Aquaporin-3 Re-Expression Induces Differentiation in a Phospholipase D2-Dependent Manner in Aquaporin-3-Knockout Mouse Keratinocytes

Vivek Choudhary\(^1,2,3\), Lawrence O. Olala\(^1,2\), Haixia Qin\(^1,2,6\), Inas Helwa\(^1,2\), Zhi-qiang Pan\(^2,4\), Ying-Ying Tsai\(^2\), Michael A. Frohman\(^5\), Ismail Kaddour-Djebbar\(^1,2\) and Wendy B. Bollag\(^1,2,3\)

Aquaporin-3 (AQP3) is a water and glycerol channel expressed in epidermal keratinocytes. Despite many studies, controversy remains about the role of AQP3 in keratinocyte differentiation. Previously, our laboratory has shown co-localization of AQP3 and phospholipase D2 (PLD2) in caveolin-rich membrane microdomains. We hypothesized that AQP3 transports glycerol and “funnels” this primary alcohol to PLD2 to form a pro-differentiative signal, such that the action of AQP3 to induce differentiation should require PLD2. To test this idea, we re-expressed AQP3 in mouse keratinocytes derived from AQP3-knockout mice. The re-expression of AQP3, which increased \(^{[3H]}\)glycerol uptake, also induced mRNA and protein expression of epidermal differentiation markers such as keratin 5 and keratin 10, and loricrin, with or without the induction of differentiation by an elevated extracellular calcium concentration. Re-expression of AQP3 had no effect on the expression of the proliferation markers keratin 5 and cyclin D1. Furthermore, a selective inhibitor of PLD2, CAY10594, and a lipase-dead (LD) PLD2 mutant, but not a LD PLD1 mutant, significantly inhibited AQP3 re-expression–induced differentiation marker expression with calcium elevation, suggesting a role for PLD2 in this process. Thus, our results indicate that AQP3 has a pro-differentiative role in epidermal keratinocytes and that PLD2 activity is necessary for this effect.

Journal of Investigative Dermatology (2015) 135, 499–507; doi:10.1038/jid.2014.412; published online 16 October 2014

INTRODUCTION

The outer layer of the skin, the epidermis, is a stratified squamous epithelium that predominantly consists of keratin-producing cells, the keratinocytes. These keratinocytes form different layers of the epidermis depending on their proliferation and differentiation status. In the basal layer, keratinocytes proliferate and express markers of a proliferative status, such as keratin 5 and keratin 14. These keratinocytes move upward and form the differentiating spinous, granular, and cornified layers. The keratinocytes in the spinous layer express markers of early differentiation such as keratin 1 (K1) and keratin 10 (K10). These spinous keratinocytes later express markers of intermediate differentiation such as involucrin, whereas the keratinocytes that move up into the granular layer express markers of late differentiation such as loricrin (LOR) and filaggrin. The transition of granular keratinocytes into cornified keratinocytes, forming the outermost cornified layer, is marked by destruction of organelles and maturation of the cornified envelope into an insoluble, highly resistant structure surrounding the keratin–filaggrin complex and linked to the extracellular lipid milieu (Bikle and Pillai, 1993). Thus, the cornified layer provides a protective skin barrier to allow retention of water and other important metabolites. These programmed and balanced processes of proliferation and differentiation are therefore important in maintaining skin health. Although there have been many studies performed to elucidate the regulation of these proliferation and differentiation processes, the exact regulators and signaling mechanism(s) underlying these events are still unclear. One of the well-known regulators of epidermal differentiation is the extracellular calcium concentration, with lower concentrations maintaining a proliferative state and elevated levels inducing differentiation (Tu and Bikle, 2013).

Aquaporins are a family of transmembrane proteins that facilitate the transport of water, and in some cases small solutes, across cell membranes (Verkman, 2008). Thirteen aquaporins have been identified to date, and the expression of
Aquaporins 3, 9, and 10 has been reported in the epidermis (Sugiyama et al., 2001; Ma et al., 2002; Sougrat et al., 2002; Boury-Jamot et al., 2006). Aquaporin 3 (AQP3) not only transports water but also allows movement of small solutes like glycerol across the plasma membrane (Hara and Verkman, 2003; Hara-Chikuma and Verkman, 2005). In mammalian skin, AQP3 is expressed in the basal layer as well as in the suprabasal layers of the epidermis (Verkman and Mitra, 2000; Hara-Chikuma and Verkman, 2008; Lee et al., 2012; Guo et al., 2013), whereas its presence in the stratum corneum is controversial (Sougrat et al., 2002; Jungersted et al., 2013). Studies characterizing AQP3-knockout mice suggest that this aquaglyceroporin is required for maintaining normal stratum corneum hydration, skin elasticity, wound healing, epidermal biosynthesis, and barrier recovery (Ma et al., 2002; Hara-Chikuma and Verkman, 2008). AQP3 has been shown to be involved in keratinocyte proliferation (Hara-Chikuma et al., 2009; Nakahigashi et al., 2011; Serna et al., 2014) as well as in keratinocyte differentiation (Dumas et al., 2002; Zheng and Bollag, 2003; Bollag et al., 2007; Kim and Lee, 2010). The epidermal phenotype of AQP3-knockout mice is linked to decreased epidermal glycerol content and can be corrected by treatment with glycerol but not with other humectants (Ma et al., 2002). These reports highlight the importance of glycerol and its transport channel in keratinocyte physiology.

The phospholipase D (PLD) isoforms PLD1 and PLD2 are lipolytic enzymes that have been implicated in a variety of cellular processes, including cell proliferation and differentiation (Banno, 2002; Jenkins and Frohman, 2005; Di Fulvio et al., 2012). PLD2 hydrolyzes phosphatidycholine to produce choline and phosphaticid acid, or, in the presence of a primary alcohol, catalyzes a transphosphatidylation reaction to produce phosphatidylalkylcohols. Our laboratory has previously demonstrated that PLD2 can use glycerol in the transphosphatidylation reaction to form phosphatidylglycerol (Zheng et al., 2003), a largely unrecognized lipid signal, and that this signaling module/lipid shows pro-differentiative effects in keratinocytes (Bollag et al., 2007) and reviewed in (Qin et al., 2011).

Considering the importance of regulators of proliferation and differentiation processes in maintaining the normal function of the skin, there is a need to further define the role of AQP3 in keratinocytes and to identify the mechanisms underlying its effects in the epidermis. Here, we have re-expressed AQP3 in AQP3-knockout keratinocytes and determined the effect of this manipulation on proliferative and differentiative processes. We hypothesized that AQP3 increases glycerol transport and “funnels” this primary alcohol to PLD2 such that its effects on differentiation are mediated by PLD2.

RESULTS

Validation of expression and activity of re-expressed AQP3 in AQP3-knockout keratinocytes

To better understand the role of AQP3 in keratinocytes, we utilized an approach that involved re-expression of wild-type AQP3 in keratinocytes derived from AQP3-knockout mice. We first confirmed the re-expression of AQP3 protein upon adenoviral infection. There was significant re-expression of AQP3 protein in keratinocytes infected with adenovirus expressing AQP3 as compared with vector-infected keratinocytes (Figure 1a). The diffuse band around 35–40 kDa represents glycosylated AQP3 (Boury-Jamot et al., 2006), which suggests that the re-expressed AQP3 was able to localize to the plasma membrane and function as a transporter. As AQP3 has been shown to be important for transporting glycerol into keratinocytes, the functionality of re-expressed AQP3 was further confirmed by measuring [3H]glycerol uptake by these cells. As shown in Figure 1b, cells re-expressing AQP3 exhibited significantly increased glycerol uptake. These results confirmed the validity of our re-expression approach.

AQP3 re-expression increases expression of differentiation markers in AQP3-knockout keratinocytes

Once we confirmed the re-expression and activity of AQP3 in AQP3-knockout keratinocytes, we then investigated the role/ effect of re-expressed AQP3 in these cells. To better understand the effect of the re-expressed AQP3 on various differentiation and proliferation markers, we treated one set of cells with a moderately increased calcium concentration to stimulate keratinocyte differentiation. The mRNA expression of the early differentiation marker, K1, was significantly increased in AQP3-re-expressing keratinocytes (Figure 2a). Under differentiating conditions (treatment with 125 μM calcium), mRNA levels of both early (K1 and K10) and late differentiation markers (LOR) were significantly increased in AQP3-re-expressing keratinocytes compared with AQP3-null keratinocytes (Figure 2a–c). Consistent with the changes in mRNA expression, the protein levels of K10 and LOR were also significantly increased upon AQP3 re-expression (Figure 2d and e). These results clearly suggested a pro-differentiative role for AQP3 in mouse keratinocytes.

![Figure 1. Validation of expression and activity of re-expressed AQP3 in AQP3-knockout keratinocytes.](image-url)

Figure 1. Validation of expression and activity of re-expressed AQP3 in AQP3-knockout keratinocytes. Primary cultures of AQP3-knockout keratinocytes were allowed to reach approximately 70–80% confluence and then infected with adenoviruses expressing either wild-type AQP3 or vector alone using a multiplicity of infection of 25 for 24 hours. Fresh control medium (50 μM calcium) or medium containing 125 μM calcium was added for another 24 hours. (a) Total cell lysates were analyzed by western blotting using antibodies against AQP3 and the glyceraldehyde-3-phosphate dehydrogenase (GAPDH) loading control. AQP3 is seen as a non-glycosylated, 28-kDa band and a diffuse band at 35–40 kDa, representing the glycosylated form. The figure shown is representative of three independent experiments. (b) [3H]Glycerol uptake by the cells is shown as cpm μg protein. The data represent the mean ± SEM from three independent experiments. *P<0.05 versus vector-infected keratinocytes.
AQP3 re-expression has no effect on expression of markers of keratinocyte proliferation

As earlier reports suggested a pro-proliferative role for AQP3 in keratinocytes (Hara-Chikuma et al., 2009; Nakahigashi et al., 2011; Serna et al., 2014), we investigated the effect of re-expressed AQP3 on proliferation markers. As shown in Figure 3, the presence or absence of AQP3 had no significant effect on the mRNA expression of the proliferation markers, keratin 5 and cyclin D1. These results suggest that AQP3 does not have a significant role in the proliferation of keratinocytes, at least under these conditions.

The PLD2 inhibitor, CAY10594, inhibits the AQP3 re-expression–induced expression of markers of keratinocyte differentiation

As our results demonstrated a pro-differentiative role for re-expressed AQP3 in keratinocytes, we sought to identify the possible downstream signaling pathway involved. Earlier reports from our laboratory have shown that the PLD2/AQP3 module is activated by a moderately elevated calcium concentration and suggested the involvement of this module in promoting early keratinocyte differentiation (Zheng et al., 2003; Bollag et al., 2007). Therefore, we investigated the role of PLD2 in AQP3 re-expression–induced keratinocyte differentiation. We used the PLD2-selective inhibitor, CAY10594, at a dose previously shown to selectively inhibit PLD2 in intact cells (Scott et al., 2009). In an earlier report, we demonstrated the effectiveness of CAY10594 in inhibiting PLD activity in keratinocytes, and in the same study we showed that treatment with this concentration of CAY10594 has no cytotoxic effect on keratinocytes (Arun et al., 2013). Treatment of keratinocytes with this PLD2 inhibitor, together with stimulation of differentiation with an elevated calcium concentration, resulted in a significant inhibition of the AQP3 re-expression–induced expression of the early differentiation markers, K1 and K10 (Figure 4a and b). The protein levels of K10 also correlated with the mRNA results (Figure 5a). We did not observe statistically significant differences in the mRNA expression of LOR (Figure 4c). However, western blotting analysis showed that the increased LOR protein levels were significantly reduced by CAY10594 treatment in AQP3-re-expressing keratinocytes under conditions of an elevated extracellular calcium concentration (Figure 5b). These results suggest that the ability of AQP3

Figure 2. Aquaporin 3 (AQP3) re-expression increases the expression of differentiation markers in AQP3-knockout keratinocytes. Keratinocytes from AQP3-knockout neonatal mice were treated as described in Figure 1. Cells were harvested for quantitative real-time reverse-transcriptase–PCR analysis of the expression of (a) keratin 1 (K1), (b) keratin 10 (K10), and (c) loricrin (LOR). Expression was analyzed with the delta–delta cycle threshold method using an average value of glyceraldehyde-3-phosphate dehydrogenase (GAPDH) and ribosomal protein, large, P0 as endogenous controls, and values are shown as the fold over the vector-infected group. (d, e) Cells were harvested for western blotting analysis using antibodies against (d) K10 and (e) LOR with GAPDH as the loading control. Quantitation of the values from three independent experiments is shown, with values expressed as the percent (%) maximal response. *$P<0.05$, **$P<0.01$ compared with the vector-infected group and the other indicated groups (in panel d); † or ‡$P<0.05$ versus the indicated groups.
re-expression to induce differentiation depends upon PLD2 activity.

Lipase-dead (LD) PLD2, but not LD PLD1, inhibits the AQP3 re-expression–induced increase in markers of keratinocyte differentiation

To further confirm this PLD2 requirement, we utilized LD PLD2 mutant-expressing adenovirus to inhibit endogenous PLD2. LD PLD2 mutant expression inhibited AQP3 re-expression–induced mRNA expression of K1, K10, and LOR under elevated calcium conditions (Figure 6a–c). Even under basal conditions, AQP3-induced K10 expression was significantly inhibited by overexpression of the LD PLD2 mutant (Figure 6b). However, overexpression of the LD PLD1 mutant did not inhibit AQP3 re-expression–mediated induction of these differentiation markers (Figure 6d–f). These results suggested the involvement of PLD2, but not PLD1, in AQP3-mediated keratinocyte differentiation.

Figure 3. Aquaporin 3 (AQP3) re-expression had no effect on the expression of markers of keratinocyte proliferation. Keratinocytes from AQP3-knockout neonatal mice were treated as described in Figure 1. Cells were harvested for quantitative real-time reverse-transcriptase–PCR analysis, and the mRNA expression of (a) keratin 5 (K5) and (b) cyclin D1 was analyzed using the delta–delta cycle threshold method with the average of glyceraldehyde-3-phosphate dehydrogenase (GAPDH) and ribosomal protein, large, P0 expression as the endogenous control. These results are shown as the fold over the vector-infected group and were derived from the analysis of at least three independent experiments. NS, nonsignificant.

Figure 4. The phospholipase D2 (PLD2) inhibitor, CAY10594, inhibited the aquaporin 3 (AQP3) re-expression–induced increase in the mRNA levels of markers of keratinocyte differentiation. Primary AQP3-knockout mouse keratinocytes were allowed to reach approximately 70–80% confluence and then infected with adenoviruses expressing either wild-type AQP3 or vector alone using an multiplicity of infection of 25 for 24 hours. Medium containing the PLD2-selective inhibitor, CAY10594 (1 μM), alone or in combination with an elevated calcium concentration (125 μM), was added to the keratinocytes for an additional 24 hours. (a) The cells were harvested for quantitative real-time reverse-transcriptase–PCR analysis, and the mRNA expression of (a) keratin 1 (K1), (b) keratin 10 (K10), and (c) loricrin (LOR) was determined using the delta–delta cycle threshold method with glyceraldehyde-3-phosphate dehydrogenase (GAPDH) as the endogenous control. The results are shown as the fold over the vector-infected group and were derived from at least three independent experiments. ***P<0.001 compared with all other groups. NS, nonsignificant.
AQP3 Induces Differentiation via PLD2

DISCUSSION

In this study, we determined the role of AQP3 in keratinocyte differentiation and identified PLD2 as a mediator of an AQP3-induced differentiative effect. Although previous studies have suggested a role for AQP3 in keratinocytes, the results have been controversial with both pro-differentiative (Dumas et al., 2002; Zheng and Bollag, 2003; Kim and Lee, 2010; Matsuo and Kawano, 2014) and pro-proliferative effects described (Hara-Chikuma et al., 2009; Nakahigashi et al., 2011; Serna et al., 2014). Here we have attempted to address this question using a strategy that involved the re-expression of AQP3 in primary cultures of keratinocytes derived from AQP3-knockout mice using adenovirus expressing wild-type AQP3.

First, we verified the re-expression of AQP3 by western blotting analysis (Figure 1a). The glycosylation of aquaporins helps them to localize to the plasma membrane (Hendriks et al., 2004), where they function to transport water and glycerol. Thus, the presence of glycosylated AQP3 (Figure 1a) upon adenoviral transduction of keratinocytes suggested the functioning of the re-expressed AQP3. The functionality was confirmed by the demonstration of increased [3H]glycerol uptake into keratinocytes expressing AQP3 as compared with those lacking AQP3 (Figure 1b). Similar to these results, Jiang et al. (Jiang et al., 2011) also demonstrated a significant increase in glycerol uptake upon an increase in AQP3 levels following stimulation with agonists of peroxisome proliferator–activated receptors.

Once our approach was validated, we investigated the effect of the re-expressed AQP3 on keratinocyte differentiation and proliferation. However, we suspected that the presence or absence of AQP3 alone may not be sufficient for observing changes in various differentiation markers, particularly late markers, under basal growth conditions. Therefore, to maximize the effect of manipulating AQP3 levels, differentiation markers were examined under basal conditions (50 μM calcium) as well as with a moderately increased extracellular calcium concentration (125 μM) to stimulate keratinocyte differentiation. Previous reports have suggested the importance of extracellular calcium levels in inducing differentiation, as an increasing concentration gradient of calcium from the proliferating basal layer to the differentiated granular layer is observed in the epidermis in situ (Lee et al., 1992; Menon et al., 1992; Elias et al., 2002). Indeed, low medium calcium levels promote a basal-like state of the keratinocyte, and raising the medium calcium concentration triggers keratinocyte differentiation (Pillai et al., 1990). Moreover, a calcium concentration in the range of 90–120 μM has been reported to be optimal for inducing mouse keratinocyte differentiation (Yuspa et al., 1989; Li et al., 1995). Using a comparable moderately elevated extracellular calcium concentration, we demonstrated that re-expression of AQP3 in AQP3-knockout keratinocytes not only induced a significant increase in the expression of the early differentiation marker K1 but also enhanced the effect of this calcium concentration on the expression of the early differentiation marker, K10, as well as the late differentiation marker, LOR (Figure 2). The lack of induction of differentiation markers in the vector-infected, calcium-treated keratinocytes is likely attributable to the absence of AQP3 in these keratinocytes. Kim and Lee (2010) also have reported attenuation of the calcium-induced increase in the expression of differentiation markers such as K10, involucrin, and LOR upon siRNA-mediated AQP3 knockdown in normal human keratinocytes, again suggesting a

Figure 5. The phospholipase D2 (PLD2)-specific inhibitor, CAY105944, inhibited the aquaporin 3 (AQP3) re-expression–induced increase in the protein levels of markers of keratinocyte differentiation. Experiments were performed as described in Figure 4, and cells were harvested for western blotting analysis using antibodies against (a) keratin 10 (K10) and (b) loricrin (LOR). β-Actin served as the loading control. Quantitation of the values from three independent experiments is shown, with values expressed as the percent (% maximal response). **P<0.01, ***P<0.001 versus the vector-infected control and the other indicated groups; † or ††P<0.05, †††P<0.01 versus the indicated groups.

** V Choudhary et al.
requirement for AQP3 in the induction of differentiation. Another group showed that urea not only increases AQP3 expression but also the mRNA expression of various differentiation markers (Grether-Beck et al., 2012), also consistent with the results of this study.

Although several studies support the role of AQP3 in the proliferation of keratinocytes (Hara-Chikuma et al., 2009; Nakahigashi et al., 2011; Serna et al., 2014), we did not observe a significant effect of the presence or absence of AQP3 on markers of proliferation such as keratin 5 and cyclin

Figure 6. The lipase-dead (LD) phospholipase D2 (PLD2) mutant, but not LD PLD1, inhibited the aquaporin 3 (AQP3) re-expression–induced increase in the markers of keratinocyte differentiation. (a–c) AQP3-knockout primary keratinocytes at approximately 70–80% confluence were infected with adenovirus expressing either wild-type AQP3 or vector using a multiplicity of infection (MOI) of 25 in two groups. One group received additional adenovirus (25 MOI) expressing the LD PLD2 mutant (PLD2 LD), whereas the other group received adenovirus expressing vector. After 24 hours, fresh medium with basal or an elevated calcium concentration (125 μM) was added to the keratinocytes for an additional 24 hours. The cells were harvested for quantitative real-time reverse-transcriptase–PCR analysis, and the mRNA expression of (a) keratin 1 (K1), (b) keratin 10 (K10), and (c) loricrin (LOR) was determined using the delta–delta cycle threshold method with glyceraldehyde-3-phosphate dehydrogenase (GAPDH) as the endogenous control. These results are shown as the fold over the vector/vector-infected group and were derived from at least three independent experiments. ***P<0.001 versus all other groups unless indicated otherwise; ###P<0.001 versus vector/vector; **P<0.01, ***P<0.01 as indicated. (d–f) AQP3-knockout primary keratinocytes were infected as above, except that an MOI of 12.5 was used both for adenovirus expressing AQP3 or vector and the additional adenovirus expressing LD PLD1 mutant (PLD1 LD) or vector. The mRNA expression of (d) K1, (e) K10, and (f) LOR was determined as above. ***P<0.001 versus all other groups unless otherwise indicated; **P<0.01 and *P<0.05 versus vector/vector; †P<0.05, ††P<0.01 as indicated. NS, nonsignificant. Similar results were obtained in another experiment (repeated once for n = 2) using an MOI of 25 for both viruses (for a total MOI of 50).
D1 (Figure 3). These results suggest that the AQP3 is a pro-
differentiative signaling protein with no significant role in
proliferation of keratinocytes, at least under the examined
conditions.

We and others have shown that AQP3-mediated transport
of glycerol has a biological role in epidermal differentiation
(Bollag et al., 2007; Bellemere et al., 2008; Qin et al., 2011; Qin
and Bollag, 2013). Therefore, we were interested in
identifying/confirming the downstream signaling factors
involved in the keratinocyte differentiation induced by the
glycerol transported by AQP3. Previously, our laboratory has
shown that AQP3 and PLD2 co-localize in caveolin-rich
membrane microdomains (Zheng and Bollag, 2003). We
have also demonstrated the involvement of this signaling
module in keratinocyte differentiation (Bollag et al., 2007)
and have shown that PLD2 can utilize glycerol in vitro in the
transphosphatidyllylation reaction to generate phosphatidylylglycerol (Zheng et al., 2003). Recently, we have shown that an
agent that decreases phosphatidyglycerol levels (a membrane-
permeant caveolin-1 scaffolding domain peptide) also inhibits
calcium-induced differentiation of mouse keratinocytes (Qin
and Bollag, 2013), suggesting a role for phosphatidyglycerol
in this process. Therefore, we hypothesized that the effect of
re-expression of AQP3 on keratinocyte differentiation might be
mediated by PLD2. Utilizing CAY10594, a PLD2-selective
inhibitor, and a LD PLD2 mutant, we demonstrated inhibition
of the AQP3 re-expression–induced increase in the expression
of differentiation markers upon stimulation of differentiation
with a moderately elevated calcium concentration (Figures 4–6).
However, no inhibitory effect of CAY10594 on AQP3-induced
expression of differentiation markers was observed under
basal, low calcium conditions (Figure 5). This result is likely
due to the fact that, during these experiments, AQP3 was re-
expressed for 24 hours before inhibiting PLD2 (by treating with
CAY10594). Thus, 24 hours seem to be sufficient not only for
re-expressing AQP3 but also for the re-expressed protein to
exert its effect on differentiation. However, in experiments
involving the LD PLD2 mutant, the AQP3 re-expression–
induced increase in K10 expression was inhibited by the
PLD mutant under basal conditions (Figure 6b). In these
experiments, adenosine expressing LD PLD2 and wild-type
AQP3 were simultaneously infected, and thus LD PLD2 was
able to inhibit AQP3-induced K10 expression. This result is
consistent with our findings of an association between AQP3
and PLD2 in epidermal keratinocytes (Zheng and Bollag,
2003; Zheng et al., 2003). On the other hand, LD PLD1 had
no significant inhibitory effect on the mRNA levels of
differentiation markers (Figure 6d–f) in response to AQP3 re-
expression, suggesting that PLD1 is not involved in AQP3-
induced differentiation of keratinocytes. Thus, the present
results confirmed the involvement of PLD2 in mediating the
role of AQP3 in inducing keratinocyte differentiation.

In summary, we identified a signaling pathway for
keratinocyte differentiation. AQP3, as a glycerol transporter,
allows glycerol to enter the cell and provide this primary
alcohol to associated PLD2. Although we have not eliminated
the possibility of a role for PLD2-generated phosphatidic
acid or other lipid signal in AQP3 re-expression–induced
differentiation, we hypothesize that PLD2 through its trans-
phosphatidylation reaction converts the glycerol to phospha-
ditylglycerol, and phosphatidyglycerol then exerts a
differentiating effect (Bollag et al., 2007). This hypothesis
will be tested in future studies. Finally, the identification of a
differentiative role of AQP3 in keratinocytes suggests the
possibility of targeting this signal to develop treatments for
hyperproliferative skin diseases such as non-melanoma skin
cancers and psoriasis, in which the AQP3 levels and/or
localization are abnormal (Voss et al., 2011; Lee et al.,
2012) and the differentiation process is impaired (Kim and
Lee, 2010; Qin et al., 2011; Sugimoto et al., 2013).

MATERIALS AND METHODS

Materials

Antibodies against proteins of interest were obtained from the
following suppliers: AQP3 (no. B8185; LifeSpan Biosciences, Seattle,
WA); β-actin (no. AS441; Sigma-Aldrich, St Louis, MO); K10 (no.
PRB-159F) and LOR (no. PRB-140C) (Covance, Denver, PA); and
glyceraldehyde-3-phosphate dehydrogenase (GAPDH; no. CB1001;
EMD Millipore, Billerica, MA). AlexaFluor IR680- and IR800-con-
jugated secondary antibodies were from LiCor Biosciences (Lincoln,
NE). Polystyrene microtiter plates were from CMA (Billerica, MA), and
iScript cDNA synthesis kits were purchased from Bio-Rad Laboratories
(Hercules, CA). The keratinocyte serum-free medium (K-SFM) containing
human recombinant EGF and bovine pituitary extract (added fresh) was
purchased from Life Technologies (Carlsbad, CA; Cat. no. 7010022). The AQP3-knockout mice were
generously provided by Dr Alan Verkman (University of California,
San Francisco, CA).

Adenoviral constructs amplification

The adenovirus pAdTrack-CMV shuttle vectors were acquired from
Dr Bert Vogelstein (Howard Hughes Medical Institute, Chevy Chase,
MD), and adenovirus-expressing wild-type AQP3 (Zheng and Bollag,
2003) was generated using the AdEasy system as described in the
study by He et al. (1998) and Shapiro et al. (2010). The LD PLD2 and
PLD1 mutants were generated as described by Sung et al. (1997).
Amplification of viruses was performed as previously described (Arun
et al., 2013).

Cell culture and experimental design

All animal studies were approved by the Georgia Regents University
Institutional Animal Care and Use Committee. Primary epidermal
mouse keratinocytes were prepared from 1- to 3-day-old neonatal
AQP3-knockout mice (Ma et al., 2002) and seeded in plating medium
as described previously (Jung et al., 1999). After attachment, the
medium was replaced the next day with K-SFM containing 50 μM
CaCl2. When the keratinocytes reached 70–80% confluence they
were infected with adenosine expressing either vector or wild-type
AQP3 at a multiplicity of infection (MOI) of 25 in K-SFM. In the
experiments involving the PLD2 LD mutant, a total of 50 MOI was
used in all the infected groups with 25 MOI of vector or AQP3-
expressing adenosine and 25 MOI of vector or LD PLD2 adenosine.
For PLD1 experiments, an adenosine concentration of 12.5 MOI
each (for a total of 25 MOI) was used. The virus-containing medium
was removed 24 hours post infection and replaced with K-SFM
containing control (50 μM) or an elevated calcium concentration
AQP3 Induces Differentiation via PLD2

V Choudhary

(125 μM) to stimulate keratinocyte differentiation (Yuspa et al., 1989; Li et al., 1995). After an additional 24 hours, the cells were harvested for further analysis. For studies involving the PLD2 inhibitor, the cells were infected with virus for 24 hours and then treated with CAY10594 in the presence or absence of an elevated calcium concentration for 24 hours prior to quantitative real-time reverse-transcriptase-PCR (qRT–PCR) and western blotting analyses.

Western blotting analysis
At the end of the treatment period, primary keratinocytes were harvested using hot lysis buffer (0.1875 M Tris-HCl (pH 8.5), 3% SDS, and 1.5 mM EDTA). The solubilized cells were scraped and homogenized by repeated pipetting, and 3x sample buffer (30% glycerol, 15% beta-mercaptoethanol, 1% bromophenol blue, 54% water) was added prior to boiling the samples. Equal sample volumes were subjected to SDS-PAGE and then transferred to polyvinylidene difluoride membranes using a Trans-Blot Turbo Transfer system (Bio-Rad Laboratories). Membranes were blocked with 5% nonfat dry milk for at least 30 minutes before incubating with the appropriate antibodies. Immunoreactivity was visualized and quantified using infrared imaging on an Odyssey imaging system (LiCor Biosciences).

Quantitative real-time reverse-transcriptase-PCR analysis
Total RNA was extracted using a PerfectPure RNA tissue kit (5 PRIME, Gaithersburg, MD, USA) as per the manufacturer’s protocol. The quality and quantity of total RNA were assayed using a Nanodrop instrument (NanoDrop Technologies, Wilmington, DE). An iScript cDNA synthesis kit (Bio-Rad Laboratories) was used to reverse transcribe equal quantities of total RNA (1 μg) following the manufacturer’s instructions. The cDNA was diluted five times with DNase-free water, and an equal amount of diluted cDNA was used in qRT–PCR reactions. Taqman probes were purchased from Applied Biosystems (Life Technologies, Grand Island, NY). qRT–PCR reactions were performed using the Fast Reagent PCR Master Mix (Applied Biosystems) and the StepOnePlus Real-Time PCR System (Applied Biosystems) as per the manufacturer’s protocol. Relative gene expression was calculated using the 2-ΔΔCT method.

[3H]Glycerol uptake assay
To quantify the function of re-expressed AQP3, we performed a radiolabeled glycerol uptake assay as described in Zheng et al. (2003). Briefly, after viral infection for 24 hours, the medium was aspirated and replaced with pre-equilibrated K-SFM containing 20 mM HEPES and 1 μCi ml⁻¹ [3H]glycerol for exactly 5 minutes. The reactions were terminated, and the excess [3H]glycerol was removed with three washes of ice-cold PBS lacking divalent cations. Keratinocytes were solubilized in 0.3 M NaOH, and aliquots were subjected to liquid scintillation counting.

Statistical analysis
Data from at least three independent experiments are presented as the means ± SEM. An unpaired, two-tailed t-test was used to analyze differences between two groups. For more than two groups, we compared group mean values using one-way analysis of variance with a Newman–Keuls multiple comparison post-hoc test (GraphPad Prism, La Jolla, CA).

CONFLICT OF INTEREST
The authors state no conflict of interest.

ACKNOWLEDGMENTS
We thank Purmina Merali for her excellent technical assistance in the preparation of primary mouse keratinocytes and Dr. Alan Verkman for the kind gift of the AQP3 knockout mice. This work was supported in part by an NIH award (no. AR45212) and a Veterans Affairs Merit Review (no. I01CX00590) to WBB. WBB is also supported by a VA Research Career Scientist Award. The contents of this article do not represent the views of the Department of Veterans Affairs or the United States Government.

REFERENCES

Hendriks G, Koudijs M, van Balkom BW et al. (2004) Glycerolysis is important for cell surface expression of the water channel aquaporin-2 but is not essential for tetramerization in the endoplasmic reticulum. J Biol Chem 279:2975–83
Jung EM, Betancourt-Calle S, Mann-Blakeney R et al. (1999) Sustained phospholipase D activation is associated with keratinocyte differentiation. Carcinogenesis 20:569–76
Lee SH, Elias PM, Proksch E et al. (1992) Calcium and potassium are important regulators of barrier homeostasis in murine epidermis. J Clin Invest 89:530–8
Qin H, Bollag WB (2013) The caveolin-1 scaffolding domain peptide decreases phosphatidylglycerol levels and inhibits calcium-induced differentiation in mouse keratinocytes. PloS One 8:e80946