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Abstract

A vertex v in a simple connected graph G resolves two vertices x and y in G if the distance from x to v is not equal to distance from

y to v. The vertex set R{x, y} is defined as the set of vertices in G which resolve x and y. A function f : V(G) → [0, 1] is called a

resolving function of G if f (R{x, y}) ≥ 1 for any two distinct vertices x and y in G. The minimal value of f (V(G)) for all resolving

functions f of G is called the fractional metric dimension of G. In this paper, we determine the fractional metric dimension of G
where G is a tree or G is a unicyclic graph.
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1. Introduction

Throughout this paper, all graphs G are finite, connected, and simple. We denote by V the vertex set of G and by

E the edge set of G. The distance between two vertices u, v ∈ V(G), denoted by d(u, v), is the length of a shortest

path from u to v in G. For u, v ∈ V(G), we define R{u, v} = {z ∈ V(G) | d(u, z) � d(v, z)}. A vertex set W ⊆ V(G) is

called a resolving set of G if W ∩R{u, v} � ∅ for any two distinct vertices u, v ∈ V(G). The minimum cardinality of all

resolving sets of G is called the metric dimension of G.

The metric dimension concept has been applied to many various areas including coin weighing problem[8], robot

navigation[7], and strategies for the mastermind game[3]. Determining the metric dimension of a graph was formulated

as an integer programming problem by Chartrand et al. [2]. Furthermore, Currie and Oellermann[4] defined fractional

metric dimension as the optimal solution of the linear relaxation of the integer programming problem.

Let f be a function assigning each vertex v of G a real number f (u) ∈ [0, 1]. For W ⊆ V(G), denote f (W) =∑
v∈W f (v). The function f is called a resolving function of G if f (R{u, v}) ≥ 1 for any two distinct vertices u and v in

G. The minimum value of f (V(G)) for any resolving function f of G is called the fractional metric dimension of G,

denoted by dimf (G).
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The fractional metric dimension problem was initiated by Arumugam and Mathew[1] in 2012. They provided

a sufficient condition for a connected graph G whose fractional metric dimension is |V(G)|
2

. They also determined

dimf (G) where G is Petersen graph, cycles, hypercubes, stars, wheels, friendship graph, and grids.

Some authors applied this topic to some product graphs. Feng et al. [5] have determined the fractional metric

dimension of Cartesian product of two graphs. In other paper [6], Feng et al. also studied the fractional metric

dimension of corona and lexicographic product graphs.

In this paper we consider tree and unicyclic graph. Unicyclic graph is a graph obtained from a tree by adding one

more edge. Note that unicyclic graph contains one cycle. The study of fractional metric dimension for a tree has been

initiated by Arumugam and Mathew[1]. They have proved that dimf (Pn) = 1. They also provided an exact value for

the fractional metric dimenison of star and bistar. In this paper, we are interested to determine the fractional metric

dimension of any trees. We also investigate the fractional metric dimension of unicyclic graph.

2. Fractional metric dimension of tree

Let G be a tree and v be a vertex of G. A branch of G at v is defined as a maximal subtree of G containing v as an

end point. So, if degree of v is k, then v has at most k different branches. A branch of v which is isomorphic to a path

is called a leaf of v. If there is a leaf from v, then v is called a stem of G. A stem vertex v is called a node if v has

more than one leaves. Those definitions are firstly introduced by Slater [9].

For 1 ≤ i ≤ n and mi ≥ 1, we define a generalized star graph S n(m1,m2, . . . ,mn) as a tree graph having m1 + m2 +

. . . + mn + 1 vertices and containing a vertex of degree n which has n leaves where the length of the i-th leaf is mi.

Note that if v is a node in a tree graph G, then an induced subgraph of G by v and all of its leaves is isomorphic to a

generalized star graph.

Lemma 1. Let G be a generalized star graph and w be a node in G. Let u ∈ V(G) where degree of u is 1. If two
distinct vertices x, y ∈ V(G) satisfy w ∈ R{x, y}, then u ∈ R{x, y}.
Proof. Suppose that x and y are two distinct vertices in G such that w ∈ R{x, y} but u � R{x, y}. Let L1 and L2 are

leaves of w which are containing x and y respectively. Since u � R{x, y}, we have d(x, u) = d(y, u). So, u � V(L1)

and u � V(L2). Therefore, we obtain d(x, u) = d(x,w) + d(w, u) and d(y, u) = d(y,w) + d(w, u). It follows that

d(x,w) = d(y,w) which implies w � R{x, y}, a contradiction.

Lemma 2. For n ≥ 3, let G be a generalized star graph S n(m1,m2, · · · ,mn). Then dimf (G) = n
2
.

Proof. First, we will prove that dimf (G) ≤ n
2
. We define the function f : V(G)→ [0, 1] where

f (v) =

{
1
2
, if degree of v is 1,

0, otherwise.

For any two different vertices u, v ∈ V(G) and also considering Lemma 1, R{u, v} contains two distinct vertices of

degree 1. So, we have f (R{u, v}) ≥ 1. Therefore, f is a resolving function of G. Hence, dimf (G) ≤ f (V(G)) = n
2
.

Now, we will prove dimf (G) ≥ n
2
. Let g be a minimum resolving function of G. Let x and y be two different vertices

in G. Then there exist two different vertices u, v ∈ V(G) from two different leaves of G such that u, v ∈ R{x, y}. Let Lu

and Lv be two leaves of G containing u and v respectively. Note that V(Lu)∪V(Lv) ⊆ R{x, y}. So, g(V(Lu)∪V(Lv)) ≥ 1.

It follows that for every leaf L of G, we have g(V(L)) ≥ 1
2
. Hence, dimf (G) ≥ n

2
.

Using both Lemmas 1 and 2, we can obtain the following theorem.

Theorem 3. Let G be a tree graph with k nodes w1,w2, . . . ,wk. Let L(w) be the number of leaf of node w of G. Then

dimf (G) =
1

2

k∑
i=1

L(wi)
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Proof. To proof Theorem 3 above, we use the following definitions. For 1 ≤ i ≤ k, we define S i as an induced

subgraph of G by wi and all vertices of its leaves. Note that S i is isomorphic to a generalized star graph. Let

S = V(S 1) ∪ V(S 2) ∪ . . . ∪ V(S k).
First, we define a function f : V(G)→ [0, 1] as

f (v) =

{
1
2
, if v ∈ S and degree of v is 1,

0, otherwise.

For any two different vertices u, v ∈ V(G), R{u, v} contains two distinct vertices of S of degree 1. So, we have

f (R{u, v}) ≥ 1. Therefore, f is a resolving function of G. Hence, dimf (G) ≤ f (V(G)) = 1
2

∑k
i=1 L(wi).

Now, let g be a minimal resolving function of G. Since S i is a generalized star graph for 1 ≤ i ≤ k, by Lemma 2

we obtain dimf (G) ≥ g(S ) = 1
2

∑k
i=1 L(wi).

Remark 4. Theorem 3 above strengthen Arumugam and Mathew’s result of star graph.

3. Fractional metric dimension of unicyclic graph

In this section, let G be a unicyclic graph. Let R be an induced subgraph of G which is isomorphic to a cycle. A

vertex v ∈ V(R) is called a root if degree of v is more than 2. If a root v has degree 3 and G − v has a path component,

then v is called a grass root. We also consider a vertex set Q ⊆ V(R) which is a set of all vertices of degree at least 3

in R and vertex set A ⊆ Q which is a maximal subset of Q such that for every u, v ∈ A, d(u, v) �
⌊ |V(R)|

2

⌋
. For vertex

v � V(R), we still use the definitions of branch, leaf, stem, and node as stated in Section 2.

LetA,B,C,D,E be collections of unicyclic graphs G where:

1. A is a set of G which is isomorphic to a cycle graph.

2. B is a set of G having only grass root(s).

Furthermore, we decompose B into 5 partitions B1,B2, . . . ,B5 where:

(a) G ∈ B1 if G ∈ B and R of G is isomorphic to C4.

(b) G ∈ B2 if G ∈ B and R of G is an even cycle of order at least 6 and |A| ≤ 3.

(c) G ∈ B3 if G ∈ B and R of G is an even cycle of order at least 6 and |A| ≥ 4.

(d) G ∈ B4 if G ∈ B and R is isomorphic to C3.

(e) G ∈ B5 if G ∈ B and R of G is an odd cycle of order at least 5.

3. C is a set of G having exactly one root which is not grass root.

4. D is a set of G having exactly two roots which are not grass root.

Furthermore, we decomposeD into 2 partitionsD1 andD2 where:

(a) G ∈ D1 if G ∈ D, R is isomorphic to even cycle, and for two distinct roots u, v ∈ V(G), d(u, v) = |V(R)|
2

.

(b) G ∈ D2 if G ∈ D but G � D1.

5. E is the set of G which is not in classA, B, C, orD.

In theorem below, we give an exact values of fractional metric dimension of a unicyclic graph G in some collections.

Theorem 5. Let G be a unicyclic graph of order n ≥ 3 having k nodes w1,w2, . . . ,wk. Let L(w) be the number of
leaf of node w of G. Let R be an induced subgraph of G which is isomorphic to a cycle. Let Q ⊆ V(R) be a set of all
vertices of degree at least 3 in R and A ⊆ Q be a maximal subset of Q such that for every u, v ∈ A, d(u, v) �

⌊ |V(R)|
2

⌋
. If

G � B5, then

dimf (G) =

⎧⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎨⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎩

|V(R)|
|V(R)|−1

, if G ∈ A and R is even cycle,
|V(R)|
|V(R)|−2

, if G ∈ A and R is odd cycle,
2, if G ∈ B1,
3
2
, if G ∈ B2 ∪ B4,

2|A|
|A|+1
, if G ∈ B3,

1 + 1
2

∑k
i=1 L(wi), if G ∈ C ∪D1,

1
2

∑k
i=1 L(wi), if G ∈ D2 ∪ E.
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Proof. Note that all unicyclic graphs in A are isomorphic to cycle graph. The fractional metric dimension of cycle

graph has been determined by Arumugam and Mathew[1]. Now, we assume that G � A∪B5.

Case 5.1. G ∈ B1

First, we define a function f1 : V(G)→ [0, 1] such that for v ∈ V(G), we have

f1(v) =

⎧⎪⎪⎪⎨⎪⎪⎪⎩
1
2
, if degree of v is 1,

1
2
, if degree of v is 2 and v ∈ V(R),

0, otherwise.

Let X1 be vertex set of G containing all vertices of degree 1. Let X2 be vertex set of R containing all vertices of

degree 2. Note that for any two different vertices u, v ∈ V(G), there exist two distinct vertices x, y ∈ X1 ∪ X2 such that

x, y ∈ R{u, v}. So, we have f1(R{u, v}) ≥ 1. Therefore, f1 is a resolving function of G. Hence, dimf (G) ≤ f1(V(G)) = 2.

Now, let g1 be a minimal resolving function of G. Note that there exist two different pair of vertices (a, b) and (c, d)

in V(G) such that R{a, b} ∩ R{c, d} = ∅. It follows that dimf (G) ≥ g1(R{a, b} ∪ R{c, d}) ≥ 2.

Case 5.2. G ∈ B2 ∪ B3

We define vertex set X as the set of all vertices of R where for every x ∈ X there exists a ∈ A such that d(x, a) = |V(R)|
2

.

If |A ∪ X| ≤ 6, we define vertex set C ⊆ V(R) \ (A ∪ X) such that |C| = 6 − |A ∪ X| and for every x ∈ C there exists

y ∈ C such that d(x, y) = |V(R)|
2

. We also define B as the subset of X where degree of every vertex of B is 2. Note that

A, B, and C are disjoint. Let V1 be a subset of V(G) containing all vertices of degree 1, and S = V1 ∪ B ∪C.

First, we define a function f2 : V(G)→ [0, 1] such that for v ∈ V(G), we have

f2(v) =

⎧⎪⎪⎪⎪⎨⎪⎪⎪⎪⎩
1
4
, if v ∈ S and G ∈ B2,
1
|A|+1
, if v ∈ S and G ∈ B3,

0, otherwise.

Note that for any two different vertices u, v ∈ V(G), if G ∈ B2, then |R{u, v} ∩ S | ≥ 4, otherwise |R{u, v} ∩ S | ≥ |A| + 1.

So, we have f2(R{u, v}) ≥ 1. Therefore, f2 is a resolving function of G. Hence, dimf (G) ≤ f2(V(G)) = 3
2

for G ∈ B2

and dimf (G) ≤ f2(V(G)) = 2|A|
|A|+1

for G ∈ B3.

For 1 ≤ i ≤ |A|, let wi ∈ A, xi and yi be two different vertices in V(R) such that d(xi,wi) = d(yi,wi) = 1, and

zi � V(R) such that d(wi, zi) = 1. Let Hi = R{xi, zi} ∩ R{yi, zi}. We distinguish two cases.
1. G ∈ B2

Let g2 be a minimal resolving function of G. Since V(G) = (R{xi, zi}∪R{yi, zi})\Hi, we obtain g2(V(G))+g2(Hi) ≥
2. Since R{xi, yi} ⊆ V(G) \ Hi, we obtain g2(V(G)) − g2(Hi) ≥ 1. Therefore, we have dimf (G) ≥ g2(V(G)) ≥ 3

2
.

2. G ∈ B3

Suppose that g2 be a minimal resolving function of G where g2(V(G)) < 2|A|
|A|+1

. Since V(G) = (R{xi, zi} ∪
R{yi, zi}) \ Hi, we obtain g2(V(G)) + g2(Hi) ≥ 2. Since R{xi, yi} ⊆ V(G) \ Hi, we obtain g2(Hi) ≥ 2

|A|+1
. Note that

V(G) = V(H1) ∪ V(H2) ∪ . . . ∪ V(H|A|). Therefore,

g2(V(G)) =

|A|∑
i=1

g2(Hi) ≥ 2|A|
|A| + 1

.

So, it is impossible to have a minimal resolving function g2 of G where g2(V(G)) < 2|A|
|A|+1

.

Case 5.3. G ∈ B4

Let S be a vertex set of G containing all vertices of G of degree 1 and all vertices of R of degree 2. First, we define

a function f3 : V(G)→ [0, 1] such that for v ∈ V(G), we have

f3(v) =

{
1
2
, if v ∈ S ,

0, otherwise.

Note that for any two different vertices u, v ∈ V(G), |R{u, v} ∩ S | ≥ 2. So, we have f3(R{u, v}) ≥ 1. Therefore, f3 is a

resolving function of G. Hence, dimf (G) ≤ f3(V(G)) = 3
2
.
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Now, let g3 be a minimal resolving function of G. Let V(R) = {x1, x2, x3} and Li be a leaf of xi for 1 ≤ i ≤ 3.

Note that for distinct i, j ∈ {1, 2, 3}, V(Li) ∪ V(Lj) ∈ R{xi, x j}. Without loss of generality, let g3(V(L1)) = t for

t ∈ [0, 1]. So, we obtain g3(V(L2)) = 1 − t and g3(V(L3)) = max{t, 1 − t} . It follows that t = 1
2
. So, we have that

dimf (G) ≥ g3(V(G)) = 3
2
.

Case 5.4. G ∈ C ∪D1

For 1 ≤ i ≤ k, we define a vertex set S i as the set of all vertices of degree one in leaf of node wi. Choose a pair of

vertices x, y ∈ V(R) such that d(x, y) =
⌊ |V(R)|

2

⌋
and for a ∈ {x, y}, either degree of a is 2 or a is a grass root of G. We

define S = S 1 ∪ S 2 ∪ . . . ∪ S k and T = S ∪ {x, y}.
First, we define a function f4 : V(G)→ [0, 1] such that for v ∈ V(G), we have

f4(v) =

{
1
2
, if v ∈ T,

0, otherwise.

Note that for any two different vertices u, v ∈ V(G), |R{u, v} ∩ T | ≥ 2. So, we have f4(R{u, v}) ≥ 1. Therefore, f4 is a

resolving function of G. Hence, dimf (G) ≤ f4(V(G)) = 1 + 1
2

∑k
i=1 L(wi).

For the lower bound, let g4 be a minimal resolving function of G. For 1 ≤ i ≤ k, let Fi be an induced subgraphs

of G by S i. Note that Fi is a generalized star graph. By Lemma 2, we obtain dimf (Fi) =
L(wi)

2
. So, we can say that

dimf (S ) = 1
2

∑k
i=1 L(wi). However, we also always can find a pair of vertices u, v ∈ V(G) such that R{u, v} ∩ S = ∅.

Therefore, we obtain that dimf (G) ≥ g4(V(G)) ≥ 1 + 1
2

∑k
i=1 L(wi).

Case 5.5. G ∈ D1 ∪ E
For 1 ≤ i ≤ k, we define a vertex set S i as the set of all vertices of degree one in leaf of node wi. We define

S = S 1 ∪ S 2 ∪ . . . ∪ S k. First, we define a function f5 : V(G)→ [0, 1] such that for v ∈ V(G), we have

f5(v) =

{
1
2
, if v ∈ S ,

0, otherwise.

Note that for any two different vertices u, v ∈ V(G), |R{u, v} ∩ S | ≥ 2. So, we have f5(R{u, v}) ≥ 1. Therefore, f5 is a

resolving function of G. Hence, dimf (G) ≤ f5(V(G)) = 1
2

∑k
i=1 L(wi).

For the lower bound, let g5 be a minimal resolving function of G. For 1 ≤ i ≤ k, let Fi be an induced subgraphs

of G by S i. Note that Fi is a generalized star graph. By Lemma 2, we obtain dimf (Fi) =
L(wi)

2
. So, we can say that

dimf (S ) = 1
2

∑k
i=1 L(wi). Therefore, we obtain that dimf (G) ≥ g5(V(G)) ≥ 1

2

∑k
i=1 L(wi).

In Theorem 6, we give the upper bound of dimf (G) for G ∈ B5. We also show that the bound is sharp. In Theorem 7,

we provide an existence of unicyclic graph G ∈ B5 such that dimf (G) is not equal to the upper bound in Theorem 6.

Theorem 6. Let G be a unicyclic graph in class B5. Let R be an induced subgraph of G which is isomorphic to cycle
graph. Then

dimf (G) ≤ 2|V(R)|
|V(R)| + 3

.

The bounds is sharp.

Proof. Let S = {v ∈ V(G)|degree of v is 1} ∪ {v ∈ V(R)|degree of v is 2}. We define a function f : V(G)→ [0, 1] such

that for v ∈ V(G), we have

f (v) =

{
2

|V(R)|+3
, if v ∈ S ,

0, otherwise.

Note that for any two different vertices u, v ∈ V(G), |R{u, v} ∩ S | ≥ |V(R)|+3
2

. So, we have f (R{u, v}) ≥ 1. Therefore, f
is a resolving function of G. Hence, dimf (G) ≤ f (V(G)) = 2|V(R)|

|V(R)|+3
.

Now, we consider a unicyclic G which is obtained from Cn where n ≥ 5 is odd and every vertex of Cn has one leaf.

We will prove that dimf (G) = 2|V(R)|
|V(R)|+3

. Now, we need to show that dimf (G) ≤ 2|V(R)|
|V(R)|+3

.
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Let g be a resolving function of G. Let V(R) = {x0, x1, . . . , xn−1} where R = x0x1 . . . xn−1x0. For 0 ≤ i ≤ n − 1, let

yi � V(R) but yixi ∈ E(G) and L(xi) be a leaf of xi. Note that R{xi mod n, y(i−1) mod n} = V(G) \ (V(L(x( n+1
2
+i) mod n)) ∪

. . . ∪ V(L(x(n−1+i) mod n)) ∪ {xi−1}). Since g(R{a, b}) ≥ 1 for every two distinct vertices a, b ∈ V(G), we obtain that

n−1∑
i=0

g(R{xi mod n, y(i−1) mod n}) = n · g(V(G)) − n − 3

2
· g(V(G)) −

n−1∑
i=0

g(xi) ≥ n

Since g(xi) ≥ 0 for 1 ≤ i ≤ n − 1, we will obtain that g(V(G)) ≥ 2n
n+3

.

Theorem 7. There exists a unicyclic graph G ∈ B5 such that for an induced subgraph R of G which is isomorphic to
cycle graph, dimf (G) < 2|V(R)|

|V(R)|+3
.

Proof. Let G be a unicyclic graph having an odd cycle R with |V(R)| ≥ 7 and 3 grass roots such that 2 grass roots

a, b ∈ V(G) are adjacent and another grass root c ∈ V(G) satisfies d(c, a) = d(c, b) = |V(R)|−1
2

. We will prove that

dimf (G) = 5
4
. Note that for |V(R)| ≥ 7, we have

5

4
=

5(|V(R)| + 3)

4(|V(R)| + 3)
<

8|V(R)|
4(|V(R)| + 3)

=
2|V(R)|
|V(R)| + 3

.

First, let S = {u ∈ V(G)| degree of u is 1} ∪ {v ∈ V(R)|vc ∈ E(G)}. Now, we define a function f : V(G) → [0, 1]

such that for v ∈ V(G), we have

f (v) =

{
1
4
, if v ∈ S ,

0, otherwise.

Note that for any two different vertices u, v ∈ V(G), |R{u, v} ∩ S | ≥ 4. So, we have f (R{u, v}) ≥ 1. Therefore, f is a

resolving function of G. Hence, dimf (G) ≤ f (V(G)) = 5
4
.

For the lower bound, suppose that dimf (G) < 5
4
. Let g be a minimal resolving function of G such that g(V(G)) < 5

4
.

Let ya, yb, yc � V(R) such that for t ∈ {a, b, c}, tyt ∈ E(G). Let v1, v2 ∈ V(R) be two distinct vertices which are adjacent

to c and Lw be a leaf of node w in R.

Since R{v1, v2} = V(G) \ V(Lc), we obtain g(V(Lc)) = 1
4
− k for positive k ∈ R. Now, we consider R{ya, b} and

R{yb, a}. We can say that R{ya, b} = V(Lc)∪ X and R{yb, a} = V(Lc)∪ Y . So, we obtain that g(X) = 3
4
+ k = g(Y). Note

that X ∩ Y = ∅ and R{v1, v2} = V(G) \ V(Lc) = X ∪ Y . It follows that g(V(G)) = g(V(Lc)) + g(X) + g(y) = 7
4
+ k, a

contradiction.
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3. Chvátal V. Mastermind. Combinatorica 1983;3:325-329.

4. Currie J, Oellermann OR. The metric dimension and metric independence of a graph. J. Combin. Math. Combin. Comput. 2001;39:157-167.

5. Feng M, Lv B, Wang K. On the fractional metric dimension of graphs. Discrete Appl. Math. 2014;170:55-63.

6. Feng M, Wang K. On the fractional metric dimension of corona product graphs and lexicographic product graphs. arXiv:1206.1906v1.

7. Khuller S, Raghavachari B, Rosenfeld A. Landmarks in graphs. Discrete Appl. Math. 1996;70:217-229.

8. Shapiro H, Soderberg S. A combinatory detection problem. Amer. Math. Monthly 1963;70:1066-1070.

9. Slater PJ. Leaves of trees. Congr. Numer. 1975;14:549-559.


