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1. Introduction

D. Mayer [7], defined the operator

LMa
s f (z) =

∞∑
n=1

(z + n)−2s f

(
1

z + n

)
(1)

on the Banach space of continuous functions on the disk |z − 1| � 3
2 , holomorphic on |z − 1| < 3

2 ,

with the supremum norm. The series converges absolutely if Re(s) > 1
2 . There is a meromorphic con-
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tinuation in s, with a pole at 1
2 as the sole singularity in the region Re(s) > 0. The operator LMa

s
is a transfer operator for the Artin billiard dynamical system [1]. It is connected to the Gauss map
x �→ 1

x − [ 1
x ] on [0,1]. Ultimately, this dynamical system comes from closed billiard flows on the quo-

tient of the upper half plane by PGL(2, )Z . (Here ±( −1 0
0 1

)
acts by z �→ −z̄.) An introductory lecture

on Mayer’s transfer operator is [6].
The DFG research project Transfer operators and nonarithmetic quantum chaos (Ma 633/16-1) involves

finding transfer operators connected to the dynamical systems of closed geodesic flows on the hyper-
bolic surfaces represented by the quotient of the upper half plane by arbitrary Hecke triangle groups.
For the modular group, it leads to another transfer operator L̃s . This operator acts in the space of
vectors of two holomorphic functions on the open unit disk which are continuous on the closed unit
disk. With the supremum norm these vectors form a Banach space. The operator is given by

L̃s �f =
( L̃1,1

s L̃2,1
s

L̃1,2
s L̃2,2

s

)
�f with

L̃1,1
s f1(z) =

∞∑
n=3

(z + n)−2s f1

( −1

z + n

)
,

L̃1,2
s f2(z) =

∞∑
n=2

(n − z)−2s f2

(
1

−z + n

)
,

L̃2,1
s f1(z) =

∞∑
n=2

(z + n)−2s f1

( −1

z + n

)
, and

L̃2,2
s f2(z) =

∞∑
n=3

(n − z)−2s f2

(
1

−z + n

)
. (2)

This converges absolutely for Re(s) > 1
2 , and has a meromorphic continuation in s with a first order

pole at s = 1
2 as sole singularity in the region Re(s) > 0.

Our main result is:

Theorem 1.1. Let s ∈ C, 0 < Re(s) < 1, s �= 1
2 . There is a bijective correspondence between the spaces

ker(LMa
s − 1) ⊕ ker(LMa

s + 1) and ker(L̃s − 1).

We will establish this correspondence by a number of steps. The main steps are indicated in
Proposition 2.1, Theorem 2.3, Proposition 2.4 and Theorem 2.5.

The eigenfunctions of both transfer operators satisfy finite linear identities. Lewis and Zagier
[5, Proposition in Section 3, Chapter IV] show that if LMa

s f = ± f , then P (z) = f (z − 1) satisfies
the three term equation

P (z) = P (z + 1) + (z + 1)−2s P

(
z

z + 1

)
(3)

and the parity condition

z−2s P (1/z) = ±P (z). (4)

These functions extend holomorphically to C′ = C \ (−∞,0]. So ker(LMa
s − 1) ⊕ ker(LMa

s + 1) corre-
sponds to a subspace of the space of all holomorphic solutions of (3) on C′ . This subspace is charac-
terized by the asymptotic behavior P (x) = c∞x1−2s + O (x−2 Re(s)) as x ↑ ∞, and P (x) = c0x−1 + O (1)

as x ↓ 0.
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For both transfer operators, we relate, in Section 3, the eigenfunctions on disks to eigenfunctions in
the real analytic functions on an interval. This allows a cohomological interpretation, to be discussed
in Sections 3.2 and 4. We will show that solutions of L̃s �f = �f correspond to solutions of the four
term equation

g(z) + (z + 2)−2s g

( −1

z + 2

)
= g(z − 1) + (2 − z)−2s g

(
1 − z

z − 2

)
, (5)

on a suitable domain containing (−1,1).
Not all solutions of (3), respectively (5), correspond to eigenfunctions of LMa

s , respectively eigen-
functions of L̃s . We will see in Theorem 2.3 and Proposition 2.4 that the space of all real analytic
solutions of (5) on the interval

(−3 − √
5

2
,

1 + √
5

2

)

is isomorphic to the first cohomology group of the modular group with coefficients in the principal
series representation with spectral parameter s. Theorem 2.5 shows that the eigenspace of L̃s for the
eigenvalue 1 corresponds to a well defined subspace of this cohomology group. This same subspace
is also isomorphic to the sum of the eigenspaces of LMa

s for the eigenvalues 1 and −1. This can be
shown by methods in [5] and [2].

We will take care to indicate the various steps in the correspondence between eigenspaces of
LMa

s and L̃s as explicitly as possible, even for steps where we might refer to [5] or [2]. The least
explicit step is an application of Proposition 3.5, where a function with two singularities is written
as a difference of two functions which each have a singularity in only one point. Fig. 1 at the end of
Section 2.5 gives a detailed overview of the steps by which we prove Theorem 1.1.

As background information, we discuss in Section 1.1 how L̃s arises from the nearest integer
continued fraction transformation. Our proof of the correspondence does not use that both trans-
fer operators arise from the geodesic flow on related quotients of the upper half plane. It would be
interesting to go directly from the geodesic flow to the relevant cohomology groups.

The Selberg trace formula relates the recurrent points of the geodesic flow to spectral data. So
both transfer operators have a relation to Maass forms.

Our cohomological approach to the correspondence is based on ideas in [5] and [2]. The leading
idea in [2] is the relation between certain cohomology groups and spaces of Maass forms, which we
discuss in Section 2.6. This relates eigenfunctions of LMa

s and L̃s to Maass forms without use of the
Selberg trace formula.

1.1. The transfer operator for the nearest integer continuous fraction algorithm

Although the origin of L̃s from a dynamical system is not used in this paper, it seems right to
explain why L̃s deserves to be called a transfer operator. It is derived by the Ruelle transfer operator
method applied to a dynamical system based on the nearest integer map and associated continued
fractions. Such nearest integer continued fractions have already been discussed in [4].

Consider the interval map

f3 : I3 → I3; x �→ −1

x
−

⌊−1

x
+ 1

2

⌋
(6)

with I3 = [− 1
2 , 1

2 ] and �x� the element n ∈ Z such that n � x < n + 1 if x > 0, and n < x � n + 1
if x � 0. The function f3 is closely related to the nearest integer continuous fractions. (We keep the
subscript 3 since it is a specialization of an interval map associated to Hecke triangle groups.) Basically
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f3 acts as the “left-shift” on the space of configurations (a1,a2, . . .) for the nearest integer continued
fraction expansion

[0;a1,a2, . . .] := −1

a1 + −1
a2+ −1

...

∈ I3.

The map f3 generates a discrete dynamical system of finite type. The transfer operator associated to
f3 is

Ts f (x) =
∑

y∈ f −1
3 (x)

∣∣∣∣d f −1
3 (x)

dx

∣∣∣∣
s

f (y)

defined on a suitable function space. The expression
d f −1

3 (x)
dx denotes the derivative of the appropri-

ate invertible branch of f −1
3 in x. We find L̃s = Ts on the Banach space on which L̃s is defined.

Forthcoming work in the project Ma633/16-1 of the Deutsche Forschungsgemeinschaft will give more
details.

The dynamical system is related to the geodesic flow on the hyperbolic surface PSL(2,Z) \ H. One
can show that the Fredholm-determinant det(1 − L̃s) is essentially equal to the Selberg zeta-function
Z(s) for the full modular group Γ . Here, essentially equal means that

Z(s) = det(1 − L̃s)

det(1 − Ks)
(7)

with Ks defined on the same space of pairs of function by

Ks

(
g1

g2

)
=

(
g1|2s ST 3

g1|2s ST 3

)
, (8)

where g1|2s ST 3(x) = (x + 3)−2s g( −1
x+3 ). It is known that Ks only admits the eigenvalue 1 if s ∈

{−n + π ik/α; n ∈ Z�0, k ∈ Z}, with α = 2 log 1+√
5

2 . These values of s are not in the domain un-
der consideration in this note.

The zeros of Z(s) on the line Re(s) = 1
2 correspond to eigenvalues s(1− s) of the hyperbolic Laplace

operator. Hence it is not surprising that eigenfunctions of L̃s with eigenvalue 1 can be related to
cohomology classes that are themselves related to Maass forms. See Section 2.6.

The advantages of L̃s compared to Mayer’s transfer operator LMa
s are that its construction is di-

rectly related to the geodesic flow and that the same construction works for all Hecke triangle groups.
The disadvantage of L̃s compared to LMa

s is its more complicated structure.

2. Definitions and results

In this preliminary section we define or recall various concepts to be used in this paper. Among
them are the principal series representations in Section 2.2, and the definition of parabolic coho-
mology groups in Section 2.3. We state in Sections 2.4 and 2.5 the results implying the main result
Theorem 1.1. Finally we give in Section 2.6 background information on the relation between certain
spaces of Maass forms and cohomology groups.
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2.1. Modular group

We use
[ a c

b d

]
to denote

{( ta tc
tb td

)
: t �= 0

}
in

PGL(2,R) = GL(2,R)
/{(

t 0

0 t

)
: t ∈ R \ {0}

}
.

We work with the full modular group Γ = PSL(2,Z), which is discrete in PSL(2,R), and is generated
by S = [ 0 1

−1 0

]
and T = [ 1 0

1 1

]
, with the relations

S2 = (ST )3 = 1. (9)

We denote also

T ′ := T ST = ST −1 S =
[

1 1

0 1

]
∈ Γ and C =

[
0 1

1 0

]
∈ PGL(2,Z). (10)

We have PGL(2,Z) = Γ ∪ CΓ .

2.2. Principal series representations

We describe the standard realization of the principal series representations of the Lie group
PGL(2,R) in the functions on R.

The group PGL(2,R) has a family of actions, parametrized by s ∈ C, on functions defined on a
subset of R, given by

h|2s M(x) = |ad − bc|s|cx + d|−2sh

(
ax + b

cx + d

)
. (11)

This is a right action; the natural place for the symbol |2s is after the function. We call s the spectral
parameter.

For each value of s, this action preserves the spaces V ω
s and V ∞

s of real-analytic and smooth
vectors in the discrete series representation with spectral parameter s. The space V ω

s consists of the
h : R → C that are real-analytic on R and for which x �→ |x|−2sh(−1/x) extends as a real-analytic
function on a neighborhood of 0. Replace ‘real-analytic’ by ‘smooth’ to obtain the characterization
of h ∈ V ∞

s .
We refer to the first chapter of [2] for a discussion of other models of the principal series repre-

sentations. Here it suffices to note that elements of V ω
s and V ∞

s can be viewed as functions on the
projective line P1

R
= R ∪ {∞}, and that the required behavior of

x �→ (h|2s S)(x) = |x|−2sh(−1/x) (12)

may be viewed as the description of analyticity or smoothness at ∞.
The real-analytic functions in V ω

s are the restriction of a holomorphic function on some neighbor-
hood of R, that depends on the functions. On such holomorphic functions the slash operator takes
the form

h|2s M(z) := |ad − bc|s((cz + d)2)−s
h

(
az + b

cz + d

)
. (13)

The factor ((cz + d)2)−s is holomorphic in z for Re(z) �= − d
c . In some cases, for instance for period

functions satisfying (3), we may prefer to choose the factor differently, such that it is holomorphic on
the domain of the function and positive on the real points in the domain.
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We need more spaces related to V ω
s and V ∞

s . If I ⊂ P1
R

is an open subset, we define V ω
s (I) as the

space of h : I ∩ R → C that are real-analytic on I ∩ R, and for which in the case ∞ ∈ I the function
in (12) is real-analytic at 0. In particular, if I = P1

R
\ E for some finite set E , then V ω

s (I) consists of
analytic vectors with finitely many singularities on P1

R
.

The space V ω∗
s is defined as the inductive limit

V ω∗
s = lim−→ V ω

s

(
P1

R \ E
)
,

where E runs through the finite subsets of P1
R

. If h ∈ V ω∗
s , then there is a minimal finite set E ⊂ P1

R

such that h ∈ V ω
s (P1

R
\ E). We call the elements of E the singularities of h and denote this set by

Sing(h).
By imposing conditions at the singularities, we define subspaces of V ω∗

s . For instance

V ω∗,∞
s := V ω∗

s ∩ V ∞
s (14)

is the space of smooth vectors that are real-analytic outside finitely many points. A slightly larger
space is V ω∗,simple

s consisting of the h ∈ V ω∗
s for which we allow simple pole at finitely many points.

Its elements f have to satisfy at their finitely many singularities x0:

x �→ (x − x0) f (x) is smooth at x0 if x0 �= ∞, and

y �→ y|y|−2s f (−1/y) = y( f | S)(y) is smooth at 0 if x0 = ∞. (15)

Thus we have various spaces, all invariant under the action |2s of PGL(2,R), that satisfy the following
inclusions:

V ω
s V ω∗,∞

s V ω∗,simple

s V ω∗
s

V ∞
s

Throughout this note we use the assumption

0 < Re(s) < 1, s �= 1

2
. (16)

Mostly, we work with a fixed value of the spectral parameter s. Then we shall write h | M instead
of h|2s M .

For vector valued functions we write
( f1

f2

)|2s M for
( f1|2s M

f2|2s M

)
. The slash operator extends to elements

of the group ring C[PGL(2,R)] by

f |2s(M1 + aM2) = f |2s M1 + af |2s M2 for all g1, g2 ∈ Γ and a ∈ C.

In some circumstances one can make sense of f |2sΞ where Ξ is an infinite sum of elements of Γ .
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2.3. Cohomology groups

As usual, the first cohomology group of Γ with values in a right Γ -module V can be described by

H1(Γ ; V ) = Z 1(Γ ; V )/B1(Γ ; V ),

Z 1(Γ ; V ) = {ψ: Γ → V ; ψγ δ = ψγ | δ + ψδ for all γ , δ ∈ Γ } and

B1(Γ ; V ) = {
ψ ∈ Z 1(Γ ; V ); ∃v ∈ V such that ψγ = v | (1 − γ )

}
. (17)

We give the arguments of the cocycles ψ ∈ Z1(Γ ; V ) by a subscript. Furthermore we denote the right
action of Γ on V as v �→ v | γ for γ ∈ Γ and v ∈ V . If the cohomology group is clear we use the
notation [ψ] for the cohomology class of the cocycle ψ .

The first parabolic cohomology group is the subgroup of H1(Γ ; V ) given by

H1
par(Γ ; V ) = Z 1

par(Γ ; V )/B1(Γ ; V ),

Z 1
par(Γ ; V ) = {

ψ ∈ Z 1(Γ ; V ); ∃v ∈ V such that ψT = v | (1 − T )
}
. (18)

If W ⊃ V is a larger Γ -module, then the first mixed parabolic cohomology group is given by

H1
par(Γ ; V , W ) = Z 1

par(Γ ; V , W )/B1(Γ ; V ),

Z 1
par(Γ ; V , W ) = {

ψ ∈ Z 1(Γ ; V ); ∃v ∈ W such that ψT = v | (1 − T )
}
. (19)

Note that H1
par(Γ ; V , W ) is a subspace of H1(Γ ; V ), and that there is a natural map

H1
par(Γ ; V , W ) → H1

par(Γ ; W ).

Remark 1. In the definitions above we use that Γ \H has only one Γ -class of cusps represented by ∞,
and that the subgroup Γ∞ ⊂ Γ fixing ∞ is generated by T . We refer to the section “Cohomology and
parabolic cohomology for groups with cusps” in [2] for a discussion of parabolic cohomology for more
general discrete subgroups of PSL(2,R).

Remark 2. Any cocycle is determined by its values on a set of generators, so by ψS and ψT for Γ .
The relations (9) determine the relations

ψS | (1 + S) = 0, ψT −1 S

∣∣ (
1 + T −1 S + ST

) = 0. (20)

For a parabolic cocycle ψ we can arrange ψT = 0 without changing the cohomology class. The result-
ing cocycle is determined by its value on S , subject to the relations

ψS |2s(1 + S) = 0, ψS = ψS |2s(T + T ′). (21)

2.4. Eigenfunctions of the Mayer operator and parabolic cohomology

In the Introduction we have already mentioned that eigenfunctions of LMa
s with eigenvalue 1

or −1 give rise to elements of 3FEs(C
′)ω , where for X ⊂ C:

3FEs(X)ω = {
analytic P : X → C: P = P |2s T + P |2s T ′ on X ∩ T −1 X ∩ (T ′)−1 X

}
. (22)

By analytic on X ⊂ R we mean real analytic. For open X ⊂ C, analytic means holomorphic.
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The cocycle condition ψS = ψS | (T + T ′) in (21) is similar to the three term equation (3). In the
section “Parabolic cohomology and mixed parabolic cohomology” in [2], various aspects of the relation
between 3FEs(C

′)ω and cohomology are discussed. For the present paper it is important that under
assumption (16):

H1
par

(
Γ ; V ω

s , V ω∗,simple

s

) ∼= H1
par

(
Γ ; V ω∗,simple

s

) ∼= 3FEs(0,∞)
simple
ω . (23)

The third superscript simple indicates that we impose on P ∈ 3FEs(0,∞)ω an asymptotic behavior at
the end points of (0,∞):

P (x) ∼
∞∑

m=−1

c∞
m x−2s−m (x ↑ ∞), P (x) ∼

∞∑
m=−1

c0
mxm (x ↓ 0). (24)

This is a one-sided version of the behavior at singularities of elements of V ω∗,simple

s defined in Sec-
tion 2.2.

In Section 3.2 we shall show:

Proposition 2.1. Let s ∈ C, 0 < Re(s) < 1, s �= 1
2 . The space ker(LMa

s − 1) ⊕ ker(LMa
s + 1) is in bijective

correspondence to H1
par(Γ ; V ω

s , V ω∗,simple

s ).

2.5. Eigenfunctions of the nearest integer transfer operator and hyperbolic cohomology

The definitions (18) and (19) are related to the Γ -orbit P1
Q

of cusps in P1
R

. The element T ∈ Γ

generates the subgroup Γ∞ of Γ fixing the element ∞ in this orbit. Let us now work with what

we would like to call the Fibonacci orbit Fib = Γ (−φ) ⊂ P1
R

, where φ = 1+√
5

2 is the golden ratio. The
hyperbolic element T ST 2 ∈ Γ generates the subgroup Γ−φ of Γ fixing −φ.

Definition 2.2. For Γ -modules W ⊃ V :

H1
Fib(Γ ; V , W ) = Z 1

Fib(Γ ; V , W )/B1(Γ ; V ),

Z 1
Fib(Γ ; V , W ) = {

ψ ∈ Z 1(Γ ; V ): ∃v ∈ W : ψT S T 2 = v
∣∣ (

1 − T ST 2)}, (25)

and H1
Fib(Γ ; V ) := H1

Fib(Γ ; V , V ).

In particular, H1
Fib(Γ ; V ω∗

s ) is a subspace of H1(Γ ; V ω∗
s ). The inclusion V ω

s ↪→ V ω∗
s induces a linear

map H1(Γ ; V ω
s ) → H1(Γ ; V ω∗

s ).
Let us also define for X ⊂ C:

4FEs(X)ω = {
analytic g : X → C: g + g|2s ST 2 = g|2s T −1 + g|2s T −1 ST −2

on X ∩ T −2 S X ∩ T X ∩ T 2 ST X
}
, (26)

with the same convention concerning analyticity as in Section 2.4. We shall prove in Section 4.2:

Theorem 2.3. Let s ∈ C, 0 < Re(s) < 1, s �= 1
2 . There is an injective map ϑ : 4FEs(−φ2, φ) → H1

Fib(Γ ; V ω∗
s ).

The image ϑ( 4FEs(−φ2, φ)) ⊂ H1(Γ ; V ω∗
s ) is equal to the image of H1(Γ ; V ω

s ) in H1(Γ ; V ω∗
s ).

Proposition 2.4. The natural map H1(Γ ; V ω
s ) → H1(Γ ; V ω∗

s ) is injective.
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Proof. Let ψ ∈ Z 1
par(Γ ; V ω

s ) such that ψγ = f | (1 − γ ) for all γ ∈ Γ for some f ∈ V ω∗
s . From

f | (1 − T ) = ψT ∈ V ω
s it follows that the set of singularities Sing( f ) can contain at most the point ∞;

otherwise Sing( f ) would be infinite. Hence Sing( f | S) ⊂ {0}. From f − f | S = ψS ∈ V ω
s we conclude

that f has no singularities at all, i.e., f ∈ V ω
s . Hence [ψ] = 0 in H1(Γ ; V ω

s ). �
We now have the following system of injective maps:

4FEs(−φ2, φ)
ϑ

H1
Fib(Γ ; V ω∗

s ) H1(Γ ; V ω∗
s )

H1
par(Γ ; V ω

s , V ω∗,simple

s ) H1(Γ ; V ω
s )

In Section 4.3 we will prove:

Theorem 2.5. Let s ∈ C, 0 < Re(s) < 1, s �= 1
2 . The kernel of L̃s − 1 determines a subspace of 4FEs(−φ2, φ)ω

that is mapped by ϑ onto the image of the mixed parabolic cohomology group H1
par(Γ ; V ω

s , V ω∗,simple

s ) in

H1(Γ ; V ω∗
s ).

This establishes a bijective map between ker(L̃s − 1) and the cohomology group
H1

par(Γ ; V ω
s , V ω∗,simple

s ). We prove this theorem in Section 4.3.
The results in Proposition 2.1, Theorem 2.3, Proposition 2.4 and Theorem 2.5 imply Theorem 1.1.

See also Fig. 1.

2.6. Automorphic forms and cohomology groups

In this note we work with transfer operators and cohomology groups. In [5] and [2] the main
theme is the relation between period functions, automorphic forms and cohomology. We mention the
relevant facts as background material.

We denote by 3FEs(C
′)0

ω the subspace of P ∈3 FEs(C
′)ω , as defined in (22), with C′ = C \ (−∞,0],

that satisfy P (x) = O (1) as x ↓ 0 and P (x) = O (x−2s) as x → ∞. The main theorem in [5] states that
the space 3FEs(C

′)0
ω

∼= H1
par(Γ ; V ω∗,∞

s ) is in bijective correspondence with the space of Maass cusp
forms with spectral parameter s. A Maass cusp form is a function u : H → C satisfying u(γ z) = u(z)
for all γ ∈ Γ that is given by a convergent Fourier expansion

u(x + iy) =
∑
n �=0

Ane2π inx√yKs−1/2(2π | n | y). (27)

The space M0
s of such Maass cusp forms is known to be non-zero only for a discrete set of values of s

satisfying Re(s) = 1
2 , s �= 1

2 .
A slightly larger space of Γ -invariant functions is M1

s , consisting of the Γ -invariant u on H with
a converging Fourier expansion

u(x + iy) = A0 y1−s +
∑
n �=0

Ane2π inx√yKs−1/2(2π | n | y). (28)

This space is equal to M0
s for Re(s) = 1

2 , s �= 1
2 . For values of s with 0 < Re(s) < 1

2 such that ζ(2s) = 0
the residue of the Eisenstein series is an element of M1

s . The results in the section “Maass forms and
cohomology” in [2] show that for 0 < Re(s) < 1, s �= 1

2 there is a bijective correspondence between

M1
s and H1

par(Γ ; V ω∗,simple

s ). These spaces are finite dimensional, and zero for most values of s. All

elements of M1
s are eigenfunctions of the hyperbolic Laplace operator: −y2(∂2

y + ∂2
x )u = s(1 − s)u.
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Fig. 1. Overview of the steps in the proof of Theorem 1.1.

The conclusion is that the eigenfunctions of LMa
s with eigenvalues 1 and −1, and the eigenfunc-

tions of L̃s with eigenvalue 1 are in bijective correspondence to elements of the space M1
s . This gives

a confirmation of the relation between eigenfunctions of transfer operators and automorphic forms
that we know already from the relation via the Selberg zeta function. (See [6] and (7).)

3. The transfer operators on disks and intervals

In the context of dynamical systems one usually considers transfer operators in Banach spaces
of holomorphic functions on a disk. For the relation to cohomology groups with values in principal
series spaces, it is more natural to consider the corresponding operators on functions on intervals
in R or P1

R
. We discuss this relation in Section 3.2 for the Mayer operator and in Section 3.3 for L̃s .

In Section 3.4 we derive the four term equation (5) from the transfer operator L̃s .
We start with a discussion of one-sided averages.

3.1. One-sided averages

Both in the definition of LMa
s in (1) and in that of L̃s in (2), one recognizes infinite sums of the

type f | γ T n over infinitely many n ∈ Z for a fixed γ ∈ PGL(2,Z). The one-sided averages

Av+
T =

∞∑
n=0

T n and Av−
T = −

−1∑
n=−∞

T n (29)

play also an important role in [2]. In this subsection we recall the relevant results.
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Consider a function of the form f = h | S , where h is holomorphic on a neighborhood of 0. Then

Av+
T ( f ) = f | Av+

T (z) =
∞∑

n=0

(
(z + n)2)−s

h

( −1

z + n

)
and

Av−
T ( f ) = f | Av−

T (z) = −
∞∑

n=1

(
(z − n)2)−s

h

( −1

z − n

)
(30)

converge absolutely if Re(s) > 1
2 , and define f | Av+

T as a holomorphic function on a right half-plane,
and f | Av−

T on a left half-plane. If h(0) = 0, the convergence is absolute for Re(s) > 0. Using the
Hurwitz zeta function for the contribution of the constant term of h at 0, we obtain in general a
meromorphic continuation, with at most a first order singularity at s = 1

2 on Re(s) > 0. In this note
we will understand f | Av+

T and f | Av−
T always in this regularized sense. We have given two notations

in (30). With f | Av+
T we stress that Av+

T is an element of the completion of the group ring of Γ , for
which we have made sense of the action on certain functions by regularization. With Av+

T ( f ) we
emphasize that this one-sided average defines an operator on suitable spaces of functions. In this
note we will use f | Av+

T and f | Av−
T .

These one-sided averages satisfy

f | Av+
T | (1 − T ) = f , f | Av−

T | (1 − T ) = f , (31)

f | (1 − T ) | Av+
T = f , f | (1 − T ) | Av−

T = f , (32)

f | T | Av+
T = f | Av+

T | T , f | T | Av−
T = f | Av−

T | T , (33)

f + f | T | Av+
T = f | Av+

T , − f | T −1 + f | T −1 | Av−
T = f | Av−

T , (34)

on suitable right half-planes, respectively left half-planes. These relations hold trivially in the domain
Re(s) > 1

2 of absolute convergence, and survive under meromorphic continuation.
In particular, we consider these one-sided averages for f ∈ V ω(I) where I ⊂ P1

R
is a neighborhood

of ∞. Then f has the form indicated above. Let us consider a cyclic interval I = (a,b)c in P1
R

contain-
ing ∞. (This means that a > b in R and (a,b)c = (a,∞)∪{∞}∪ (−∞,b).) As in the section “Averages”
in [2] we have:

Lemma 3.1. Let I ⊃ (a,b)c � ∞. If f ∈ V ω
s (I), then f | Av+

T ∈ V ω
s (a,∞) and is represented by a function

holomorphic on a neighborhood of (a,∞) containing a right half-plane, and f | Av−
T ∈ V ω

s (∞,b + 1) is rep-
resented by a function holomorphic on a neighborhood of (∞,b + 1) containing a left half-plane.

There are constants C∗
m for m = −1,0,1, . . . such that

f |2s Av+
T (x) ∼

∞∑
m=−1

C∗
mx−m−2s (x ↑ ∞), (35)

f |2s Av−
T (x) ∼

∞∑
m=−1

C∗
mx−m|x|−2s (x ↓ −∞). (36)

In particular, if f ∈ V ω
s = V ω

s (P1
R
), then f | Av±

T ∈ V ω
s (R).

The asymptotic behavior in (35) and (36) is related to the singularity behavior (15) in the definition
of V ω∗,simple

s :

Lemma 3.2. (See [2].) For f ∈ V ω
s the following statements are equivalent:

(i) f ∈ V ω∗,simple

s | (1 − T ).
(ii) f | Av+

T = f | Av−
T .
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Proof. If f | Av+
T = f | Av−

T , then f | Av± | S(z) ∼ ∑∞
m=−1 C∗

mxm as ∓x ↓ 0. Hence f ∈ V ω∗,simple

s .

Conversely, suppose that f = h | (1 − T ) with h ∈ V ω∗,simple

s . Then p+ =
h − f | Av+

T and p− = h − f | Av−
T satisfy p± | T = p± . Moreover, p+(x) has an asymptotic expan-

sion of the form (35) as x ↑ ∞. Hence the periodic function p+ vanishes. For p− let x ↓ −∞. �
Lemma 3.3. Suppose that b, c ∈ V ω

s satisfy b | Av+
T +c | Av−

T ∈ V ω
s . Then b | Av+

T = b | Av−
T ∈ V ω∗,simple

s , and

c | Av+
T = c | Av−

T ∈ V ω∗,simple

s .

Proof. Relations (31) and (32) imply that p = c | Av+
T −c | Av−

T satisfies p|2s T = p, hence p is a
periodic function on R. Put a = b | Av+

T +c | Av−
T . As x ↑ ∞, the term c | Av+

T has an asymptotic ex-
pansion as in (35), and c | Av−

T = a − b | Av+
T also has an expansion of this type. (For a we know that

a(x) = |x|−2s (analytic in −1/x).) Hence p(x) ∼ x−2s(p−1x+ p0 +· · ·) as x → ∞. The periodicity implies
that p is bounded, hence p−1 = 0. Next p(x) = O(x−2 Re(s)) implies p = 0, hence c | Av+

T = c | Av−
T .

Now c | Av±
T ∈ V ω∗,simple

s , and also b | Av±
T ∈ V ω∗,simple

s . �
We can build one-sided averages for other elements of Γ . If η ∈ Γ is hyperbolic, for instance η =

T ST 2, then the averages Av+
η = ∑

n�0 ηn and Av−
η = −∑

n�−1 ηn have the properties corresponding
to (31)–(34), if they converge. See [2]. If the attracting fixed point ω(η) of η is in the cyclic interval
I ⊂ P1

R
, then f |2s Av+

η converges without regularization for Re(s) > 0 for all f ∈ V ω
s (I), and provides

us with f |2s Av+
η ∈ V ω

s (I \ {α(η)}), where α(η) is the repelling fixed point of η. In particular, Av+
η :

V ω
s → V ω

s (P1
R

\ {α(η)}), and similarly Av−
η : V ω

s → V ω
s (P1

R
\ {ω(η)}).

3.2. Eigenfunctions of the Mayer operator

Eigenfunctions of LMa
s with eigenvalue ±1, or briefly (±1)-eigenfunctions of LMa

s , can be related
to eigenfunctions of a similar operator on V ω

s (0,∞). This statement is almost contained in the results
in [5]. Nevertheless, we recall the main steps in the proof, since we want to describe the correspon-
dence between ±1-eigenfunctions of LMa

s and 1-eigenfunctions of L̃s explicitly.
In this subsection we also indicate how to prove Proposition 2.1, on the basis of results in [2].
Under the step P = f | T , the function f ∈ ker(LMa

s ∓ 1) corresponds to P holomorphic on
|z − 2| < 3

2 , and continuous on |z − 2| � 3
2 satisfying P | C T ′ Av+

T = ±P , with use of the notation
introduced in (10). This implies on suitable non-empty domains:

P = P | T ± P | T C, P | C = ±P ,

P = P | T + P | T ′.

The last equality is the three term equation (3). The proposition in [5, Chapter IV, Section 3] shows
that these functions extend to C′ = C\(−∞,0] and satisfy P (x) ∼ c−1x1−2s + O (x−2 Re(s)) as x ↑ ∞ for
some c−1. Since P satisfies P | T ′ Av+

T = P on C′ and P | C = ±P , we have the asymptotic behavior

(24) near both end points of (0,∞), with c0
m = ±c∞

m . Thus we have P ∈3 FE±
s (C′)simple

ω , where the
upper index ± indicates the (±1)-eigenspace of C in 3FEs(C

′)ω , and where the superscript simple
indicates the subspace satisfying (24).

Conversely, starting with P ∈ 3FE±
s (C′)simple

ω , we have P | T ′ ∈ V ω
s ((0,−1)c), where (0,−1)c =

(0,∞) ∪ {∞} ∪ (−∞,0) denotes a cyclic interval in P1
R

. Hence P | T ′ Av+
T ∈ V ω

s (0,∞). By (31):

(
P − P

∣∣ T ′ Av+
T

) ∣∣ (1 − T ) = P − P | T − P | T ′ = 0.

The asymptotic behavior of P − P | T ′ Av+
T near ∞ shows that this periodic function vanishes. So P

satisfies P | T ′ Av+
T = P , or with use of the parity condition, P | C T ′ Av+

T = ±P . The function P | T ′ Av+
T
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is holomorphic on a right half-plane. With the parity condition P | C = ±P this implies that P is
holomorphic on a wedge of the form |arg z| < ε. This suffices as the point of departure for the second
stage of the bootstrap procedure in [5, Chapter III, Section 4], which gives a holomorphic extension
of P to C′ , still satisfying P | C T ′ Av+

T = ±P . This leads to f = P | T ∈ ker(LMa
s ∓ 1).

Thus, we have an explicit bijective correspondence between the following spaces:

ker
(

LMa
s ∓ 1

)
,

ker
(
T ′ Av+

T −1 : V ω
s (0,∞) → V ω

s (0,∞)
) ∩ ker

(
C ∓ 1 : V ω

s (0,∞) → V ω
s (0,∞)

)
,

3FE±
s (C′)simple

ω and 3FE±
s (0,∞)

simple
ω .

As in [5, Chapter I, Section 3], we have 3FEs(C
′)simple

ω =3 FE+
s (C′)simple

ω ⊕3 FE−
s (C′)simple

ω . This gives the
following result:

Proposition 3.4. Let 0 < Re(s) < 1, s �= 1
2 . There is an explicit bijection between the following two spaces:

ker
(

LMa
s − 1

) ⊕ ker
(

LMa
s + 1

)
,

3FEs(0,∞)
simple
ω .

To complete the proof of Proposition 2.1 we have to establish a relation between 3FEs(0,∞)
simple
ω

and H1
par(Γ ; V ω

s , V ω∗,simple

s ). The least explicit step in the proof is provided by the following result:

Proposition 3.5. If f ∈ V ω∗
s satisfies Sing( f ) ⊂ {ξ,η} for two different points ξ and η in P1

R
, then there are

fξ , fη ∈ V ω∗
s such that f = fη − fξ and Sing( fξ ) ⊂ {ξ}, Sing( fη) ⊂ {η}. The functions fξ and fη are not

unique. The freedom consists of adding the same element of V ω
s to both functions.

Sketch of a proof. This follows from, e.g., [3, Theorem 1.4.5]. See the section “Parabolic cohomology
and mixed parabolic cohomology” in [2] for the application to elements of V ω∗

s .
The idea is to use another model of the principal series, in which the elements of V ω

s correspond
to functions holomorphic on an annulus in C containing the unit circle. The function f in the propo-
sition is represented by a holomorphic function on an open set Ω ⊂ C containing the unit circle
minus the points ξ̃ and η̃ corresponding to ξ and η. Write Ω = Ω1 ∩ Ω2 with η̃ ∈ Ω1, ξ̃ ∈ Ω2. Apply
[3, Theorem 1.4.5] with g1,2 = f to obtain f = g1 − g2 on Ω with g j holomorphic on Ω j . �
Proposition 3.6. Let 0 < Re(s) < 1, s �= 1

2 . There is an explicit bijection between 3FEs(0,∞)
simple
ω and

H1
par(Γ ; V ω

s , V ω∗,simple

s ).

Proof. Suppose that P ∈3 FEs(0,∞)
simple
ω . We extend it to P̃ ∈ V ω∗

s by

P̃ = P on (0,∞), and P̃ = −P | S on (−∞,0). (37)

So Sing( P̃ ) ⊂ {0,∞}. By separate computations on (−∞,−1) and (−1,0) we conclude that P̃ satisfies
(3) on P1

R
\ {∞,−1,0}. Thus, we obtain ψ ∈ Z 1

par(Γ ; V ω∗
s ), determined by

ψT = 0, ψS = P̃ .

Since P̃ | T ′ ∈ V ω
s (P1

R
\ {−1,0}), we have P̃ | T ′ Av+

T = P | T ′ Av+
T ∈ V ω

s (0,∞) and P̃ | T ′ Av−
T ∈

V ω
s (−∞,0). We have indicated earlier in this subsection that the asymptotic behavior of P (x) as
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x ↑ ∞ implies that P̃ | T ′ Av+
T = P̃ on (0,∞). The asymptotic behavior of P (x) as x ↓ 0 implies a sim-

ilar asymptotic behavior of P̃ (x) as x ↓ −∞, which in turn implies analogously that P̃ | T ′ Av−
T = P̃ on

(−∞,0). Consulting (35) and (36) we conclude that P̃ has the same coefficients in its expansions for
both directions of approach to ∞ ∈ P1

R
. The fact that P̃ | S = − P̃ implies the same statement at 0.

Hence P̃ ∈ V ω∗,simple

s and ψ ∈ Z 1
par(Γ ; V ω∗,simple

s ). It is the unique cocycle in its cohomology class in

H1
par(Γ ; V ω∗,simple

s ), since (V ω∗,simple

s )T = {0}, as is shown in [2], section “Invariants.”

Proposition 3.5 implies that there are F∞, F0 ∈ V ω∗
s such that P̃ = F∞ − F0 with Sing(F∞) ⊂ {∞},

Sing(F0) ⊂ {0}. Since F∞ has the same type of asymptotic behavior at ∞ as P̃ , we conclude
that F∞, F0 ∈ V ω∗,simple

s . Moreover, P̃ | S = − P̃ implies that F0 = F∞ + α for some α ∈ V ω
s . From

Sing(F∞ | T ′) ⊂ {−1} and Sing(F0 | ST ′) ⊂ {0}, it follows that

Sing
(

P̃
∣∣ (1 − T )

) = Sing(F∞ | T ′ − F∞ | ST ′ − α | T ′) ⊂ {−1,0},
Sing

(
F∞

∣∣ (1 − T )
) = Sing

(
P̃

∣∣ (1 − T ) + F0
∣∣ (1 − T )

) ⊂ {−1,0}.

On the other hand Sing(F∞) ⊂ {∞} implies that Sing(F∞ | (1 − T )) ⊂ {∞}. The conclusion is that
F∞ | (1 − T ) ∈ V ω

s . We conclude that the cocycle

ψ̃ : γ �→ ψγ − F∞ | (1 − γ )

takes values in V ω
s . The freedom in the choice of F∞ and F0 amounts to the freedom of choosing ψ̃

in its class in H1
par(Γ ; V ω

s , V ω∗,simple

s ).

Conversely, we start with a cocycle ψ̃ ∈ Z 1
par(Γ ; V ω

s , V ω∗,simple

s ). By the definition of mixed parabolic

cohomology in (19), there exists v ∈ V ω∗,simple

s such that ψ̃T = v | (1− T ). A possible choice is ψ̃T | Av+
T ,

which coincides with ψ̃T | Av−
T according to Lemma 3.2, since ψT ∈ V ω∗,simple

s . Lemma 3.3 shows that
v = ψ̃T | Av+

T is the sole possibility.
Now ψγ = ψ̃γ − ψ̃T | Av+

T | (1 − γ ) determines the unique cocycle in the cohomology class of ψ̃

in H1
par(Γ ; V ω∗,simple

s ) vanishing on T . Note that ψ does not change if we change ψ̃ in its cohomology

class in H1
par(Γ ; V ω

s , V ω∗,simple

s ). We have ψT = 0 and ψS = ψ̃S − ψ̃T | Av+
T | (1 − S) ∈ V ω∗,simple

s with

singularities contained in {0,∞}. Restriction of ψS to (0,∞) gives an element of 3FEs(0,∞)
simple
s .

Noting that F∞ = −ψ̃T | Av+
T , we check that both procedures are inverse to each other. �

There might be cohomology classes in H1
par(Γ ; V ω∗,simple

s ) that are not represented by a cocycle ψ

such that Sing(ψS ) ⊂ {0,∞}. In [2] it takes work to show that such classes do not exist.

Proof of Proposition 2.1. The desired bijective correspondence between the direct sum of eigenspaces
ker(LMa

s − 1)) ⊕ ker(LMa
s + 1)) and H1

par(Γ ; V ω
s , V ω∗,simple

s ) is established by Propositions 3.4 and 3.6

via the space 3FEs(0,∞)
simple
ω . �

3.3. Eigenfunctions of the nearest integer transfer operator

In this subsection we relate 1-eigenfunctions of L̃s in (2) to vectors of real analytic functions on
intervals. We note that L̃s is given by

�g �→ �g | L, where L =
(

ST 3 Av+
T −ST −1 Av−

T
2 + −2 −

)
, (38)
ST AvT −ST AvT
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for �g = (g1, g2) continuous on D = {z ∈ C: |z| � 1} and holomorphic on the interior D̊ . The transition
from the operator notation in (2) to the right module notation here causes a transition from column
vectors to row vectors and a transposition of the matrix.

For the first component g1 of �g = (g1, g2) in the domain of L the translate g1 | ST 3 is holomorphic
on the region |z + 3| > 1 in P1

C
, hence g1 | ST 3 Av+

T is at least defined as a holomorphic function on
the right half-plane Re(z) > −2 in C. Proceeding similarly with the other components we find that
�g | L is holomorphic on −1 < Re(z) < 1, which contains the interior of the unit disk D . Considering
two terms in the infinite sum separately, with (34), we see that �g | L is continuous on the unit disk
D , its boundary included. Restriction of �g to a neighborhood of (−1,1) provides us with a solution
of �g | L = �g in the vector valued analytic functions on (−1,1).

We shall see that the components of this restriction to (−1,1) can be extended to a larger interval,
and that conversely solutions of �g = �g | L on the resulting interval come from 1-eigenfunctions of L̃s .

It turns out that a crucial role is played by the intervals (−φ2, φ) and (−φ,φ2), where φ denotes

the golden ratio φ = 1+√
5

2 .

Proposition 3.7. Let a1,b2 ∈ (φ−2, φ2) and a2,b1 ∈ (0,1]. Suppose that the analytic functions
f1 ∈ V ω

s (−a1,b1) and f2 ∈ V ω
s (−a2,b2) satisfy ( f1, f2)|2s L = ( f1, f2). Then f1 is the restriction of

h1 ∈ V ω
s (−φ2, φ) and f2 of h2 ∈ V ω

s (−φ,φ2) such that (h1,h2) | L = (h1,h2), and h1 = h2 | T . The val-
ues of h1(x), respectively h2(x) for each given x ∈ (−φ2, φ), respectively x ∈ (−φ,φ2), can be expressed in
values of f1 and f2 by a finite number of applications of the relation ( f1, f2) = ( f1, f2)|2s L.

Proof. By analyticity the eigenfunction equation extends from given open intervals to larger ones, and
relation (33) implies h1 = h2 | T . The statement that requires work is the extension of the domains.

Denote ( f1, f2) | L by ( f̃1, f̃2). We have

f1 | ST 3 ∈ V ω
s

((
1

a1
− 3,

−1

b1
− 3

)
c

)
, f2 | ST −1 ∈ V ω

s

((
1

a2
+ 1,

−1

b2
+ 1

)
c

)
,

f1 | ST 2 ∈ V ω
s

((
1

a1
− 2,

−1

b1
− 2

)
c

)
, f2 | ST −2 ∈ V ω

s

((
1

a2
+ 2,

−1

b2
+ 2

)
c

)
,

where (x, y)c = (x,∞) ∪ {∞} ∪ (−∞, y) is the notation for cyclic intervals in P1
R

. With Lemma 3.1:

f1 | ST 3 Av+
T ∈ V ω

s

(
1

a1
− 3,∞

)
, f2 | ST −1 Av−

T ∈ V ω
s

(
−∞,

−1

b2
+ 2

)
,

f1 | ST 2 Av+
T ∈ V ω

s

(
1

a1
− 2,∞

)
, f2 | ST −2 Av−

T ∈ V ω
s

(
−∞,

−1

b2
+ 3

)
,

which implies

f̃1 ∈ V ω
s

(
1

a1
− 3,

−1

b2
+ 2

)
, f̃2 ∈ V ω

s

(
1

a1
− 2,

−1

b2
+ 3

)
.

The end points of the domains are transformed according to −ã1 = 1
a1

−3, b̃1 = b̃2 −1, −ã2 = −ã1 +1,

b̃2 = 3 − 1
b2

. Iterating this, the a1 starting in (φ−2, φ2) form a sequence increasing to φ2, and similarly
for the b2. This leads to the extension indicated in the proposition. �

This proposition shows that 1-eigenfunctions of L̃s extend to vectors of the form (g, g | T ) with g
holomorphic on a neighborhood of (−φ2, φ), such that the relation (g, g | T ) | L = (g, g | T ) is valid
on a neighborhood of (−φ,φ).
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Proposition 3.8. Suppose that g ∈ V ω
s satisfies

(
g, g

∣∣ T −1) ∣∣ L = (
g, g

∣∣ T −1) (39)

on (−φ,φ). Then g extends holomorphically to a neighborhood of the closed unit disk D and (39) holds on
that neighborhood.

Proof. Since g is real analytic on the interval (−φ2, φ) ⊃ [−1,1], there is a complex ε-neighborhood
U of [−1,1] to which g extends as a holomorphic function. Relation (39) stays valid on this neigh-
borhood.

Denote �g = (g, g | T −1). We have

�g | L =
∑
n�0

�g | An, An =
(

ST 3+n ST −2−n

ST 2+n ST −3−n

)
. (40)

For sufficiently large n the four images (An)i, j D , i, j ∈ {1,2}, are contained in the given neighborhood
U of [−1,1]. Lemma 3.1 and repeated application of relation (34) show that there is a tail of the
series in (40) representing a holomorphic function on a neighborhood of D . Thus we have on an open
neighborhood Ω of (−φ,φ):

�g | L =
N∑

n=0

g | An + (holomorphic on a neighborhood of D).

For g in the remaining terms g | An we substitute (40) again. Repeating this process, we obtain for
each k � 1 on an open neighborhood Ωk of (−φ,φ):

�g(z) =
N1∑

n1=0

· · ·
Nk∑

nk=0

g | Ank · · · An1 (z) + (holomorphic on a neighborhood of D). (41)

The neighborhood Ωk is increasing in k.
The matrix elements of Ank · · · An1 are of the form ST ak ST ak−1 · · · ST a1 , where a j ∈ Z, |a j | � 2, and

a ja j+1 = −4 if |a j | = |a j+1| = 2. (The transfer operator L̃s is designed to reflect this condition on the
a j in nearest integer continuous fraction expansions.) Each ST a j maps the unit disk D into itself. For
the imaginary part y of z ∈ D we have

Im
(

ST a j z
) = y

|z + a j |2 � y

(|a j | − 1)2
.

So each ST a j with |a j | � 3 decreases the imaginary part with at least a factor 4. If a j = ±2 the
imaginary part does not increase and if moreover j < k, we know that a j+1 �= a j . One checks for
a ja j+1 � 6 and a ja j+1 � −4 separately that the imaginary part decreases at least with a factor 4
under ST a j+1 ST a j . So if k is sufficiently large, all ST ak · · · ST a1 z with z ∈ D are contained in the ε-
neighborhood U of [−1,1] we started with. For such k, all explicit terms in (41) can be absorbed in
the last term. �

These propositions imply:

Corollary 3.9. Let 0 < Re(s) < 1, s �= 1
2 . Restriction and analytic extension give a bijective correspondence

between ker(L̃s − 1) and the space of solutions in V ω
s (−φ2, φ) × V ω

s (−φ,φ2) of

(g1, g2)|2s L = (g1, g2). (42)
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3.4. Four term equation

Proposition 3.10. The solutions in V ω
s (−φ2, φ)× V ω

s (−φ,φ2) of �g = �g|2s L are of the form (g, g | T −1) with
g ∈4 FEs(−φ2, φ)ω .

Proof. The eigenfunction relations

h1 = h1 | ST 3 Av+
T −h2 | ST −1 Av−

T ,

h2 = h1 | ST 2 Av+
T −h2 | ST −2 Av−

T ,

imply h2 = h1 | T −1. So they are equivalent to

h = h | ST 3 Av+
T −h | T −1 ST −1 Av−

T on
(−φ2, φ

)
. (43)

Applying |(1 − T ) to (43), and using (31), we get

h | (1 − T ) = h
∣∣ (

ST 3 − T −1 ST −1),
as an identity in V ω

s (−φ2, φ−1). Apply |2s T −1 to obtain as an equality in V ω
s (−φ,φ)

h
∣∣ (

1 + ST 2) = h
∣∣ (

T −1 + T −1 ST −2), (44)

which is (5). �
4. Four term equation and cohomology

In the case of the three term equation (3) the step from solutions on (0,∞) to cohomology has
been discussed in Section 3.2. In the case of the four term equation (5), the situation is more com-
plicated, but the approach is essentially based on the same ideas. The main steps are indicated in
Section 2.5. In this section we prove Theorems 2.3 and 2.5.

4.1. A model for parabolic and hyperbolic cohomology

Instead of the inhomogeneous cocycles used in Section 2.3 to describe the first cohomology group,
one can also employ homogeneous ones. To an inhomogeneous cocycle ψ corresponds the homoge-
neous cocycle c̃ : Γ 2 → V given by

c̃γ ,δ = ψγ δ−1 | δ (γ , δ ∈ Γ ). (45)

satisfying for γ , δ, ε ∈ Γ

c̃γ ε,δε = c̃γ ,δ | ε and c̃γ ,δ + c̃δ,ε = c̃γ ,ε. (46)

(This implies that c̃γ ,γ = 0 and c̃δ,γ = −c̃γ ,δ .) Coboundaries in B1(Γ ; V ) correspond to functions

(γ , δ) �→ v | δ − v | γ (47)

with v ∈ V .
Homogeneous cocycles are parabolic if and only if by adding a coboundary, we can arrange

c̃T ,1 = 0.
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A homogeneous parabolic cocycle satisfies

c̃Tγ ,δ = c̃Tγ ,γ + c̃γ ,δ = 0 | γ + c̃γ ,δ and (48)

c̃γ ,T δ = c̃γ ,δ + c̃1,T | δ = c̃γ ,δ − 0 | δ. (49)

So c̃ induces a function (�∞ \Γ )2 → V , where �∞ is the subgroup of Γ generated by T , which is the
subgroup fixing ∞. Conversely, every such function satisfying (46) induces a homogeneous parabolic
cocycle. Taking into account that the set �∞ \Γ can be identified with the set of cusps P1

Q
= Q∪∞ ⊂

P1
R

via γ �→ γ −1∞, we obtain the description of H1
par(Γ ; V ) as the quotient Z 1

P1
Q

(Γ ; V )/B1
P1

Q

(Γ ; V ),

where Z 1
P1

Q

(Γ ; V ) is the space of maps c : P1
Q

× P1
Q

→ V such that cξ,η + cη,ζ = cξ,ζ and cγ −1ξ,γ −1η =
cξ,η | γ for γ ∈ Γ and ξ,η, ζ ∈ P1

Q
, and where B1

P1
Q

(Γ ; V ) consists of the subset of elements of the

form cξ,η = fη − fγ with f : P1
Q

→ V satisfying fγ −1ξ = fξ | γ .

If we take another base point ξ ∈ P1
R

, we can work with cocycles of the same type on other Γ -
orbits in P1

R
. If the subgroup Γξ of Γ leaving ξ fixed is trivial, we get a description of H1(Γ ; V ). In

fact a homogeneous cocycle c̃ on Γ 2 corresponds to a cocycle c on Γ ξ ⊂ P1
R

by

c̃γ ,δ = cγ −1ξ,δ−1ξ . (50)

The situation is different if ξ is a hyperbolic fixed point of Γ . Then the procedure indicated above
leads to the hyperbolic cohomology group discussed in Section 2.5. A corresponding homogeneous
group cocycle ψ : γ �→ ψγ = cγ −1ξ,ξ satisfies

ψH ∈ V | (1 − H)

for a generator H of the stabilizer Γξ of the point ξ . We will apply this for the stabilizer Γ−φ for the

golden ratio φ = 1+√
5

2 . A generator of Γ−φ is T ST 2. Thus, we have a model of H1
Fib. A group cocycle

corresponding ψ to the cocycle c on Fib is given by ψγ = cγ −1(−φ),−φ . In particular, c is determined
by c−φ,φ−1 = −ψS and c−φ,φ = −ψT −1 S , subject to the relations

c−φ,φ−1 | (1 + S) = 0, c−φ,φ

∣∣ (
1 + T −1 S + ST

) = 0; (51)

see (20). Such a cocycle is a coboundary if there is v ∈ V such that v | T ST 2 = v and cγ −1(−φ),δ−1(−φ) =
v | δ − v | γ for γ , δ ∈ Γ .

4.2. Solutions of the four term equation and hyperbolic cohomology

In this subsection we prove Theorem 2.3 of Section 2.5. We work with cocycles on Fib = Γ (−φ)

as the model of hyperbolic cohomology. For the computations we found the graph in Fig. 2 useful.

Lemma 4.1. Suppose that c is a 1-cocycle on Fib with values in V ω∗
s such that Sing(c−φ2,φ) ∩ (−φ2, φ) = ∅.

Then the restriction of c−φ2,φ to the interval (−φ2, φ) is in 4FEs(−φ2, φ)ω .

Proof. Cocycles on Fib satisfy the relations in (46). Hence

c−φ2,φ

∣∣ (
1 − T −1 ST −2) = c−φ2,φ − cφ2,φ = c−φ2,φ2

= c−φ2,−φ + c−φ,φ2 = c−φ2,φ

∣∣ (
T −1 − ST 2). (52)
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Fig. 2. Part of the Γ -orbit Fib. Arrows denote the action of T , curves the action of S . The horizontal coordinates of the points
correspond to their positions in R. Note that φ2 = φ + 1, φ−1 = φ − 1 and φ−2 = 2 − φ.

The fact that the restriction g of c−φ2,φ to (−φ2, φ) has no singularities in (−φ2, φ) implies that

relation (52) holds on (−φ,φ) as an identity of real analytic functions. Hence g ∈ 4FEs(−φ2, φ)ω . �
Proposition 4.2. Each element g ∈ 4FEs(−φ2, φ)ω is the restriction

c−φ2,φ |(−φ2,φ)

for a unique Γ -cocycle c on Fib with values in V ω∗
s . This cocycle satisfies

Sing(c−φ2,φ) ⊂ {−φ2, φ
}
, Sing(c−φ,φ−1) ⊂ {−φ,φ−1}, Sing(c−φ,φ) ⊂ {−φ,φ}.

The induced map ϑ : 4FEs(−φ2, φ)ω) → H1
Fib(Γ ; V ω∗

s ) is injective.

Proof. First we assume that a cocycle c exists such that g is equal to the restriction of c−φ2,φ to

(−φ2, φ). The cocycle relations imply

g | ST 2 = c−φ,−φ2 on
(−φ,−φ2)

c,

g
∣∣ (

1 + ST 2) = c−φ2,φ + c−φ,−φ2 = c−φ,φ on (−φ,φ),

g
∣∣ (

1 + ST 2)ST S = cφ2,φ−1 on
(
φ2, φ−1)

c,

g | T −1 = c−φ,φ2 on
(−φ,φ2),

g
∣∣ (

T −1 + (1 + ST 2)ST S
) = c−φ,φ2 + cφ2,φ−1 = c−φ,φ−1 on

(−φ,φ−1).
This shows that the restriction of c−φ,φ−1 to (−φ,φ−1) is determined by g . From (51) we know that

c−φ,φ−1 | S = −c−φ,φ−1 . Hence g determines the restriction of c−φ,φ−1 to (φ−1,−φ)c as well. So g

determines c−φ,φ−1 as an element of V ω∗
s .

The situation for the other generator c−φ,φ is slightly more complicated.

c−φ,φ = g
∣∣ (

1 + ST 2) on (−φ,φ),

cφ,φ−2 = c−φ,φ | T −1 S = g
∣∣ (

1 + ST 2) ∣∣ T −1 S on
(
φ,φ−2)

c,

cφ−2,−φ = c−φ,φ | ST = g
∣∣ (

1 + ST 2) ∣∣ ST on
(
φ−2,−φ

)
c .

The relation c−φ,φ + cφ,φ−2 + cφ−2,−φ = 0 implies that c−φ,φ is determined by g on each of the cyclic

intervals (−φ,φ−2), (φ−2, φ) and (φ,−φ)c . So any V ω∗
s -valued cocycle c on Fib is determined by the

restriction of c−φ2,φ to (−φ2, φ).
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This reasoning also shows how to construct c from g . We put for a given function
g ∈ 4FEs(−φ2, φ)ω:

h = g
∣∣ (

1 + ST 2) ∈ V ω
s (−φ,φ),

k = g | T −1 + h | ST S ∈ V ω
s

(−φ,φ−1). (53)

By the reasoning given above we should have:

c−φ,φ−1 :=
{

k on (−φ,φ−1),

−k | S on (φ−1,−φ)c,

c−φ,φ :=
{

h on (−φ,φ),

−h | (T −1 S + ST ) on (φ,−φ)c .
(54)

To see that this indeed defines a cocycle, we choose the base point −φ and consider not the potential
cocycle c on Fib, but the corresponding cocycle ψ on Γ :

ψS = −c−φ,φ−1 , ψT −1 S = −c−φ,φ.

The relations (20) turn out to be satisfied. So indeed there exists a cocycle c as desired.
For the singularities, we note first that the expressions above for c−φ,φ and c−φ,φ−1 in terms of g

imply that

Sing(c−φ,φ−1) ⊂ {−φ,φ−1}, Sing(c−φ,φ) ⊂ {−φ,φ}.

The cocycle c is determined by c−φ,φ−1 and c−φ,φ . We now check that the restriction of c−φ2,φ to

(−φ2, φ) is equal to g , as desired, and cannot have singularities in (φ,−φ2)c . The cocycle relations
imply that

c−φ2,φ = c−φ,φ−1 | T + c−φ,φ + c−φ,φ | ST . (55)

On various intervals we have:

(−φ2,−φ) (−φ,−φ−2) (−φ−2, φ) (φ,−φ2)c

c−φ,φ−1 | T k | T k | T −k | ST −k | ST
c−φ,φ −h | (T −1 S + ST ) h h −h | (T −1 + ST )

c−φ,φ | ST h | ST −h | (1 + T −1 S) h | ST h | ST

c−φ2,φ g g g −k | ST − h | T −1

On (−φ−2, φ) we use the four term equation:

c−φ2,φ = −g | T −1 ST + h
∣∣ (−ST 2 + 1 + ST

)
= g

∣∣ (−T −1 ST + (
1 + ST 2)(1 + ST − ST 2))

(44)= −g
∣∣ (

1 + ST 2 − T −1 ST −2)ST + g
∣∣ (

1 − ST 2 ST 2 + ST + ST 2 ST
)

= g
∣∣ (

T −1 ST −2 ST + 1 − ST 2 ST 2) (9)= g.

Hence c−φ2,φ = g on (−φ2,−φ)∪ (−φ,−φ−2)∪ (−φ−2, φ). Since g is analytic on (−φ2, φ), the points

−φ and −φ−2 are not singularities of c−φ2,φ , by the definition of V ω∗
s as an inductive limit. Fur-

thermore c−φ2,φ is given by the analytic function −k | ST − h | T −1 on (φ,−φ2)c . This shows that

Sing(c−φ2,φ) ⊂ {−φ2, φ}.
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To show that the map ϑ : 4FEs(−φ2, φ)ω → H1
Fib(Γ ; V ω∗

s ) given by ϑ : g �→ [c] is injective, we
check that the cocycle c corresponding to g can be a coboundary only if g = 0. If c is a coboundary,
then cγ −1(−φ),δ−1(−φ) = v | δ − v | γ . In particular, v | T ST 2 should be equal to v for some v ∈ V ω∗

s .

We use that T ST 2 is a hyperbolic element of Γ fixing −φ and φ−1. Conjugation in PSL(2,R)

transforms it to η = [ φ2 0

0 φ−2

]
, fixing 0 and ∞. Let w ∈ V ω∗

s be invariant under η. The action of η on

(0,∞) and (−∞,0) is by x �→ φ4x. So if w were to have singularities in R \ {0}, then there would
be infinitely many, contradicting the definition of V ω∗

s . On R we have w | η(x) = φ4s w(φ4x). Inserting
this into a power series expansion converging on a neighborhood of 0, we see that if w is analytic
at 0 it vanishes. The same holds at ∞. So if w �= 0, then Sing(w) = {0,∞}.

Conjugating back, we see that if c is a non-zero coboundary, then it has the form cγ −1(−φ),δ−1(−φ) =
v | (δ − γ ), where v ∈ V ω∗

s satisfies v | T ST 2 = v and Sing(v) = {−φ,φ−1}. We consider the singulari-
ties of c−φ2,φ = cT −1(−φ),T S(−φ) = v | ST −1 − v | T . Now Sing(v | ST −1) = {φ,−φ−1}, and Sing(v | T ) =
{−φ2,−φ−2}. So c−φ2,φ has singularities at −φ−1 and −φ−2, in contradiction to the analyticity of g

on (−φ2, φ). �
We note that H1

Fib(Γ ; V ω∗
s ) is a subspace of H1(Γ ; V ω∗

s ). The inclusion V ω
s ↪→ V ω∗

s induces a nat-

ural map H1(Γ ; V ω
s ) → H1(Γ ; V ω∗

s ).

Proposition 4.3. The subspace ϑ(4FEs(−φ2, φ)ω) of H1(Γ ; V ω∗
s ) is contained in the image of H1(Γ ; V ω

s ) in
H1(Γ ; V ω∗

s ).

Proof. Let g ∈4 FEs(−φ2, φ)ω , and let c be the cocycle on Fib representing ϑ(γ ). Since Sing(c−φ,φ−1) ⊂
{−φ,φ−1}, Proposition 3.5 implies that there are K−φ and Kφ−1 in V ω∗

with Sing(K−φ) ⊂ {−φ}
and Sing(Kφ−1) ⊂ {φ−1} such that c−φ,φ−1 = K−φ − Kφ−1 . Since c−φ,φ−1 | (1 + S) = 0, we have

Kφ−1 = K−φ | S + α for some α ∈ V ω
s . Similarly, there are H−φ, Hφ ∈ V ω∗

s with Sing(H−φ) ⊂ {−φ}
and Sing(Hφ) ⊂ {φ} such that c−φ,φ = H−φ − Hφ . There exists a function β ∈ V ω

s such that
Hφ = H−φ | T −1 S + β .

We have, with (55):

c−φ2,φ ∈ c−φ,φ−1 | T + c−φ,φ | (1 + ST ) ∈ K−φ | (T − ST ) + H−φ

∣∣ (
ST − T −1 S

) + V ω
s .

Since Sing(c−φ2,φ) ⊂ {−φ2, φ}, we conclude from the singularities of the various terms that
K−φ | ST ∈ H−φ | ST + V ω

s . Hence

K−φ − H−φ ∈ V ω
s . (56)

The class [c] ∈ H1
Fib(Γ ; V ω∗

s ) considered as a class in H1(Γ ; V ω∗
s ) is given by the group cocycle

ψS = −c−φ,φ−1 , ψT −1 S = −c−φ,φ.

We add to it the coboundary γ �→ K−φ | (1 − γ ), obtaining a cocycle ψ̃ in the same class. It satisfies

ψ̃S = −K−φ + Kφ−1 + K−φ | (1 − S) = α ∈ V ω
s ,

ψ̃T −1 S = −H−φ + Hφ + K−φ

∣∣ (
1 − T −1 S

) = (K−φ − H−φ)
∣∣ (

1 − T −1 S
) + β ∈ V ω

s . (57)

Thus the class [ψ] = [ψ̃] in H1(Γ ; V ω∗
s ) is the image of the class [ψ̃] ∈ H1(Γ ; V ω

s ). �
Proposition 4.4. The subspace ϑ(4FEs(−φ2, φ)ω) of H1(Γ ; V ω∗

s ) is equal to the image of H1(Γ ; V ω
s ).
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Proof. We use a hyperbolic one-sided average, as discussed at the end of Section 3.1. Starting with a
cocycle χ̃ ∈ Z 1(Γ ; V ω

s ) we define

A = χ̃T S T 2 | Av+
T S T 2 ∈ V ω∗

s ,

with Sing(A) ⊂ {−φ} and A | (1 − T ST 2) = χ̃T S T 2 . We have used that −φ is the repelling fixed point
of T ST 2.

Now χ : γ �→ χ̃γ − A | (1 − γ ) defines a V ω∗
s -valued cocycle in the same cohomology class in

H1(Γ ; V ω∗
s ) as χ̃ . It satisfies Sing(χγ ) ⊂ {−φ,γ −1(−φ)}. Moreover, χT S T 2 = 0, so χ is hyperbolic

for the conjugacy class of T ST 2. Hence it corresponds to a cocycle c on Fib, such that c−φ2,φ =
A | T − A | ST −1 − χ̃S T −2 | T has singularities at most in {−φ2, φ}. This means that the class of χ̃ is
in the image of ϑ .

Starting from this cocycle c, one can take K−φ = H−φ = A, and get back ψ̃ = χ̃ . �
Proof of Theorem 2.3. We have to establish an injection ϑ from 4FE(−φ2, φ) into H1

Fib(Γ ; V ω∗
s ), and

to show that the image is equal to the image of H1(Γ ; V ω
s ) under the natural map to H1(Γ ; V ω∗

2 ).
Proposition 4.2 gives the injective map ϑ . Proposition 4.4 shows the equality of the images. �
4.3. Eigenfunctions of the transfer operator and cohomology

In this final section we prove Theorem 2.5 of Section 2.5.
We use the same notations as in the previous subsection:

g ∈ 4FEs
(−φ2, φ

)
ω
, c ∈ Z 1

Fib

(
Γ ; V ω∗

s

)
, ψ ∈ Z 1(Γ ; V ω∗

s

)
, ψ̃ ∈ Z 1(Γ ; V ω

s

)
,

and K−φ ∈ V ω∗
s with Sing(K−φ) ⊂ {−φ}, related by:

g = c−φ2,φ restricted to
(−φ2, φ

)
, (58)

cγ −1(−φ),δ−1(−φ) = ψγ δ−1 | δ, ψγ = −c−φ,γ −1(−φ), (59)

ψ̃γ = ψγ + K−φ | (1 − γ ), (60)

K−φ = ψ̃T S T 2 | Av+
T S T 2 . (61)

We consider P ∈ V ω
s (−φ2, φ) given by

P = g | ST 3 Av+
T −g | T −1 ST −1 Av−

T −g. (62)

So P measures how much (g, g | T −1) differs from an 1-eigenfunction of L in (38). Application of
(31) shows that P | T = P on (−φ2, φ−1). Hence the periodic function P extends as an element
of V ω

s (R)T ⊂ V ω∗
s . To obtain a representation of P on R, we use (58)–(60) to obtain on (−φ2, φ):

P = ψT S T | T −1 S
(

ST 3 Av+
T −T −1 ST −1 Av−

T −1
)

= ψ̃T S T
∣∣ (

T 2 Av+
T −S Av−

T −T −1 S
)

+ K−φ

∣∣ ((
T ST 3 − T 2)Av+

T +(
S − ST −1)Av−

T +T −1 S − T
)
.

From (61) it follows that K−φ | T ST 2 = K−φ − ψ̃T S T 2 . With (32) we find for the contribution of K−φ :
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K−φ

∣∣ (
T − T 2) Av+

T −ψ̃T S T 2 | T Av+
T −K−φ | ST −1(1 − T )Av−

T +K−φ

∣∣ (
T −1 S − T

)
= K−φ

∣∣ (
T − ST −1 + T −1 S − T

) − ψ̃T S T 2 | T Av+
T

= (
K−φ | T ST 2 + ψ̃T S T 2

) ∣∣ T −1 S − K−φ | ST −1 − ψ̃T S T 2 | T Av+
T

= ψ̃T S T 2

∣∣ (
T −1 S − T Av+

T

)
.

This leads to an expression valid on R:

P = ψ̃T S T
∣∣ (

T 2 Av+
T −S Av−

T −T −1 S + T
(
T −1 S − T Av+

T

))
+ ψ̃T

∣∣ (
T −1 S + 1 − Av+

T

)
= ψ̃T S T

∣∣ (
S − T −1 S

) + ψ̃T
∣∣ (

T −1 S + 1
) − ψ̃T | Av+

T −ψ̃T S T | S Av−
T . (63)

Proof of Theorem 2.5. Suppose that P = 0, i.e., g ∈ 4FEs(−φ2, φ)ω corresponds to an eigenfunction
(g, g | T −1) of L. We note that ψ̃T S T , ψ̃T ∈ V ω

s , and apply Lemma 3.3 to conclude that ψ̃T | Av+
T = ψ̃T |

Av−
T ∈ V ω∗,simple

s , hence ψ̃T ∈ V ω∗,simple

s | (1 − T ), which is the condition for a cocycle to be parabolic.

Thus we conclude that [ψ̃] ∈ H1
par(Γ ; V ω

s , V ω∗,simple

s ).

Conversely, suppose that ψ̃ ∈ Z 1
par(Γ ; V ω

s , V ω∗,simple

s ). Now ψ̃T ∈ V ω∗,simple

s | (1 − T ) by parabolicity,

and hence ψ̃T | Av+
T = ψ̃T | Av−

T by Lemma 3.2. In (63) we see that P is in V ω
s + V ω

s | Av−
T . Hence

P (x) has an asymptotic behavior as x ↓ −∞ of the form indicated in (36). Since P is also periodic, it
vanishes. �

Now we have carried out all steps indicated in the diagram in Fig. 1 at the end of Section 2.5. We
close the paper with a few remarks on the methods we have used:

• In the context of dynamical systems, eigenfunctions of transfer operators are functions on disks in
the complex plane. Restriction gives analytic functions on intervals in R. To go back from analytic
eigenfunctions of transfer operators on an interval to functions on a disk or even larger spaces,
we need bootstrap methods. In the case of L̃s we have not investigated whether further extension
is possible than to the unit disk in Proposition 3.8.

• Transfer operators are given by infinite sums. The eigenfunctions considered here can be char-
acterized by finite linear relations, which may be characterized as cocycle relations on suitable
generators of the discrete group under consideration.

• The cocycle relations considered here define a parabolic and a hyperbolic cohomology group with
analytic coefficients. To relate these analytic cohomology groups we have used a larger cohomol-
ogy group with semi-analytic coefficients, where coefficients with a finite number of singularities
are allowed.
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