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The Rhomboid proteases belong to a highly conserved family of proteins that are present in all branches of
life. In Drosophila, the secretory pathway-localized rhomboid proteases are crucial for epidermal growth fac-
tor (EGF) signaling. The identification of a mitochondrial-localized rhomboid protease shed light on other
functions of rhomboid proteases including the maintenance of mitochondrial morphology and the regulation
of apoptosis. More recent work has revealed other functions of the mitochondrial rhomboid protease in mi-
tochondrial and cellular biology, failure of which have been implicated in human diseases. In this review, we
will summarize the current knowledge and disease relevance of the mitochondrial-localized rhomboid pro-
tease. This article is part of a Special Issue entitled: Intramembrane Proteases.
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1. Introduction

Proteolysis within the membrane bilayer is conceptually challeng-
ing, but several groups of proteases have evolved elegant and sophisti-
catedmechanisms to conduct such a feat. In this review, wewill discuss
in detail the discovery and ongoing characterization of mitochondrial-
localized rhomboid proteases. This family has emerged as a critical me-
diator of mitochondrial biology and is also deeply rooted in human dis-
ease etiologies.
1.1. Intramembrane proteolysis

Intramembrane proteolysis is a key regulatory mechanism conserved
throughout evolution [1–4]. To date, intramembrane proteases can be
classified into three major classes: (i) the site-2 metalloproteases (S2P),
(ii) the signal peptide peptidase (SPP) and presenilin (PS) aspartyl prote-
ases and (iii) the Rhomboid family of serine proteases. One of the major
challenges of intramembrane proteolysis is the requirement for water in
the hydrophobic lipid bilayer to allow for the hydrolysis of a peptide
bond. Until recently, it was inconceivable that proteolysis can occur
within the membrane. Intense research in the field has elucidated the
structure, function and regulatorymechanisms of these intramembrane
proteases. The S2P, SPP and PS proteases are highlighted in other
reviews of this special issue.Wewill focus our review on the Rhomboid
family of serine proteases, and more specifically, the mitochondrial
sub-family of Rhomboids.
1.2. Identification of the Rhomboid superfamily of enzymes

Rhomboids are the newest class of intramembrane proteases and are
a relatively new superfamily of proteins. The first rhomboid was identi-
fied in a genetic screen performed in Drosophila, where fly embryos of
the mutant had a mis-shapened rhombus-like head skeleton. This mu-
tant phenotype led to the naming of the gene as “rhomboid” [5]. It was
later discovered that Rhomboid was also required for the establishment
of the dorsal–ventral axis during oogenesis. It was proposed that the
spatial localization of Rhomboid was important in selectively activating
the epidermal growth factor (EGF) [6]. The identification of six other
rhomboids in Drosophila and the finding that Rhomboid-1 activates the
EGF-like protein, Spitz, by cleaving it in its transmembrane domain
(TMD) defined a new family of intramembrane proteases [7–9]. It is
now known that rhomboid proteases are indispensible regulators of
EGF signaling in Drosophila. The Golgi-localized rhomboid proteases,
Rhomboid-1, -2, -3 and -4 can activate EGF signaling in vivo by cleaving
theEGF-like proteins Spitz, Keren andGurken [10]. However, Rhomboids
are also present in organisms that lack EGF signaling, and hence, must
have additional conserved functions [11].
Table 1
List of mitochondrial rhomboids and their known substrates.

Species Rhomboid Substrate Function Refs.

Saccharomyces
cerevisiae

Rbd1/Pcp1 Ccp1 [12,18]
Mgm1 Mitochondrial fusion [12–14]

Drosophila
melanogaster

Rhomboid-7 Opa1-like Mitochondrial fusion,
apoptosis

[16]

Pink1 Mitophagy [28]
Omi Apoptosis [28]

Mammals PARL PINK1 Mitophagy [43,53–55]
OMI Apoptosis [96]
PGAM5 Apoptosis [17]
1.3. Identification of the mitochondrial rhomboid protease

The identification of a mitochondrial-localized rhomboid protease
and its substrates shed light on another function of Rhomboids that is
distinct fromEGF signaling. Themitochondrial rhomboid proteases reg-
ulate mitochondrial morphology and function [12–17]. First identified
in yeast as a protein required for the cleavage and maturation of
cytochrome c peroxidase, Ccp1, the role of the mitochondrial rhomboid
proteases inmitochondrial biologywas not highlighted until the identi-
fication of Mgm1 as the other substrate of the yeast mitochondrial
rhomboid protease, Rbd1/Pcp1 [12–14,18]. The mitochondrial rhom-
boid proteases are now known to be crucial regulators ofmitochondrial
dynamics and function. Impaired function of themammalianmitochon-
drial rhomboid protease is associated with impaired mitochondrial
function and quality control that are proposed to contribute to type 2
diabetes and Parkinson's disease (discussed below).
1.4. Structure and catalysis of mitochondrial-localized rhomboid
proteases

The specificity of rhomboid proteases for their substrates is better
characterized for the non-mitochondrial rhomboid proteases than it is
for the mitochondrial rhomboid proteases, and is discussed in great
detail in other reviews of this special issue. A recent study examining
substrate specificity of the mitochondrial rhomboid proteases indicates
that the yeast and human mitochondrial rhomboid proteases are not
selective in the sequence that they cleave. Although hydrophobicity is
required, the sequence can be highly variable. Replacing the entire
rhomboid cleavage region (RCR) of Mgm1 with two different hydro-
phobic sequences not physiologically cleaved by Rbd1 did not alter
the efficiency of Rbd1-dependent cleavage of Mgm1. However, this
cleavage was dependent on a 13 amino acid stretch of negatively
charged residues C-terminal to the RCR. Mutating these residues
resulted in impairedMgm1 cleavage by both the yeast andmammalian
mitochondrial rhomboid proteases, demonstrating possible conserva-
tion of substrate recognition [21].

Although the Rhomboid family was discovered to be proteases only
a decade ago, intense research has enabled us to learn more about their
localization and biological functions in vivo. It is now clear that the
Rhomboid superfamily includes the secretory pathway-localized rhom-
boid proteases, the inactive rhomboids (iRhoms), the mitochondrial-
localized rhomboid proteases and more recently, the Derlin proteins
[11,22]. In this review, we will focus on the mitochondrial-localized
rhomboid proteases, summarizing the current findings on their sub-
strates, regulatory mechanisms and disease-relevance.
2. The mitochondrial rhomboid proteases

2.1. The yeast mitochondrial rhomboid protease, Rbd1

The existence of a mitochondrial-localized rhomboid protease was
first discovered in yeast in 2002. Rbd1/Pcp1 was found to be required
for the cleavage and maturation of cytochrome c peroxidase, Ccp1 [18].
Shortly after, in 2003, three independent studies identified another sub-
strate of Rbd1, the dynamin-like GTPase, Mgm1 [12–14]. The defect in
the proteolytic processing of Mgm1 and Ccp1 in the Δrbd1 strain could
by rescued by a plasmid-borne copy of WT Rbd1 but not a catalytically
inactive mutant. More importantly, this defect could also be rescued by
human PARL (presenilins-associated rhomboid-like), the human homo-
log of Rbd1 that also localized tomitochondria, although its functionwas
still unknown at the time. This was the first indication that the localiza-
tion and function of the mitochondrial rhomboid proteases are con-
served from yeast to mammals [12]. Despite these important findings
in yeast, Ccp1 and Mgm1 remain the only known substrates of the
yeast mitochondrial rhomboid protease (Table 1). Although Ccp1 was
the first identified substrate of Rbd1, Mgm1 has since become its key
substrate in yeast and most studies have focused on understanding the
regulation of Mgm1 processing and its biological function in mitochon-
drial membrane dynamics.
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Mgm1 exists as two isoforms — the inner membrane (IM)-tethered
form, long-Mgm1 (l-Mgm1), and the Rbd1-cleaved, intermembrane
space (IMS)-soluble form, short-Mgm1 (s-Mgm1). A proper balance of
l-Mgm1 and s-Mgm1 is crucial for proper mitochondrial fusion [23,24].
The phenotype of cells lacking Rbd1 mirrors that of cells lacking Mgm1.
They lose their mitochondrial DNA (mtDNA), resulting in a petite strain
with fragmented mitochondria characteristic of mitochondrial fusion
mutants [12–14]. However, an in vivomitochondrial fusion assay demon-
strated that mitochondria in cells lacking Rbd1 were still able to fuse,
indicating that Rbd1, unlike Mgm1, is not an obligate member of the mi-
tochondrial fusionmachinery despite being an important regulator ofmi-
tochondrial fusion [13]. Recent studies have shown that mitochondria in
cells lacking Psd1, a protein that promotes mitochondrial fusion, can
still undergo complete fusion even though they appear fragmented or ag-
gregated [25,26]. Since themitochondrial fusionmachinery is still present
in Δrbd1 mitochondria, it is possible that fusion can still occur, but per-
haps at a reduced rate, similar to that of Δpsd1mitochondria [26]. Never-
theless, the abnormal mitochondrial morphology in Δrbd1 cells and the
role of Rbd1 in the cleavage of Mgm1 strongly implicates the mitochon-
drial rhomboid protease as a critical regulator of mitochondrial mem-
brane fusion.

2.2. The Drosophila mitochondrial rhomboid protease, Rhomboid-7

The identification of a mitochondrial rhomboid protease in yeast led
to further studies that discovered functional conservation in other
organisms including Drosophila melanogaster. Over-expression of the
Drosophila mitochondrial rhomboid protease, Rhomboid-7, resulted in
increased processing of Drosophila optic atrophy 1-like (Opa1-like),
the fly ortholog of yeast Mgm1 [16]. Rhomboid-7 is also required for
mitochondrial fusion during fly spermatogenesis andmuscle maturation.
Rhomboid-7mutant flies have a reduced lifespan, difficulties walking and
are unable to fly [15]. In contrast, the over-expression of Rhomboid-7
resulted in severe mitochondrial aggregation in the larval brain, reduced
ATP levels and dysfunctional neuromuscular junctions [16]. Similar to
their yeast counterparts, mutations in rhomboid-7 result in phenotypes
similar to that of flies with mutations in opa1-like [15]. Loss-of-
function mutations in rhomboid-7 also result in severe light-induced
neurodegeneration of photoreceptors, a phenotype characteristic of
the human disease dominant optic atrophy, a result of mutations in
the human gene OPA1 [15,27]. In addition, the over-expression of
Rhomboid-7 resulted in increased apoptosis, a process that is known
to be regulated by mammalian OPA1 [16]. The results from these stud-
ies strongly support the genetic analyses that rhomboid proteases are
highly conserved, and that their function and substrates are likely
conserved throughout evolution [11].

Thefirst evidence that themitochondrial-localized rhomboid protease
is implicated in Parkinson's disease (PD) came from studies in Drosophila
that identified PTEN-induced putative kinase 1 (pink1), high temperature
requirement A2 (htrA2, a serine protease, also known as omi) and parkin
(an E3 ubiquitin ligase) as genetic interactors of rhomboid-7 [28]. Pink1,
parkin and omi are PD-linked genes; loss-of-function mutations in PINK1
and PARKIN are linked to autosomal recessive PD, whereas mutations in
OMI are associated with sporadic PD [29–31]. Rigorous Drosophila genet-
ics had previously identified that pink1 and parkin function in the same
pathway, with pink1 acting upstream of parkin [32]. Using a similar ap-
proach,Whitworth et al. determined that rhomboid-7 interacts genetically
with pink1, parkin and omi. Rhomboid-7 also interacts physically with
Pink1 and Omi, acting as an upstream protease that is required for their
cleavage and function (Table 1) [28]. Genetic epistasis analyses from
this study also demonstrated that Omi might function downstream of
Pink1, a result that was contradicted by that of a later study suggesting
that omi is not a component of the pink1/parkin pathway [28,33]. Never-
theless, a growing body of evidence strongly supports the role of the mi-
tochondrial rhomboid protease in the proteolytic processing of PINK1,
implicating it as a key player in the pathogenesis of PD.
The first study indicating that Rhomboid-7 is required for proper
mitochondrial morphology and apoptosis was published in 2006.
Since then, only a handful of articles have further described the
role of Rhomboid-7 in flies, possibly due to reduced interest in
Rhomboid-7-mediated apoptosis in flies. Although Drosophila genetics
is an incredibly powerful tool for studying genetic interactions, evidence
indicates that themechanismof apoptotic activation inDrosophila is not
conserved in mammals. The release of cytochrome c from the mito-
chondrial IMS to the cytosol is a key step in the activation of apoptosis
in mammalian cells (discussed in more detail in Section 4.2.1). Howev-
er, cytochrome c appears to be dispensable for apoptosis in Drosophila
cells [34]. Moreover, in mammalian cells, upon apoptotic stimulation,
Omi translocates frommitochondria to the cytosol where it participates
in the activation of pro-apoptotic proteins, whereas in Drosophila, Omi
remains near mitochondria [35,36]. These differences, among others,
could have dampened the interest in studying Rhomboid-7-mediated
apoptosis in Drosophila, especially in the context of human diseases,
tilting the balance of these studies to mammalian models.

2.3. The mammalian mitochondrial rhomboid protease, PARL

The mammalian mitochondrial rhomboid protease, presenilins-
associated rhomboid-like (PARL) was originally identified in a yeast
two-hybrid screen as a putative metalloprotease that interacts with
the presenilins implicated in Alzheimer's disease [37]. It was later
discovered that PARL is not a functional interacting partner of the
presenilins, but rather is mitochondrial-localized, where it is required
for cristaemaintenance and the regulation of cytochrome c release dur-
ing apoptosis [12,38,39]. The original screen, performed in 2001, pre-
ceded the first description of a mitochondrial-localized rhomboid
protease in yeast in 2002. The original identification of PARL as an
interactor of the presenilins could be a caveat of the classical yeast
two-hybrid system, which is poorly suited to membrane proteins [40].
To overcome this, a membrane yeast two-hybrid system has since
been introduced [41]. Nevertheless, the name PARL is still used today
to refer to the mammalian mitochondrial rhomboid protease.

In mammals, PARL regulates mitochondrial cristae remodeling
and cytochrome c release during apoptosis. Changes in mitochondrial
cristae structure that supported cytochrome c release during apopto-
sis was observed earlier in Parl−/− cells than in WT cells, indicating
that PARL plays an anti-apoptotic role in mammalian cells. Parl−/−

mice have a reduced lifespan and increased muscle wasting due to
increased apoptosis [39]. Recently, PARL was also shown to regulate
mitochondrial adaptation to heat shock by protecting cells from apo-
ptosis. Cells lacking PARL were more sensitive to thermal stress,
releasing cytochrome c more quickly thanWT cells [39,42]. In addition
to regulating apoptosis, PARL also regulatesmitochondrial morphology,
although its role in this process is not well characterized. Over-
expressing PARL in mammalian cells results in mitochondrial frag-
mentation, indicating that PARL regulates mitochondrial morpholo-
gy [38,43]. However, the mitochondrial morphology of Parl−/− cells
is similar to that of WT cells, suggesting that PARL is not involved
in the maintenance of proper mitochondrial morphology [39,44].
Although the exact role of PARL in mitochondrial dynamics remains
to be determined, recent research has uncovered another role of
PARL in mitochondrial quality control that is becoming the focus of
intense research (discussed further in Section 4.2.2). Since PARL is
a protease, a better understanding of PARL functions can be achieved
by identifying and characterizing more of its substrates. It is our be-
lief that the newfound interest in PARL with respect to its role in PD
will facilitate the identification of more PARL substrates.

The relationship between PARL and OPA1 was first studied in mice
where it was observed that the shorter, IMS-soluble form of OPA1 was
reduced in Parl−/− mouse mitochondria, suggesting that OPA1 is a
substrate of PARL, similar to their yeast and Drosophila orthologs [39].
However, this was challenged by results from other studies indicating
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that PARL was not required for the processing of OPA1 [44–47]. These
conflicting data generated debate within the field as to whether PARL
was truly required for the proteolytic processing of OPA1. In addition,
other proteases, namely the m-AAA proteases paraplegin and AFG3L2
(albeit also with conflicting evidence), the ATP-independent protease
OMA1, and the metalloprotease YME1 have also been implicated in
OPA1 processing [44–50]. It is nowwidely accepted thatOPA1 is unlike-
ly to be a physiological substrate of PARL, and strong evidence points
towards OMA1 and YME1 as more biologically relevant proteases that
cleave OPA1 [45–49,51].

Similar to theDrosophila orthologs,mammalian PINK1andHtrA2/Omi
are also processed by PARL (Table 1) [43,52–57]. Although it was origi-
nally reported that PINK1 was not a substrate of PARL, it was later
shown by the same group, as well as other groups, that PINK1 is indeed
a substrate of PARL [43,52–56]. This discrepancy between observations
was attributed to the lack of a good antibody for PINK1 and the fact that
PINK1 is also processed by other unknown proteases in the absence of
PARL [54,54]. Indeed, very recentwork has shown that PINK1 is proteo-
lytically processed in a manner dependent on the mitochondrial pro-
cessing peptidase (MPP), ClpXP and AFG3L2 [45,50,56].

PARL cleaves PINK1 at A103 and PARL-dependent cleavage of PINK1
is required for its proper localization [43,54]. Upon import into mito-
chondria, the mitochondrial targeting sequence (MTS) of PINK1 is
removed by MPP, resulting in the formation of an ~60-kD fragment
[53,56]. Subsequent cleavage by PARL at A103 results in the formation
of an ~52-kD fragment that is released back into the cytoplasm by
some unknown mechanism [43,53–55]. In the absence of catalytically
active PARL, PINK1 is primarily mitochondrial-localized [43,53,55].
PINK1 cleavage and cytoplasmic localization can only be detected in
the presence of WT PARL and not the catalytically inactive S277G/A
PARL mutant. More importantly, PARL-dependent cleavage of PINK1 is
required for its downstream function of Parkin recruitment to damaged
mitochondria to initiate mitophagy, a mitochondrial quality control
mechanism (Section 4.2.2, Fig. 1) [43,58]. Cells expressing the S277G
Nucleus
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IMM

PARLpβ PINK1

pr

phagop
(mitoph

pβ
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Fig. 1. Current knowledge on the substrates, re
catalytically inactive PARL mutant had impaired PINK1-dependent
Parkin recruitment to damaged mitochondria upon the induction of
mitophagy. It has been proposed that dysfunctional mitophagy could
contribute to the pathogenesis of PD [59]. The result that PARL enzy-
matic activity is required for Parkin recruitment duringmitophagy sug-
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tion. PARL S77N was unable to induce PARL-dependent mitochondrial
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detail in Section 4 (PARL and human diseases).
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mechanism or substrate by which this occurs has not been well
established [63]. More recent work has helped us to gain insight into
the crucial role of PARL in apoptosis and mitophagy through the cleav-
age of its substrates (Section 4.2). Hence, it would appear that the reg-
ulation of this protein is critically important. In the next section, we
review the current knowledge of how the mitochondrial rhomboid
proteases are regulated.

3. Regulation of the mitochondrial rhomboid proteases

3.1. Composition of the lipid bilayer

Since rhomboid proteases aremulti-pass TMproteins, itwould not be
surprising that their enzymatic activity can be regulated by the composi-
tion of the lipid bilayer. Indeed, in vitro reconstitution of purified rhom-
boid proteases indicates that their enzymatic activity can be influenced
by their lipid environment [64]. The Escherichia coli rhomboid protease
GlpG is more active when reconstituted in phosphatidylethanolamine
(PE) than in phosphatidylcholine (PC). In support of this finding, molec-
ular dynamics simulations indicate that GlpG forms hydrogen bonds
with its lipid environment and induces lipid bilayer thinning [20]. Fur-
thermore, studies examining the mitochondrial morphology of yeast
and mammalian cells with reduced PE and cardiolipin (CL) indicate
that these lipids are required for normal mitochondrial morphology
[25,26,65–68]. These data suggest that the enzymatic activity of the mi-
tochondrial rhomboid protease could be influenced by the composition
of the mitochondrial membrane. However, the results from studies in
yeast indicate that the activity of Rbd1 is unlikely to be affected by the
mitochondrial lipid composition [26,68]. In comparison to theWT strain,
yeast mutants with altered levels of mitochondrial CL and PE showed no
detectable differences in Rbd1-dependent cleavage of Ccp1 [26,68–70].
Notably, the accumulation of s-Mgm1 was reduced in these mutants.
However, it was shown that the alterations in the phospholipid compo-
sition impaired s-Mgm1 biogenesis in an Rbd1-independent manner
rather than influencing Rbd1 enzymatic activity [26,88]. These results
suggested thatmitochondrial rhomboid proteases are unlikely to be reg-
ulated by the composition of the mitochondrial membrane. However,
given that rhomboid proteases are very highly conserved, results indicat-
ing that the bacterial rhomboid proteases can be regulated by their lipid
environment strongly suggest that the mitochondrial rhomboid prote-
ases could also be regulated in the same way. A possible explanation
for the lack of a detectable difference of Ccp1 cleavage by Rbd1 in the
mitochondrial lipid mutants could be because Rbd1 cleaves Ccp1 much
more efficiently than Mgm1, masking its reduced enzymatic activity.
Hence, one cannot rule out the possibility that the mitochondrial rhom-
boid proteases are regulated by the composition of the mitochondrial
membrane.

The identification of PE- and CL-richmicrodomainswithin thebacte-
rial membrane (although the same CL-specific assay might not be valid
for yeast CL [71]) suggests that these phospholipids could also assemble
intomicrodomainswithin eukaryoticmitochondria [72,73]. Perhaps the
mitochondrial rhomboid proteases localize to suchmicrodomainswith-
in the IM. In support of this, Mgm1 has been shown to localize to cristae
folds, regions proposed to contain such lipid microdomains [74]. Given
the nature of their multi-pass TM structure, it would be unlikely that
the lipid environment does not influence the enzymatic activity ofmito-
chondrial rhomboid proteases.

3.2. Proteolysis — β- and γ-cleavages

Being a typical mitochondrial protein encoded by the nuclear ge-
nome, the PARLprotein sequence contains anN-terminalmitochondrial
targeting sequence (MTS). The site ofMTS cleavage in PARL is known as
the α-site [38]. PARL also undergoes cleavage at two other sites known
as the β- and γ-sites (Fig. 1) [19,38,63]. β-Cleavage is self-regulated in
trans and occurs between S77 and A78, N-terminal to the first TMD.
Mutating the catalytic serine results in impaired β-cleavage [38,63].
The product of β-cleavage is a small peptide, pβ, that possibly translo-
cates from mitochondria to the nucleus, likely mediating mitochondria-
nucleus signaling (Fig. 1) [38]. Expressing β-cleaved PARL in HeLa cells
resulted in fragmented mitochondria, similar to that of cells expressing
a modified form of WT PARL [63]. In contrast, abolishing β-cleavage by
mutating S77 or the residues around it was associated with impaired
PARL function, suggesting that β-cleavage is required for PARL activity
[38,43,63]. It is intriguing that a PD-linkedmutation in PARL, S77N, abol-
ishes β-cleavage [43]. This strongly implies that β-cleavage is a very im-
portant regulatory mechanism of PARL. Further analysis of β-cleavage
indicated that it is developmentally regulated. An antibody that specifi-
cally recognizes the N-terminus of PARL (including the pβ peptide)
was mitochondrial-localized in mature neurons. However, in immature
neurons, its staining was primarily nuclear. This result strongly sug-
gested that β-cleavage occurs during cellular differentiation, likely regu-
lating neuronal maturation [38].

In contrast to β-cleavage, γ-cleavage was shown to abolish PARL
activity. Expressing γ-cleaved PARL resulted in elongatedmitochondria
similar to those of untransfected cells [19]. This phenotype is in stark
contrast to the fragmented mitochondrial morphology observed when
cells expressed WT or β-cleaved PARL, indicating that γ-cleavage abol-
ishes PARL activity [19,63]. Although β- and γ-cleavages have opposing
regulatory effects on PARL enzymatic function, γ-cleavage is mechanis-
tically coupled to β-cleavage. Abolishing β-cleavage results in severely
diminished γ-cleaved PARL [19]. All mitochondrial rhomboid proteases
contain the “1 + 6” structuralmotif of TMDs [11,75]. γ-Cleavage occurs
between the first and second TMDs of PARL and removes TMD 1 from
the rest of the protein, resulting in a PARL protein with only the six
core conserved rhomboid TMDs (Fig. 1). Homology modeling of the
six core PARL TMDs based on the bacterial rhomboid protease GlpG sug-
gests that disrupting the “1 + 6” PARL structural motif might alter the
orientation of TMD 5, increasing the distance between the PARL catalyt-
ic site and the proposed catalytic aspartate in TMD 5, reducing PARL
enzymatic activity [19]. Since the loop between TMDs 1 and 2 is highly
conserved in vertebrates, it is proposed that the function of this loop is
to allow for γ-cleavage, thereby regulating PARL enzymatic activity
[19].

3.3. Phosphorylation

Since β-cleavage is developmentally regulated, there must exist a
molecular mechanism that regulates when it occurs. Indeed, S65, T69
and S70 have been shown to be phosphorylated, a mechanism that in-
hibits β-cleavage (Fig. 1). Mutating these residues to mimic phosphory-
lation resulted in severely diminished β-cleavage. Consistent with the
role of phosphorylation on these residues being an inhibitor of PARL ac-
tivity, PARL-inducedmitochondrial fragmentation could not be detected
in cells expressing the S65D/T69D/S70D triple phosphomimetic mutant.
Interestingly, the inhibitory effect on β-cleavage was most pronounced
with the S70 phosphomimetic [63]. This suggests that, although all
three residues can be phosphorylated, phosphorylation on S70 has the
greatest inhibitory effect on β-cleavage. One can speculate that since
S70 is in closest proximity to S77 where β-cleavage occurs, it is possible
that the presence of a phosphate group at S70 presents a steric hin-
drance, preventing β-cleavage. As previously discussed, β-cleavage has
been shown to regulate PARL enzymatic activity. Thus, phosphorylation
is yet another level at which PARL activity is regulated. Although im-
paired β-cleavage is associated with impaired PARL activity, we should
point out that PARL mutants with reduced β-cleavage still retain enzy-
matic activity [63]. This strongly indicates that PARL is not simply a pro-
tease, but that it has other important regulatory functions such as the
proposedmitochondria–nucleus signaling by pβ. Although the kinase(s)
and/or phosphatase(s) that regulate PARL have not been identified, the
very recent finding that PGAM5, a Ser/Thr phosphatase, is a novel sub-
strate of PARL raises the possibility that PGAM5 might dephosphorylate
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PARL, thereby regulating its enzymatic activity (implications detailed in
Section 4.2.2).

4. PARL and human diseases

4.1. PARL and type 2 diabetes

PARL was first identified as a candidate gene for type 2 diabetes
(T2D) in a study aimed at identifying genes that are differentially
expressed in the skeletalmuscle of lean, obese and type 2 diabetic Israe-
li sand rats. PARLmRNAexpressionwas reduced in diabetic rats butwas
restored when they were exercised to successfully treat diabetes. Fur-
thermore, a common polymorphism in exon 7 of PARL that results in
an L262V amino acid substitutionwas associatedwith increased plasma
insulin, a marker of insulin resistance. The plasma insulin concentra-
tions of these subjects also increased more substantially with age than
those of the control population [76].

The association between reduced PARLmRNAexpression and diabe-
tes was supported by similar observations in insulin-resistant rats and
diabetic human subjects. Reduced PARL mRNA levels were associated
with reduced mitochondrial mass, reduced mitochondrial activity and
impaired insulin signaling. This correlated reduced PARL expression
with mitochondrial dysfunction in insulin resistance and diabetes
[77,78]. This is also in agreementwith growing evidence thatmitochon-
drial dysfunction could lead to insulin resistance [79–82]. These find-
ings strongly implicate PARL, be it directly or indirectly, as a factor
involved in T2D. In order to fully understand how reduced PARL levels
contribute to insulin resistance, the pathways affected need to be better
characterized. A screen to identify alterations in the proteome when
PARL levels are reduced could be a start in determining the mechanism
of PARL-mediated insulin signaling.

Given that obesity is a growing problem in developed countries,
we feel that the role of PARL in diabetes warrants further study.
Although the phenotypes associated with the loss of PARL are similar
to those observed in T2D, the mechanism by which PARL mediates
insulin resistance remains poorly understood. Mitochondrial mass
and quality are maintained by balancing the constant biogenesis of
new functional mitochondria with the degradation of damaged mito-
chondria by mitophagy. It is proposed that reduced PARL protein
levels could contribute to metabolic defects associated with T2D by
tipping this balance, resulting in reduced mitochondrial mass and al-
tered mitochondrial dynamics required for mitophagy [78]. Although
further research into the mechanism of PARL-mediated insulin resis-
tance is required, the current findings strongly suggest that PARL
could be a therapeutic target for treating T2D. However, we must
stress that exercise should also be considered as a therapy for diabe-
tes. Diabetic rats successfully treated with exercise had restored PARL
mRNA levels along with reduced blood glucose levels and plasma
insulin, indicators of improved insulin sensitivity [76]. Although the
different diseases appear to be a result of defects in specific down-
stream effects of mitochondrial dysfunction, it appears that proper
PARL function is central to maintaining mitochondrial quality, there-
by preventing diseases such as T2D and Parkinson's disease.

4.2. PARL and Parkinson's disease

4.2.1. The link to apoptosis
Parkinson's disease (PD) is the secondmost commonneurodegener-

ative disease after Alzheimer's disease. It is characterized by the loss of
dopaminergic neurons in the substantia nigra (SN) pars compacta. One
of the key challenges in elucidating the mechanism of PD pathogenesis
is understanding why neurons from the SN pars compacta are the only
cells affected in this disease. Since neurons are energy demanding, it is
possible that a slight impairment of mitochondrial function is sufficient
to result in cell death.Mitochondria are not only involved in energy pro-
duction; they are also crucial for calcium buffering. Recent studies
indicate that dopaminergic neurons in the SN pars compacta are partic-
ularly sensitive to alterations in calcium homeostasis, suggesting that
impaired calcium buffering could also contribute to the pathogenesis
of PD [83,84] (reviewed in [85]). Although the etiology of PD remains
unknown, several lines of evidence point towards the common theme
of increased programmed cell death, also known as apoptosis, as a con-
tributing factor to increased neuronal death (reviewed in [86]). Given
that PARL has anti-apoptotic functions, it would not be surprising that
altered PARL expression in PD patients might contribute to increased
neuronal death. Indeed, several studies analyzing the transcriptional
profiles of brain tissue (including the SN pars compacta) from healthy
control and PD patients identified reduced PARL mRNA levels in tissues
from PD patients [87–89]. These data are consistent with the role of
PARL in protecting cells from apoptosis and further implicates PARL as
a key player in the pathogenesis of PD.

Apoptosis is an evolutionarily conservedmechanism essential for de-
velopment. Processes such as sexual differentiation and defense against
infections are dependent on well-controlled apoptosis (reviewed in
[90]). One of the hallmarks of apoptosis is the activation of a family of
cysteine proteases known as the caspases. Upon activation, caspases
cleave a broad spectrum of substrates, culminating in cell death. The
activation of caspases is initiated by the release of cytochrome c from
the mitochondrial IMS to the cytosol (reviewed in [91,92]). Upon treat-
ment with H2O2, Parl−/− MEFs and primary myoblasts released cyto-
chrome c more quickly than WT cells, suggesting that PARL negatively
regulates apoptosis. Consistently, the loss of PARL resulted in massive
apoptosis in mouse lymphocytes [39].

The Bcl-2 family of proteins is a key regulator of cytochrome c
release during apoptosis and can be divided into three subgroups:
(i) pro-apoptotic, (ii) anti-apoptotic and (iii) BH3-only (reviewed in
[93,94]). Hax1, a protein bearing sequence similarities to Bcl-2 pro-
teins, was demonstrated to have anti-apoptotic activity, suppressing
apoptosis through its physical interaction with PARL to enhance the
proteolytic processing of Omi. Although a physical interaction could
be detected between Hax1 and PARL, such interaction was not detect-
able between Hax1 and Omi. This contradicts previous findings that
Hax1 physically interacts with Omi and is a substrate of Omi [95].
Nevertheless, this led to the proposed model that the Hax1–PARL
complex enhanced the recruitment of Omi to PARL, promoting its
cleavage to suppress apoptosis. In support of this model, cells from
Hax1-null mice and Omi-mutant mice expressed activated Bax, a
pro-apoptotic Bcl-2 protein, earlier than cells from WT mice upon
the induction of apoptosis [96]. This work was the first demonstration
of a direct relationship between PARL and a Bcl-2 family-related pro-
tein, implicating the mitochondrial rhomboid protease as an impor-
tant regulator of apoptosis.

Shortly after this study was published, another study provided
evidence to the contrary, implying that the previously observed interac-
tion between Hax1 and PARL was likely to be an artifact. Jeyaraju et al.
showed that Hax1 is not localized to the mitochondrial IM or the IMS,
and is therefore an unlikely interacting partner of the IM-localized
PARL. Hax1 also interacted with PARL that was not imported into mito-
chondria, supporting the non-specific nature of their interaction. Multi-
ple sequence alignments using Hax1 protein sequences from diverse
organisms indicated that the previously believed Bcl-2 family-related
domains in Hax1 are not conserved [57,97]. This argues against Hax1
as a Bcl-2 family-related protein. Although this study showed that
Hax1 and PARL can interact non-specifically, one cannot rule out the
possibility that they can also interact specifically with each other. The
co-immunoprecipitations performed in this study were conducted
using cultured cells over-expressing Hax1 and PARL or by mixing
lysates from Hax1−/− MEFs with that from Parl−/− MEFs [57]. In con-
trast, the previous report showed the interaction between the endoge-
nous proteins inmitochondria purified frommouse liver [96]. To drawa
strong conclusion on the relationship between PARL and Hax1, a few
outstanding questions need to be answered. Firstly, the most obvious
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question is the authenticity of the physical interaction between PARL
and Hax1. Secondly, the strong similarity in the phenotypes between
Parl-null mice, Omi-mutant mice and Hax1-null mice (such as severe
lymphocyte loss and increased apoptotic cell death [39,96,98,99]) sug-
gests that the three genes might interact. A critically important
difference between Parl-null mice and the Omi-mutant and Hax1-null
mice is the apparent lack of neuronal cell death in Parl-null mice [39].
This would suggest an unlikely genetic interaction between the three
genes. Perhaps determining whether these genes truly interact could
shed light on whether these relationships warrant further study. Addi-
tional analysis is required to elucidate this potentially interesting and
important aspect of PARL-mediated biology.

PGAM5was very recently shown to undergo PARL-dependent cleav-
age at its N-terminus between amino acids 24 and 25 [17]. Interestingly,
it was more recently discovered that a cleaved C-terminal fragment of
PGAM5 (after amino acid 24, Δ24 PGAM5) accumulates in the cytosol
as a substrate of the inhibitor of apoptosis proteins (IAPs). Thiswas con-
comitantwith an increase in the expression of active caspase 3, promot-
ing apoptosis [100]. Although theprotease responsible for the formation
ofΔ24 PGAM5 has not been identified, evidence points towards PARL as
a very likely candidate. Firstly, PARL-dependent cleavage of PGAM5 in-
creases with a loss in mitochondrial membrane potential [17]; treating
cells with staurosporine, a compound previously shown to dissipate
the mitochondrial membrane potential, increased the accumulation of
Δ24 PGAM5 [100,101]. Secondly, the PARL cleavage site in PGAM5 coin-
cides with that of the protease that generates the pro-apoptotic form
[17,100]. Together, these data strongly implicate PARL as the protease
that cleaves PGAM5 upon mitochondrial damage, promoting caspase-
dependent apoptosis.

PARL-dependent cleavage of PGAM5 suggests that PARL is
pro-apoptotic, whereas the evidence that MEFs lacking PARL undergo
increased apoptosis suggests that PARL is anti-apoptotic [17,39]. How-
ever, the observed increase in cell death could be due to severe mito-
chondrial dysfunction in these cells [39]. It was previously observed in
Drosophila that the loss of Rhomboid-7 results in severely reduced
lifespan and impaired mitochondrial dynamics required for proper mi-
tochondrial function [15]. Furthermore, in the absence of PARL, PINK1
accumulates inmitochondria and is associated with reducedmitochon-
drial mass, reducedmembrane potential and increased reactive oxygen
species (ROS) [43,54,55]. It would not be surprising that the severe
mitochondrial dysfunction associated with the loss of PARL resulted in
increased apoptosis through PARL-independent mechanisms. The use
of PARL knock-out organisms has proved to be invaluable in the study
of PARL-mediated apoptosis. However, these studies are complicated
by the overlapping functions of mitochondria in different responses to
stress. Yet, one must recognize that PARL-mediated stress response
warrants further study as the loss of PARL results in such dramatic phe-
notypes. The challenge in future studies is in associating the observed
phenotypes with the appropriate pathways that are impaired.

4.2.2. Mitophagy — a new paradigm in the onset of Parkinson's disease
The results from numerous studies have indicated that increased

apoptosis could contribute to the pathology of PD [86]. However, in
recent years, impaired mitophagy has also been implicated in the path-
ogenesis of PD [59]. Indeed, for several years, many in the field have
focused on how PARL could regulate apoptosis. Consistent with the
recent implications of impaired mitophagy on PD, in the last 5 years,
the role of PARL in regulating mitophagy has been the focus of intense
research. PARL was first implicated in PD when the Drosophila mito-
chondrial rhomboid protease, rhomboid-7, was found to interact genet-
ically with pink1, parkin and omi— genes whose mammalian homologs
are PD-linked [28]. Within months of this discovery, Parkin was found
to be selectively recruited to damaged mitochondria, promoting their
clearance by mitophagy [102]. More importantly, knocking down
PINK1 impaired Parkin recruitment to damaged mitochondria [58].
Since these discoveries, many groups in the field have focused on the
role of PARL and its substrate, PINK1, in Parkin-mediated mitophagy.
Our work and work of others have shed much-needed light on the
mechanism of PINK1/Parkin-dependent mitophagy.

Mitophagy is a form of macroautophagy where damagedmitochon-
dria are sequestered into a double-membrane structure known as the
autophagosome. Subsequent fusion of the autophagosome with the
lysosome results in the degradation of its contents by the lysosomal
hydrolytic enzymes. In mammalian cells, mitophagy occurs in different
pathways (autophagy reviewed in [103,104], mitophagy reviewed in
[105]). In this review,we focus on the PINK1/Parkin-mediatedmitophagy
pathway.

As briefly described above in Section 2.3, PINK1 is cleaved by PARL
upon its import into mitochondria [43,55]. This cleavage allows it
to be exported to the cytoplasm where it is rapidly degraded in a
proteasome-dependent manner [43,55,106]. In healthy cells with
properly functioning mitochondria, the rapid turnover of PINK1 results
in low basal levels of the protein [106]. Disrupting the mitochondrial
membrane potential impairs PINK1 import and PARL-dependent cleav-
age, resulting in the mitochondrial accumulation of full-length PINK1
[53,55,106]. Under these conditions, PINK1 can selectively recruit Parkin,
an E3 ubiquitin ligase, to mitochondria, catalyzing the ubiquitination
of OMM proteins (Fig. 1). To date, several mitochondrial substrates of
Parkin have been identified, including mitofusins 1 and 2 (Mfn1/2),
voltage-dependent anion channel (VDAC) and Tom20 [107–110]. It is
proposed that Parkin-mediated ubiquitination of OMM proteins leads
to their proteasomal degradation and the recruitment of the autophagic
machinery [110]. Since increased mitochondrial fission has been shown
to promote mitophagy in mammalian cells, it is not surprising that the
pro-fusion proteins, Mfn1/2, are substrates of Parkin and are degraded
in a proteasome-dependent fashion [107,111,112]. Interestingly, a recent
study found that rapamycin-induced mitophagy in yeast is independent
of mitochondrial fission, suggesting that the mechanism of mitophagy is
not conserved fromyeast tomammals [113]. Indeed, to date, there are no
known homologs of PINK1 or Parkin in yeast. Amore recent study found
that damaged mitochondria form spheroids that colocalize with
lysosomal markers in an Mfn1/2 (fusion)-dependent but Parkin- and
autophagy-independent manner [114]. This suggests that the require-
ment for mitochondrial fission might be specific to Parkin-mediated
mitophagy that is not conserved in yeast. Perhaps mitophagy in
yeast occurs in a similar PINK1/Parkin-independent pathway. The find-
ing that mitochondrial spheroid formation requires Mfn1/2, and that
the over-expression of Parkin inhibits spheroid formation in favor of
mitophagy suggests that mitochondrial fusion promotes spheroid
formation whereas increased fission (or reduced fusion) promotes
Parkin-dependent mitophagy in mammalian cells upon mitochondrial
damage, consistent with recent findings [111,112,114].

In addition to altering mitochondrial dynamics, Parkin-mediated
ubiquitination of OMM proteins also leads to the recruitment of
p62, a protein that binds to ubiquitin and LC3, a component of
autophagosomes (Fig. 1) [115]. Activated LC3 is tightly associated
with membranes and is required for the growth of autophagosomes.
These results strongly suggest that Parkin uses both the ubiquitin–
proteasome system (UPS) and the autophagic pathway to promote
the clearance of damaged mitochondria (Fig. 1).

The requirement for PARL in Parkin-mediated mitophagy and PD is
clear from studies demonstrating that cells lacking PARL have impaired
Parkin recruitment to damaged mitochondria, and consequently,
impaired mitophagy. More importantly, Shi et al. identified a novel
mutation in PARL associated with PD. The PD-linked S77N mutation in
PARL results in reduced β-cleavage, and accordingly, impaired PARL-
mediated mitophagy [43]. The current model in the field places PARL
as an important regulator of mitophagy in response to mitochondrial
damage. In healthy mitochondria, PARL constitutively cleaves PINK1
as it gets imported, allowing its export and rapid proteasomal degrada-
tion, indicating that mitochondria are healthy. However, when mito-
chondria are damaged, the loss of mitochondrial membrane potential
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impairs PINK1 import, resulting in the accumulation of full-length PINK1
on the OMM, serving as an anchor for Parkin recruitment and subse-
quent mitochondrial clearance. Although the PINK1/Parkin mitophagy
pathway is rapidly gaining acceptance as a PD-associated pathway, it is
important to note that many of these studies that contributed signifi-
cantly to the understanding of this pathway were performed in cells
over-expressing Parkin. A few recent studies have shown that endoge-
nous levels of Parkin may not be sufficient to induce mitochondrial
clearance, suggesting that previous results may be artifacts of Parkin
over-expression [116,117]. However, previous studies have detected
mitophagy in cells with endogenous Parkin, albeit at low levels [118]. It
would not be surprising that, in the absence of Parkin over-expression,
cells commit to apoptosis much more quickly. Furthermore, it would
be very unlikely that cells degrade the entire mitochondrial network
rather than commit to cell death, as theywould lose their primary energy
source. Hence,while systems that over-express Parkin do not necessarily
represent the amount of endogenous mitochondrial clearance, these
tools have helped us to better understand the role of various PD-linked
mutations in the progression of mitophagy. However, the role of these
studied proteins needs to be verified, especially if we are to apply our
knowledge based on these research conditions to the pathogenesis of
PD. In the next part of this review, we provide our perspectives on how
impaired PARL function might contribute to the pathogenesis of PD.

5. Concluding perspectives — PARL, the master regulator of
mitochondria-mediated stress response?

Combining the current findings, we propose that PARL-dependent
cleavage of its substrates serves as an important form of signaling.
Depending on the substrate (PINK1 or PGAM5), the messagemight sig-
nal healthy or damagedmitochondria. In healthy cells, the constant de-
phosphorylation of PARL (perhaps by its substrate PGAM5) maintains
its enzymatic activity, promoting its self-regulated β-cleavage. This, in
turn, allows PARL-dependent constitutive cleavage of PINK1, allowing
PINK1export to the cytoplasm and rapid proteasome-dependent degra-
dation. Upon mitochondrial damage, the loss of mitochondrial mem-
brane potential disrupts PINK1 import into mitochondria, resulting in
the accumulation of full-length PINK1 on the OMM and subsequent
recruitment of Parkin to inhibit mitochondrial fusion and promote
mitochondrial degradation by mitophagy (Fig. 1).

At the same time, by an as yet unknownmechanism, PARL selective-
ly cleaves PGAM5, resulting in the efficient export of PGAM5 to the
cytosol to promote apoptosis. The reduction in mitochondrial PGAM5
could result in an increase in phosphorylated PARL, inhibiting PARL
enzymatic activity, contributing to further mitochondrial damage to
potentiate cell death by apoptosis (Fig. 1).

The role of PARL in promoting mitophagy and apoptosis seems
counter-intuitive sincemitophagy has been proposed tomitigate the ex-
tent of cellular damage induced by mitochondrial dysfunction, thereby
promoting cell survival. However, in the case that only a small pool ofmi-
tochondria is damaged, their efficient clearance by mitophagy could be
sufficient to maintain cell survival as mitophagy is inducedmore quickly
than apoptosis. The increase in the pro-apoptotic form of PGAM5 and ac-
tive caspase 3 can only be detected 1 h after treatmentwith STS,whereas
Parkin recruitment to mitochondria can be detected as early as 20 min
after the induction of mitophagy [100,119]. However, in the event of
prolonged or extensive mitochondrial damage beyond the capacity of
mitophagy, PARL might help to ensure the health of the multi-cellular
organism by promoting apoptosis.

Although research has shown that increased apoptosis could contrib-
ute to increased neuronal death leading to PD, recent evidence to the
contrary has puzzled the PD community, shifting the focus of research
to the role of impairedmitophagy in the pathogenesis of PD. For a period
of time, it seemed as if the roles of impaired apoptosis andmitophagy in
PD were mutually exclusive. These most recent findings shed new light
on the role of PARL inmitophagy and apoptosis, suggesting that impaired
PARL function could be themissing link betweenmitophagy and apopto-
sis in the pathogenesis of PD. Given the importance of PARL in these qual-
ity control mechanisms, one must wonder whether other substrates of
PARL exist and their role(s), if any, in these pathways. A future challenge
for the field would be to identify more substrates of PARL and how PARL
is regulated beyond what is already known. Evidently, phosphorylation
plays a crucial role in regulating PARL activity. However, the kinase(s)
and/or phosphatase(s) responsible for this form of regulation have
not been identified. As previously discussed, current data suggests that
PARL is not only a protease, but it has additional functions. Cells express-
ing PARL mutants with impaired β-cleavage have phenotypes similar to
that of cells lacking PARL, however, these mutants still retain enzymatic
activity [38,43,63]. Better understanding themany functions of PARL and
how it is regulated will reveal the intricacies of cellular quality control
and shed more light on the pathogenesis of diseases such as T2D and
PD. In sum, it is clear that the mitochondrial-localized rhomboid prote-
ases are critical regulators of the life and death of the cell, and we look
forward to additional discoveries of this important intramembrane
protease family.
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