International Conference on Graph Theory and Information Security Fractional Metric Dimension of Tree and Unicyclic Graph

Daniel A. Krismanto, Suhadi Wido Saputro
Combinatorial Mathematics Research Group, Faculty of Mathematics and Natural Sciences, Institut Teknologi Bandung, Jalan Ganesa 10, Bandung 40132, Indonesia

Abstract

A vertex v in a simple connected graph G resolves two vertices x and y in G if the distance from x to v is not equal to distance from y to v. The vertex set $R\{x, y\}$ is defined as the set of vertices in G which resolve x and y. A function $f: V(G) \rightarrow[0,1]$ is called a resolving function of G if $f(R\{x, y\}) \geq 1$ for any two distinct vertices x and y in G. The minimal value of $f(V(G))$ for all resolving functions f of G is called the fractional metric dimension of G. In this paper, we determine the fractional metric dimension of G where G is a tree or G is a unicyclic graph.

© 2015 The Authors. Published by Elsevier B.V. This is an open access article under the CC BY-NC-ND license
(http://creativecommons.org/licenses/by-nc-nd/4.0/).
Peer-review under responsibility of the Organizing Committee of ICGTIS 2015
Keywords: Fractional metric dimension, resolving function, tree graph, unicyclic graph.
2010 MSC: 05C12, 05C78

1. Introduction

Throughout this paper, all graphs G are finite, connected, and simple. We denote by V the vertex set of G and by E the edge set of G. The distance between two vertices $u, v \in V(G)$, denoted by $d(u, v)$, is the length of a shortest path from u to v in G. For $u, v \in V(G)$, we define $R\{u, v\}=\{z \in V(G) \mid d(u, z) \neq d(v, z)\}$. A vertex set $W \subseteq V(G)$ is called a resolving set of G if $W \cap R\{u, v\} \neq \emptyset$ for any two distinct vertices $u, v \in V(G)$. The minimum cardinality of all resolving sets of G is called the metric dimension of G.

The metric dimension concept has been applied to many various areas including coin weighing problem ${ }^{[8]}$, robot navigation ${ }^{[7]}$, and strategies for the mastermind game ${ }^{[3]}$. Determining the metric dimension of a graph was formulated as an integer programming problem by Chartrand et al. ${ }^{[2]}$. Furthermore, Currie and Oellermann ${ }^{[4]}$ defined fractional metric dimension as the optimal solution of the linear relaxation of the integer programming problem.

Let f be a function assigning each vertex v of G a real number $f(u) \in[0,1]$. For $W \subseteq V(G)$, denote $f(W)=$ $\sum_{v \in W} f(v)$. The function f is called a resolving function of G if $f(R\{u, v\}) \geq 1$ for any two distinct vertices u and v in G. The minimum value of $f(V(G))$ for any resolving function f of G is called the fractional metric dimension of G, denoted by $\operatorname{dim}_{f}(G)$.

[^0]The fractional metric dimension problem was initiated by Arumugam and Mathew ${ }^{[1]}$ in 2012. They provided a sufficient condition for a connected graph G whose fractional metric dimension is $\frac{|V(G)|}{2}$. They also determined $\operatorname{dim}_{f}(G)$ where G is Petersen graph, cycles, hypercubes, stars, wheels, friendship graph, and grids.

Some authors applied this topic to some product graphs. Feng et al. ${ }^{[5]}$ have determined the fractional metric dimension of Cartesian product of two graphs. In other paper ${ }^{[6]}$, Feng et al. also studied the fractional metric dimension of corona and lexicographic product graphs.

In this paper we consider tree and unicyclic graph. Unicyclic graph is a graph obtained from a tree by adding one more edge. Note that unicyclic graph contains one cycle. The study of fractional metric dimension for a tree has been initiated by Arumugam and Mathew ${ }^{[1]}$. They have proved that $\operatorname{dim}_{f}\left(P_{n}\right)=1$. They also provided an exact value for the fractional metric dimenison of star and bistar. In this paper, we are interested to determine the fractional metric dimension of any trees. We also investigate the fractional metric dimension of unicyclic graph.

2. Fractional metric dimension of tree

Let G be a tree and v be a vertex of G. A branch of G at v is defined as a maximal subtree of G containing v as an end point. So, if degree of v is k, then v has at most k different branches. A branch of v which is isomorphic to a path is called a leaf of v. If there is a leaf from v, then v is called a stem of G. A stem vertex v is called a node if v has more than one leaves. Those definitions are firstly introduced by Slater ${ }^{[9]}$.

For $1 \leq i \leq n$ and $m_{i} \geq 1$, we define a generalized star graph $S_{n}\left(m_{1}, m_{2}, \ldots, m_{n}\right)$ as a tree graph having $m_{1}+m_{2}+$ $\ldots+m_{n}+1$ vertices and containing a vertex of degree n which has n leaves where the length of the i-th leaf is m_{i}. Note that if v is a node in a tree graph G, then an induced subgraph of G by v and all of its leaves is isomorphic to a generalized star graph.

Lemma 1. Let G be a generalized star graph and w be a node in G. Let $u \in V(G)$ where degree of u is 1 . If two distinct vertices $x, y \in V(G)$ satisfy $w \in R\{x, y\}$, then $u \in R\{x, y\}$.

Proof. Suppose that x and y are two distinct vertices in G such that $w \in R\{x, y\}$ but $u \notin R\{x, y\}$. Let L_{1} and L_{2} are leaves of w which are containing x and y respectively. Since $u \notin R\{x, y\}$, we have $d(x, u)=d(y, u)$. So, $u \notin V\left(L_{1}\right)$ and $u \notin V\left(L_{2}\right)$. Therefore, we obtain $d(x, u)=d(x, w)+d(w, u)$ and $d(y, u)=d(y, w)+d(w, u)$. It follows that $d(x, w)=d(y, w)$ which implies $w \notin R\{x, y\}$, a contradiction.

Lemma 2. For $n \geq 3$, let G be a generalized star $\operatorname{graph} S_{n}\left(m_{1}, m_{2}, \cdots, m_{n}\right)$. Then $\operatorname{dim}_{f}(G)=\frac{n}{2}$.
Proof. First, we will prove that $\operatorname{dim}_{f}(G) \leq \frac{n}{2}$. We define the function $f: V(G) \rightarrow[0,1]$ where

$$
f(v)=\left\{\begin{array}{l}
\frac{1}{2}, \text { if degree of } v \text { is } 1, \\
0, \text { otherwise. }
\end{array}\right.
$$

For any two different vertices $u, v \in V(G)$ and also considering Lemma $1, R\{u, v\}$ contains two distinct vertices of degree 1. So, we have $f(R\{u, v\}) \geq 1$. Therefore, f is a resolving function of G. Hence, $\operatorname{dim}_{f}(G) \leq f(V(G))=\frac{n}{2}$.

Now, we will prove $\operatorname{dim}_{f}(G) \geq \frac{n}{2}$. Let g be a minimum resolving function of G. Let x and y be two different vertices in G. Then there exist two different vertices $u, v \in V(G)$ from two different leaves of G such that $u, v \in R\{x, y\}$. Let L_{u} and L_{v} be two leaves of G containing u and v respectively. Note that $V\left(L_{u}\right) \cup V\left(L_{v}\right) \subseteq R\{x, y\}$. So, $g\left(V\left(L_{u}\right) \cup V\left(L_{v}\right)\right) \geq 1$. It follows that for every leaf L of G, we have $g(V(L)) \geq \frac{1}{2}$. Hence, $\operatorname{dim}_{f}(G) \geq \frac{n}{2}$.

Using both Lemmas 1 and 2, we can obtain the following theorem.
Theorem 3. Let G be a tree graph with k nodes $w_{1}, w_{2}, \ldots, w_{k}$. Let $L(w)$ be the number of leaf of node w of G. Then

$$
\operatorname{dim}_{f}(G)=\frac{1}{2} \sum_{i=1}^{k} L\left(w_{i}\right)
$$

Proof. To proof Theorem 3 above, we use the following definitions. For $1 \leq i \leq k$, we define S_{i} as an induced subgraph of G by w_{i} and all vertices of its leaves. Note that S_{i} is isomorphic to a generalized star graph. Let $S=V\left(S_{1}\right) \cup V\left(S_{2}\right) \cup \ldots \cup V\left(S_{k}\right)$.

First, we define a function $f: V(G) \rightarrow[0,1]$ as

$$
f(v)=\left\{\begin{array}{l}
\frac{1}{2}, \text { if } v \in S \text { and degree of } v \text { is } 1, \\
0, \text { otherwise }
\end{array}\right.
$$

For any two different vertices $u, v \in V(G), R\{u, v\}$ contains two distinct vertices of S of degree 1 . So, we have $f(R\{u, v\}) \geq 1$. Therefore, f is a resolving function of G. Hence, $\operatorname{dim}_{f}(G) \leq f(V(G))=\frac{1}{2} \sum_{i=1}^{k} L\left(w_{i}\right)$.

Now, let g be a minimal resolving function of G. Since S_{i} is a generalized star graph for $1 \leq i \leq k$, by Lemma 2 we obtain $\operatorname{dim}_{f}(G) \geq g(S)=\frac{1}{2} \sum_{i=1}^{k} L\left(w_{i}\right)$.

Remark 4. Theorem 3 above strengthen Arumugam and Mathew's result of star graph.

3. Fractional metric dimension of unicyclic graph

In this section, let G be a unicyclic graph. Let R be an induced subgraph of G which is isomorphic to a cycle. A vertex $v \in V(R)$ is called a root if degree of v is more than 2 . If a root v has degree 3 and $G-v$ has a path component, then v is called a grass root. We also consider a vertex set $Q \subseteq V(R)$ which is a set of all vertices of degree at least 3 in R and vertex set $A \subseteq Q$ which is a maximal subset of Q such that for every $u, v \in A, d(u, v) \neq\left\lfloor\frac{|V(R)|}{2}\right\rfloor$. For vertex $v \notin V(R)$, we still use the definitions of branch, leaf, stem, and node as stated in Section 2.

Let $\mathcal{A}, \mathcal{B}, \mathcal{C}, \mathcal{D}, \mathcal{E}$ be collections of unicyclic graphs G where:

1. \mathcal{A} is a set of G which is isomorphic to a cycle graph.
2. \mathcal{B} is a set of G having only grass $\operatorname{root}(\mathrm{s})$.

Furthermore, we decompose \mathcal{B} into 5 partitions $\mathcal{B}_{1}, \mathcal{B}_{2}, \ldots, \mathcal{B}_{5}$ where:
(a) $G \in \mathcal{B}_{1}$ if $G \in \mathcal{B}$ and R of G is isomorphic to C_{4}.
(b) $G \in \mathcal{B}_{2}$ if $G \in \mathcal{B}$ and R of G is an even cycle of order at least 6 and $|A| \leq 3$.
(c) $G \in \mathcal{B}_{3}$ if $G \in \mathcal{B}$ and R of G is an even cycle of order at least 6 and $|A| \geq 4$.
(d) $G \in \mathcal{B}_{4}$ if $G \in \mathcal{B}$ and R is isomorphic to C_{3}.
(e) $G \in \mathcal{B}_{5}$ if $G \in \mathcal{B}$ and R of G is an odd cycle of order at least 5 .
3. C is a set of G having exactly one root which is not grass root.
4. \mathcal{D} is a set of G having exactly two roots which are not grass root.

Furthermore, we decompose \mathcal{D} into 2 partitions \mathcal{D}_{1} and \mathcal{D}_{2} where:
(a) $G \in \mathcal{D}_{1}$ if $G \in \mathcal{D}, R$ is isomorphic to even cycle, and for two distinct roots $u, v \in V(G), d(u, v)=\frac{|V(R)|}{2}$.
(b) $G \in \mathcal{D}_{2}$ if $G \in \mathcal{D}$ but $G \notin \mathcal{D}_{1}$.
5. \mathcal{E} is the set of G which is not in class $\mathcal{A}, \mathcal{B}, C$, or \mathcal{D}.

In theorem below, we give an exact values of fractional metric dimension of a unicyclic graph G in some collections.
Theorem 5. Let G be a unicyclic graph of order $n \geq 3$ having k nodes $w_{1}, w_{2}, \ldots, w_{k}$. Let $L(w)$ be the number of leaf of node w of G. Let R be an induced subgraph of G which is isomorphic to a cycle. Let $Q \subseteq V(R)$ be a set of all vertices of degree at least 3 in R and $A \subseteq Q$ be a maximal subset of Q such that for every $u, v \in A, d(u, v) \neq\left\lfloor\frac{|V(R)|}{2}\right\rfloor$. If $G \notin \mathcal{B}_{5}$, then

$$
\operatorname{dim}_{f}(G)= \begin{cases}\frac{|V(R)|}{|V(R)|-1}, & \text { if } G \in \mathcal{A} \text { and } R \text { is even cycle }, \\ \frac{|(R)|}{|V(R)|-2}, & \text { if } G \in \mathcal{A} \text { and } R \text { is odd cycle } \\ 2, & \text { if } G \in \mathcal{B}_{1}, \\ \frac{3}{2}, & \text { if } G \in \mathcal{B}_{2} \cup \mathcal{B}_{4}, \\ \frac{2|A|}{|A|+1}, & \text { if } G \in \mathcal{B}_{3}, \\ 1+\frac{1}{2} \sum_{i=1}^{k} L\left(w_{i}\right), & \text { if } G \in \mathcal{C} \cup \mathcal{D}_{1}, \\ \frac{1}{2} \sum_{i=1}^{k} L\left(w_{i}\right), & \text { if } G \in \mathcal{D}_{2} \cup \mathcal{E} .\end{cases}
$$

Proof. Note that all unicyclic graphs in \mathcal{A} are isomorphic to cycle graph. The fractional metric dimension of cycle graph has been determined by Arumugam and Mathew ${ }^{[1]}$. Now, we assume that $G \notin \mathcal{A} \cup \mathcal{B}_{5}$.

Case 5.1. $G \in \mathcal{B}_{1}$
First, we define a function $f_{1}: V(G) \rightarrow[0,1]$ such that for $v \in V(G)$, we have

$$
f_{1}(v)=\left\{\begin{array}{l}
\frac{1}{2}, \text { if degree of } v \text { is } 1, \\
\frac{1}{2}, \text { if degree of } v \text { is } 2 \text { and } v \in V(R), \\
0, \text { otherwise. }
\end{array}\right.
$$

Let X_{1} be vertex set of G containing all vertices of degree 1 . Let X_{2} be vertex set of R containing all vertices of degree 2. Note that for any two different vertices $u, v \in V(G)$, there exist two distinct vertices $x, y \in X_{1} \cup X_{2}$ such that $x, y \in R\{u, v\}$. So, we have $f_{1}(R\{u, v\}) \geq 1$. Therefore, f_{1} is a resolving function of G. Hence, $\operatorname{dim}_{f}(G) \leq f_{1}(V(G))=2$.

Now, let g_{1} be a minimal resolving function of G. Note that there exist two different pair of vertices (a, b) and (c, d) in $V(G)$ such that $R\{a, b\} \cap R\{c, d\}=\emptyset$. It follows that $\operatorname{dim}_{f}(G) \geq g_{1}(R\{a, b\} \cup R\{c, d\}) \geq 2$.

Case 5.2. $G \in \mathcal{B}_{2} \cup \mathcal{B}_{3}$
We define vertex set X as the set of all vertices of R where for every $x \in X$ there exists $a \in A$ such that $d(x, a)=\frac{|V(R)|}{2}$. If $|A \cup X| \leq 6$, we define vertex set $C \subseteq V(R) \backslash(A \cup X)$ such that $|C|=6-|A \cup X|$ and for every $x \in C$ there exists $y \in C$ such that $d(x, y)=\frac{|V(R)|}{2}$. We also define B as the subset of X where degree of every vertex of B is 2 . Note that A, B, and C are disjoint. Let V_{1} be a subset of $V(G)$ containing all vertices of degree 1 , and $S=V_{1} \cup B \cup C$.

First, we define a function $f_{2}: V(G) \rightarrow[0,1]$ such that for $v \in V(G)$, we have

$$
f_{2}(v)= \begin{cases}\frac{1}{4}, & \text { if } v \in S \text { and } G \in \mathcal{B}_{2}, \\ \frac{1}{A \mid+1}, & \text { if } v \in S \text { and } G \in \mathcal{B}_{3}, \\ 0, & \text { otherwise. } .\end{cases}
$$

Note that for any two different vertices $u, v \in V(G)$, if $G \in \mathcal{B}_{2}$, then $|R\{u, v\} \cap S| \geq 4$, otherwise $|R\{u, v\} \cap S| \geq|A|+1$. So, we have $f_{2}(R\{u, v\}) \geq 1$. Therefore, f_{2} is a resolving function of G. Hence, $\operatorname{dim}_{f}(G) \leq f_{2}(V(G))=\frac{3}{2}$ for $G \in \mathcal{B}_{2}$ and $\operatorname{dim}_{f}(G) \leq f_{2}(V(G))=\frac{2|A|}{|A|+1}$ for $G \in \mathcal{B}_{3}$.

For $1 \leq i \leq|A|$, let $w_{i} \in A, x_{i}$ and y_{i} be two different vertices in $V(R)$ such that $d\left(x_{i}, w_{i}\right)=d\left(y_{i}, w_{i}\right)=1$, and $z_{i} \notin V(R)$ such that $d\left(w_{i}, z_{i}\right)=1$. Let $H_{i}=R\left\{x_{i}, z_{i}\right\} \cap R\left\{y_{i}, z_{i}\right\}$. We distinguish two cases.

1. $G \in \mathcal{B}_{2}$

Let g_{2} be a minimal resolving function of G. Since $V(G)=\left(R\left\{x_{i}, z_{i}\right\} \cup R\left\{y_{i}, z_{i}\right\}\right) \backslash H_{i}$, we obtain $g_{2}(V(G))+g_{2}\left(H_{i}\right) \geq$
2. Since $R\left\{x_{i}, y_{i}\right\} \subseteq V(G) \backslash H_{i}$, we obtain $g_{2}(V(G))-g_{2}\left(H_{i}\right) \geq 1$. Therefore, we have $\operatorname{dim}_{f}(G) \geq g_{2}(V(G)) \geq \frac{3}{2}$.
2. $G \in \mathcal{B}_{3}$

Suppose that g_{2} be a minimal resolving function of G where $g_{2}(V(G))<\frac{2|A|}{|A|+1}$. Since $V(G)=\left(R\left\{x_{i}, z_{i}\right\} \cup\right.$ $\left.R\left\{y_{i}, z_{i}\right\}\right) \backslash H_{i}$, we obtain $g_{2}(V(G))+g_{2}\left(H_{i}\right) \geq 2$. Since $R\left\{x_{i}, y_{i}\right\} \subseteq V(G) \backslash H_{i}$, we obtain $g_{2}\left(H_{i}\right) \geq \frac{2}{|A|+1}$. Note that $V(G)=V\left(H_{1}\right) \cup V\left(H_{2}\right) \cup \ldots \cup V\left(H_{|A|}\right)$. Therefore,

$$
g_{2}(V(G))=\sum_{i=1}^{|A|} g_{2}\left(H_{i}\right) \geq \frac{2|A|}{|A|+1} .
$$

So, it is impossible to have a minimal resolving function g_{2} of G where $g_{2}(V(G))<\frac{2|A|}{|A|+1}$.

Case 5.3. $G \in \mathcal{B}_{4}$

Let S be a vertex set of G containing all vertices of G of degree 1 and all vertices of R of degree 2 . First, we define a function $f_{3}: V(G) \rightarrow[0,1]$ such that for $v \in V(G)$, we have

$$
f_{3}(v)=\left\{\begin{array}{l}
\frac{1}{2}, \text { if } v \in S, \\
0, \text { otherwise } .
\end{array}\right.
$$

Note that for any two different vertices $u, v \in V(G),|R\{u, v\} \cap S| \geq 2$. So, we have $f_{3}(R\{u, v\}) \geq 1$. Therefore, f_{3} is a resolving function of G. Hence, $\operatorname{dim}_{f}(G) \leq f_{3}(V(G))=\frac{3}{2}$.

Now, let g_{3} be a minimal resolving function of G. Let $V(R)=\left\{x_{1}, x_{2}, x_{3}\right\}$ and L_{i} be a leaf of x_{i} for $1 \leq i \leq 3$. Note that for distinct $i, j \in\{1,2,3\}, V\left(L_{i}\right) \cup V\left(L_{j}\right) \in R\left\{x_{i}, x_{j}\right\}$. Without loss of generality, let $g_{3}\left(V\left(L_{1}\right)\right)=t$ for $t \in[0,1]$. So, we obtain $g_{3}\left(V\left(L_{2}\right)\right)=1-t$ and $g_{3}\left(V\left(L_{3}\right)\right)=\max \{t, 1-t\}$. It follows that $t=\frac{1}{2}$. So, we have that $\operatorname{dim}_{f}(G) \geq g_{3}(V(G))=\frac{3}{2}$.

Case 5.4. $G \in C \cup \mathcal{D}_{1}$
For $1 \leq i \leq k$, we define a vertex set S_{i} as the set of all vertices of degree one in leaf of node w_{i}. Choose a pair of vertices $x, y \in V(R)$ such that $d(x, y)=\left\lfloor\frac{|V(R)|}{2}\right\rfloor$ and for $a \in\{x, y\}$, either degree of a is 2 or a is a grass root of G. We define $S=S_{1} \cup S_{2} \cup \ldots \cup S_{k}$ and $T=S \cup\{x, y\}$.

First, we define a function $f_{4}: V(G) \rightarrow[0,1]$ such that for $v \in V(G)$, we have

$$
f_{4}(v)=\left\{\begin{array}{l}
\frac{1}{2}, \text { if } v \in T \\
0, \text { otherwise }
\end{array}\right.
$$

Note that for any two different vertices $u, v \in V(G),|R\{u, v\} \cap T| \geq 2$. So, we have $f_{4}(R\{u, v\}) \geq 1$. Therefore, f_{4} is a resolving function of G. Hence, $\operatorname{dim}_{f}(G) \leq f_{4}(V(G))=1+\frac{1}{2} \sum_{i=1}^{k} L\left(w_{i}\right)$.

For the lower bound, let g_{4} be a minimal resolving function of G. For $1 \leq i \leq k$, let F_{i} be an induced subgraphs of G by S_{i}. Note that F_{i} is a generalized star graph. By Lemma 2, we obtain $\operatorname{dim}_{f}\left(F_{i}\right)=\frac{L\left(w_{i}\right)}{2}$. So, we can say that $\operatorname{dim}_{f}(S)=\frac{1}{2} \sum_{i=1}^{k} L\left(w_{i}\right)$. However, we also always can find a pair of vertices $u, v \in V(G)$ such that $R\{u, v\} \cap S=\emptyset$. Therefore, we obtain that $\operatorname{dim}_{f}(G) \geq g_{4}(V(G)) \geq 1+\frac{1}{2} \sum_{i=1}^{k} L\left(w_{i}\right)$.

Case 5.5. $G \in \mathcal{D}_{1} \cup \mathcal{E}$
For $1 \leq i \leq k$, we define a vertex set S_{i} as the set of all vertices of degree one in leaf of node w_{i}. We define $S=S_{1} \cup S_{2} \cup \ldots \cup S_{k}$. First, we define a function $f_{5}: V(G) \rightarrow[0,1]$ such that for $v \in V(G)$, we have

$$
f_{5}(v)=\left\{\begin{array}{l}
\frac{1}{2}, \text { if } v \in S \\
0, \text { otherwise }
\end{array}\right.
$$

Note that for any two different vertices $u, v \in V(G),|R\{u, v\} \cap S| \geq 2$. So, we have $f_{5}(R\{u, v\}) \geq 1$. Therefore, f_{5} is a resolving function of G. Hence, $\operatorname{dim}_{f}(G) \leq f_{5}(V(G))=\frac{1}{2} \sum_{i=1}^{k} L\left(w_{i}\right)$.

For the lower bound, let g_{5} be a minimal resolving function of G. For $1 \leq i \leq k$, let F_{i} be an induced subgraphs of G by S_{i}. Note that F_{i} is a generalized star graph. By Lemma 2, we obtain $\operatorname{dim}_{f}\left(F_{i}\right)=\frac{L\left(w_{i}\right)}{2}$. So, we can say that $\operatorname{dim}_{f}(S)=\frac{1}{2} \sum_{i=1}^{k} L\left(w_{i}\right)$. Therefore, we obtain that $\operatorname{dim}_{f}(G) \geq g_{5}(V(G)) \geq \frac{1}{2} \sum_{i=1}^{k} L\left(w_{i}\right)$.

In Theorem 6, we give the upper bound of $\operatorname{dim}_{f}(G)$ for $G \in \mathcal{B}_{5}$. We also show that the bound is sharp. In Theorem 7, we provide an existence of unicyclic graph $G \in \mathcal{B}_{5}$ such that $\operatorname{dim}_{f}(G)$ is not equal to the upper bound in Theorem 6 .

Theorem 6. Let G be a unicyclic graph in class \mathcal{B}_{5}. Let R be an induced subgraph of G which is isomorphic to cycle graph. Then

$$
\operatorname{dim}_{f}(G) \leq \frac{2|V(R)|}{|V(R)|+3}
$$

The bounds is sharp.
Proof. Let $S=\{v \in V(G) \mid$ degree of v is 1$\} \cup\{v \in V(R) \mid$ degree of v is 2$\}$. We define a function $f: V(G) \rightarrow[0,1]$ such that for $v \in V(G)$, we have

$$
f(v)= \begin{cases}\frac{2}{|V(R)|+3}, & \text { if } v \in S \\ 0, & \text { otherwise }\end{cases}
$$

Note that for any two different vertices $u, v \in V(G),|R\{u, v\} \cap S| \geq \frac{|V(R)|+3}{2}$. So, we have $f(R\{u, v\}) \geq 1$. Therefore, f is a resolving function of G. Hence, $\operatorname{dim}_{f}(G) \leq f(V(G))=\frac{2|V(R)|}{|V(R)|+3}$.

Now, we consider a unicyclic G which is obtained from C_{n} where $n \geq 5$ is odd and every vertex of C_{n} has one leaf. We will prove that $\operatorname{dim}_{f}(G)=\frac{2|V(R)|}{|V(R)|+3}$. Now, we need to show that $\operatorname{dim}_{f}(G) \leq \frac{2|V(R)|}{|V(R)|+3}$.

Let g be a resolving function of G. Let $V(R)=\left\{x_{0}, x_{1}, \ldots, x_{n-1}\right\}$ where $R=x_{0} x_{1} \ldots x_{n-1} x_{0}$. For $0 \leq i \leq n-1$, let
 $\left.\ldots \cup V\left(L\left(x_{(n-1+i)} \bmod n\right)\right) \cup\left\{x_{i-1}\right\}\right)$. Since $g(R\{a, b\}) \geq 1$ for every two distinct vertices $a, b \in V(G)$, we obtain that

$$
\sum_{i=0}^{n-1} g\left(R\left\{x_{i} \bmod n, y_{(i-1)} \bmod n\right\}\right)=n \cdot g(V(G))-\frac{n-3}{2} \cdot g(V(G))-\sum_{i=0}^{n-1} g\left(x_{i}\right) \geq n
$$

Since $g\left(x_{i}\right) \geq 0$ for $1 \leq i \leq n-1$, we will obtain that $g(V(G)) \geq \frac{2 n}{n+3}$.
Theorem 7. There exists a unicyclic graph $G \in \mathcal{B}_{5}$ such that for an induced subgraph R of G which is isomorphic to cycle graph, $\operatorname{dim}_{f}(G)<\frac{2|V(R)|}{\mid V(R)+3}$.
Proof. Let G be a unicyclic graph having an odd cycle R with $|V(R)| \geq 7$ and 3 grass roots such that 2 grass roots $a, b \in V(G)$ are adjacent and another grass root $c \in V(G)$ satisfies $d(c, a)=d(c, b)=\frac{|V(R)|-1}{2}$. We will prove that $\operatorname{dim}_{f}(G)=\frac{5}{4}$. Note that for $|V(R)| \geq 7$, we have

$$
\frac{5}{4}=\frac{5(|V(R)|+3)}{4(|V(R)|+3)}<\frac{8|V(R)|}{4(|V(R)|+3)}=\frac{2|V(R)|}{|V(R)|+3} .
$$

First, let $S=\{u \in V(G) \mid$ degree of u is 1$\} \cup\{v \in V(R) \mid v c \in E(G)\}$. Now, we define a function $f: V(G) \rightarrow[0,1]$ such that for $v \in V(G)$, we have

$$
f(v)=\left\{\begin{array}{l}
\frac{1}{4}, \text { if } v \in S, \\
0, \text { otherwise. }
\end{array}\right.
$$

Note that for any two different vertices $u, v \in V(G),|R\{u, v\} \cap S| \geq 4$. So, we have $f(R\{u, v\}) \geq 1$. Therefore, f is a resolving function of G. Hence, $\operatorname{dim}_{f}(G) \leq f(V(G))=\frac{5}{4}$.

For the lower bound, suppose that $\operatorname{dim}_{f}(G)<\frac{5}{4}$. Let g be a minimal resolving function of G such that $g(V(G))<\frac{5}{4}$. Let $y_{a}, y_{b}, y_{c} \notin V(R)$ such that for $t \in\{a, b, c\}$, ty $y_{t} \in E(G)$. Let $v_{1}, v_{2} \in V(R)$ be two distinct vertices which are adjacent to c and L_{w} be a leaf of node w in R.

Since $R\left\{v_{1}, v_{2}\right\}=V(G) \backslash V\left(L_{c}\right)$, we obtain $g\left(V\left(L_{c}\right)\right)=\frac{1}{4}-k$ for positive $k \in \mathbb{R}$. Now, we consider $R\left\{y_{a}, b\right\}$ and $R\left\{y_{b}, a\right\}$. We can say that $R\left\{y_{a}, b\right\}=V\left(L_{c}\right) \cup X$ and $R\left\{y_{b}, a\right\}=V\left(L_{c}\right) \cup Y$. So, we obtain that $g(X)=\frac{3}{4}+k=g(Y)$. Note that $X \cap Y=\emptyset$ and $R\left\{v_{1}, v_{2}\right\}=V(G) \backslash V\left(L_{c}\right)=X \cup Y$. It follows that $g(V(G))=g\left(V\left(L_{c}\right)\right)+g(X)+g(y)=\frac{7}{4}+k$, a contradiction.

Acknowledgement. This work is supported by Institut Teknologi Bandung, Indonesia by research grant "Riset dan Inovasi ITB 2015". The authors also are very grateful to the referees for their careful reading with corrections and useful comments.

References

1. Arumugam S, Mathew V. The fractional metric dimension of graphs. Discrete Math. 2012;32:1584-1590.
2. Chartrand G, Eroh L, Johnson MA, Oellermann OR. Resolvability in graphs and the metric dimension of a graph. Discrete Appl. Math. 2000;105:99-113.
3. Chvátal V. Mastermind. Combinatorica 1983;3:325-329.
4. Currie J, Oellermann OR. The metric dimension and metric independence of a graph. J. Combin. Math. Combin. Comput. 2001;39:157-167.
5. Feng M, Lv B, Wang K. On the fractional metric dimension of graphs. Discrete Appl. Math. 2014;170:55-63.
6. Feng M, Wang K. On the fractional metric dimension of corona product graphs and lexicographic product graphs. arXiv:1206.1906v1.
7. Khuller S, Raghavachari B, Rosenfeld A. Landmarks in graphs. Discrete Appl. Math. 1996;70:217-229.
8. Shapiro H, Soderberg S. A combinatory detection problem. Amer. Math. Monthly 1963;70:1066-1070.
9. Slater PJ. Leaves of trees. Congr. Numer. 1975;14:549-559.

[^0]: E-mail address: daniel.a.k.2693@gmail.com, suhadi@math.itb.ac.id

