)| < |y ′ − θ(h′)| � z0 and
|q − ρ3(ε,0)χ |< |ρ3(ε,0)χ |. The latter implies thatq ∈Qχ . Furthermore|−q + θ(h′′)−
y ′′| � |q| + |θ(h′′)− y ′′| � ρ2(ε,0)+ z0 − ν/2< z0 and so−q + θ(h′) and−q + θ(h′′)
are elements ofB(m′) for somem′ < m. Thenq ∈ Qχ has all the properties required
case I, a contradiction.

Since(y ′ − θ(h′))/|y ′ − θ(h′)| is inΣM(Q) there is (by Lemma 2) a centralizerλ in Λν

such that for everyq in the support ofλ we haveθ(h′)+ q is in the open ball with centr
y ′ and radiusz0 − ν/2. For everyq in the support ofλ choose a semiordered wordgq ∈H

such thatθ(gq)= q andγ (h′gq) is the concatenation ofγ (h′) with a path inside the close
ball with centrey ′ and radiusz0. This is possible because every two integral points
closed ball could be linked with a path inside the ball whose label is a semiordered w

Using the 2-cells of second type corresponding toλ and the semiordered wordsgq we
see that form2 <m the path at 1G with label[h′

bi,
h′′
bj ] is contractible inWm2 if the paths

at 1G with labels[h′gq bi, h
′′
bj ] are contractible inWm2.
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We fix q ∈ suppλ and writeg for gq . Let h′g be an element fromH (not necessarily
ordered) such thatγ (h′g) is a simple path inB(m− 1). By Proposition 6

h′g = (
g1c1

)
. . .

(
gk ck

)
h′g (3)

whereγ ((g1c1) . . . (
gk ck)) is insideR

n
λ�−z0

, gi = g′
ig

′′
i are elements ofH , γ (g′′

i ) has length

at mostd , γ (g′
i ) is a simple path inB(m− 1) andc1, . . . , ck ∈ {hεii h

εj
j h

−εi
i h

−εj
j | 1 � i �=

j � n, εi, εj ∈ {±1}}. Using the relations of first type every path at an element ofGχ with
label [

gk cj ,
h′gbi

]
is homotopic inWm−1 to a path with label[g′

k bt (j,k),
h′gbi] which is contractible inWm−1

via the 2-cells of third type. This combined with (3) shows that the path at 1G with label

h′gbi
(
h′gbi

)−1

is contractible inWm−1. Finally we note that form2 = max{m1,m−1} the path at 1G with
label [

h′gbi,
h′′
bj

]
is contractible inWm2 and hence the path at 1G with label [h′gbi, h

′′
bj ] is contractible

in Wm2. ✷
4.3. Proof of Theorem 7

We fix elementsh′, h′′ in H such thatγ (h′), γ (h′′) are simple paths inB(m) and
elementsy ′, y ′′ ∈ I (m)⊂ R

n such that|y ′ − θ(h′)| = z0, |y ′′ − θ(h′′)| = z0. Our aim is to
show that there existsm2 <m such that the path at 1G with label[h′

bi,
h′′
bj ] is contractible

in Wm2.
There are three cases to consider:

1.
y ′ − θ(h′)
|y ′ − θ(h′)| ∈ΣM(Q).

2.
y ′′ − θ(h′′)
|y ′′ − θ(h′′)| ∈ΣM(Q).

3.
y ′ − θ(h′)
|y ′ − θ(h′)| ,

y ′′ − θ(h′′)
|y ′′ − θ(h′′)| /∈ΣM(Q).

Case 1. The proof of this case is the same as the proof of case II of Proposition 9. L
sketch it again. By Lemma 2 there isλ in Λν such that for everyq in the support ofλ
we haveθ(h′)+ q is in the open ball with centrey ′ and radiusz0 − ν/2. For everyq in
the support ofλ choose a semiordered wordgq ∈ H such thatθ(gq) = q andγ (h′gq) is



J. Harlander, D.H. Kochloukova / Journal of Algebra 273 (2004) 435–454 449
the concatenation ofγ (h′) with a path in the closed ball with centrey ′ and radiusz0. It is
sufficient to show that the paths at 1G with labels[h′gq bi, h

′′
bj ] are contractible inWm2 for

somem2 <m.
We fix q ∈ suppλ and writeg for gq . Leth′g be an element fromH such thatγ (h′g) is

a simple path inB(m− 1). By Proposition 6

h′g = (
g1c1

)
. . .

(
gk ck

)
h′g

whereγ ((g1c1) . . . (
gk ck)) is insideR

n
λ�−z0

, gi = g′
ig

′′
i are elements ofH , γ (g′′

i ) has length
at mostd , γ (g′

i ) is a simple path in the unionU of all closed balls with centres inI (m)

and radiusz0−ν/2 andc1, . . . , ck ∈ {hεii h
εj
j h

−εi
i h

−εj
j | 1� i �= j � n, εi, εj ∈ {±1}}. Note

U ⊆ B(m− 1). As in the proof of Proposition 9 this shows that the path at 1G with label

h′gbi
(
h′gbi

)−1

is contractible inWm−1. Using Proposition 9 form1 = m− 1 we see that the path at 1G

with label

[
h′gbi,

h′′
bj

]
is contractible inWm2 for somem − 1 � m2 < m and hence the path at 1G with label
[h′gbi,h

′′
bj ] is contractible inWm2, as required.

Case 2. This is the same as Case 1.

Case 3. By Corollary 5 for x1 = y ′ − θ(h′), x2 = y ′′ − θ(h′′) and Lemma 3 forX =
{−z0χ,x1, x2} there exists an ordered elementv ∈H such that

∣∣θ(v)∣∣< ρ2(ε, ν)� z0,
∣∣θ(v)+ y ′ − θ(h′)

∣∣< z0 − ν

2
,

∣∣θ(v)+ y ′′ − θ(h′′)
∣∣< z0 − ν

2
,

∣∣−z0χ + θ(v)
∣∣< |−z0χ | and so χ

(
θ(v)

)
> 0

Now we repeat a trick used in case I of the proof of Proposition 9. As

θ
(
v−1h′) ∈B(m− 1) and γ

(
v−1) ⊂ B(m− 1)

there is an element̃h′ ∈ H such thatθ(h′) = θ (̃h′) and γ (v−1h̃′) is a simple path in
B(m − 1). Similarly there is an element̃h′′ in H with the property thatθ(h′′) = θ (̃h′′)
andγ (v−1h̃′′) is a simple path inB(m− 1).

By the definition ofWm−1 the path at 1G with label[v−1̃h′
bi,

v−1h̃′′
bj ] is contractible in

Wm−1. This together with Lemma 8(b) implies that the path at 1G with label

[
h̃′
bi,

h̃′′
bj

]
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Fig. 4.

is contractible inWm−1. Again by Proposition 6

(
g′

1c′
1

)
. . .

(
g′
k c′

k

)
h′ = h̃′,(

g′′
1c′′

1

)
. . .

(
g′′
r c′′

r

)
h′′ = h̃′′

whereg′
j , g

′′
j are elements ofH such thatγ ((g

′
1c′

1) . . . (
g′
k c′

k)) is insideR
n
λ�−z0

, γ ((g
′′
1c′′

1) . . .

(g
′′
r c′′

r )) is insideR
n
λ�−z0

, g′
j = αjβj , g′′

j = µjνj , γ (αj ) andγ (µj ) are simple paths in th
unionU of all closed balls with centre inI (m) and radiusz0 −ν/2, the simple pathsγ (βj )
andγ (νj ) have length at mostd andc′

i , c
′′
j ∈ {[hεpp ,h

εq
q ] | 1 � p �= q � n; εp, εq = ±1}.

Then

h′
bi = ((

g′
1c′

1

)
. . .

(
g′
k c′

k

))−1(h̃′
bi

)(
g′

1c′
1

)
. . .

(
g′
k c′

k

)
,

h′′
bj = ((

g′′
1c′′

1

)
. . .

(
g′′
r c′′

r

))−1(h̃′′
bj

)(
g′′

1c′′
1

)
. . .

(
g′′
r c′′

r

)
.

Using the relations of first type we can substitute in the above expressionsg′
j c′

j with αj bt

for somet andg′′
j c′′

j with µj bs for somes. By Proposition 9 there existsm− 1 �m2 <m

such that every path inWm2 at some element ofGχ with label [αj bt , h̃′
bi] or [µj bs,

h̃′′
bj ]

is contractible inWm2. Thus the paths at 1G with labelsh
′
bi(

h̃′
bi)

−1 andh′′
bi(

h̃′′
bi)

−1 are
contractible inWm2. This completes the proof.



J. Harlander, D.H. Kochloukova / Journal of Algebra 273 (2004) 435–454 451

ith
s

f
up

ent

ollows
e no
ssume

s

5. Proof of Theorem A

We first show that we can attachGχ -finitely many 2-cells(Gχ,R4) to Wν to obtain a
simply connected complex̃W . For this consider the coveringWν → M\Wν . Associated
with it comes a short exact sequence

π1(Wν,1G)→ π1(M\Wν,1Q)→M.

Because of the relationsR1 the groupπ1(M\Wν,1Q) is generated by closed paths w
label of the formhbi , whereh ∈H such thatγ (h) is a path inRn

χ�−z0
. Since closed path

with labels[h′
bi,

h′′
bj ], whereγ (h′), γ (h′′) are paths (not necessarily simple) inR

n
χ�−z0

are contractible inWν (by Theorem 7 and Lemma 8(a)) we see thatπ1(M\Wν,1Q) is
a finitely generatedQχ -module and the above sequence is an exact sequence oQχ -
modules. Furthermore asπ1(M\Wν,1Q) is abelian it is isomorphic to the homology gro
H1(M\Wν). Using the description ofM\Wν given by verticesV = M\V (Wν), edges
E = M\E(Wν) and 2-cellsC = M\C(Wν) together with the sequence 0→ Z[R] →
Z[E] → Z[V ] → Z → 0 we deduce thatH1(M\Wν) is finitely presented overZQχ . Since
[χ] ∈ ΣM(Q), the moduleM is a finitely generated and hence finitely presentedQχ -
module (in fact of typeFP∞ by [15, Lemma 5.1]). Then by dimension shifting argum
π1(Wν,1G) is a finitely generatedQχ -module, i.e.,Gχ -module (with trivialM-action) and
the result follows. So we can indeed attachGχ -finitely many 2-cells(Gχ,R4) to obtain a
simply connected complex̃W .

We can now quickly finish the proof of Theorem A. Attach toVν G -finitely many 2-
cells (G,R4) to obtain a simply connected complex̃V . The height functionhν :Vν → R

extends in a unique way to a regularχ -equivariant height functionh of Ṽ and by
construction the maximal subcomplex̃V [−z0,∞) in h−1

ν [−z0,∞) is W̃ . Note thatṼ is
the Cayley complex ofG with respect to the finite presentation〈X |R1 ∪R2 ∪R3,ν ∪R4〉
of G and the half subspacẽV [−z0,∞) is 1-connected. So[χ] ∈ Σ2(G) and the proof of
Theorem A is completed.

6. Proof of Theorem C

6.1. The construction ofW

The rest of the paper is devoted to the proof of Theorem C. The proof we present f
the main ideas of the proof of Theorem A, in fact it is much simpler as there will b
need to work with simple and non-simple paths in free groups. In this section we a
that the first condition of Theorem C holds and aim to build a spaceW that will be the
2-skeleton of a standardQχ −K(M,1) complex andQχ/W will be compact.

Before constructing the complexW we construct some approximationsWm of W . By
definitionWm is a 2-dimensional CW-complex acted on byQχ with 1-vertex and edge
the elements of the disjoint union of freeQχ�−z0-orbits

⋃
1�i�s

Qχ�−z0bi . The 2-cells of

Wm are the disjoint union of freeQχ -orbitsQχC1 ∪QχC2,m, whereC1 andC2,m are finite
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sets of 2-cells. The definitions ofC1 andC2,m resemble the definition ofR2 andR3,m in
Section 4.1. The boundaries of the cells inC1 are the paths

(
q0q1,λbi

)z1,λ . . .
(
q0qm,λbi

)zm,λ(q0bi
)−1

whereλ ∈Λν , λ= ∑
i zi,λqi,λ andq0 is an element ofQ depending onλ with the property

that β0,λ = min{χ(q0),χ(q0gi,λ) | 1 � i � m} � −z0 and β0,λ is as close to−z0 as
possible. Then for everyλ ∈ Λν , λ = ∑

i zi,λqi,λ and{q} ∪ q(suppλ) ⊂Qχ�−z0 the path
with label

(
qq1,λbi

)z1,λ . . .
(
qqm,λbi

)zm,λ(qbi)−1

is contractible via the 2-cellsQχC1. The boundaries of the cells inC2,m are paths with
labels

[
q ′
bi,

q ′′
bj

]
, for q ′, q ′′ ∈B(m), 1� i, j � s.

Similarly to Theorem 7 we have the following result.

Theorem 12. For m� ν there existsδ(m) > 0 such that the map

π1(Wm−δ(m))→ π1(Wm)

is an isomorphism.

Once Theorem 12 is proved we constructW fromWν by gluing finitely many freeQχ -
orbits of 2-cells. Note Theorem 12 follows from the following lemma in the same wa
Theorem 7 follows from Proposition 9. In fact in this case the proof is slightly easier a
exponents are inQ, not inH and we do not worry about commutators of exponents.

Lemma 13. Supposem� ν andq ′, q ′′ are elements ofQ such thatq ′ ∈B(m) andq ′′ is in
a closed ballB with centre inI (m) and radiusz0−ν/2. Then there existsm−1�m2 <m

such that the path at1G with label[q ′
bi,

q ′′
bj ] is contractible inWm2 .

6.2. A corollary of the existence ofW

SupposeW is the 2-skeleton of a standardQχ −K(M,1)-complex such thatQχ acts
cocompactly onW , i.e., the edges and 2-cells ofW form disjoint unions of finitely many
freeQχ -orbits, in particular the set of edges is

⋃
1�i�s

Qχ bi .

Assume Theorem C does not hold andχ = χ1 + χ2 for some [χi] ∈ Σ1(G)c, in
particularχi(M)= 0. We splitW as a unionWχ1 ∪Wχ2 whereWχi is the subcomplex o
W containing all cells with edge support in

⋃
1�t�s

Qχ∩Qχi�ci bt . In addition we choose
c1, c2 in such a way that the intersectionWχ1 ∩Wχ2 is sufficiently big so that every cell o
W is either inWχ1 or inWχ2 (note this is possible becauseQχ acts cocompactly onW ).
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By van Kampen’s theoremM � π1(W) is the push-out of the mapsi1 :π1(Wχ1 ∩
Wχ2) → π1(Wχ1) and i2 :π1(Wχ1 ∩ Wχ2) → π1(Wχ2) induced by the inclusions of th
relevant spaces. AsM does not contain free subgroups of rank two either the imageij
has index two inπ1(Wχj ) for both j = 1 andj = 2 or one of the mapsi1 and i2 is an
epimorphism. The first case can be avoided by changingci ’s. In the second case we ca
assume thati1 is epimorphism. Then asπ1(W) is the push-out ofi1 and i2 we get that
the inclusion of spacesWχ2 → W induces epimorphismsπ1(Wχ2) → π1(W) � M and
H1(Wχ2)→H1(W)�M. As in [9, Lemma 4.7] we see thatH1(Wχ2) is finitely generated
over Z(Qχ ∩ Qχ2) and henceM is finitely generated overZQχ2, so [χ2] is in Σ1(G),
a contradiction.
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